685 research outputs found

    Enabling three-dimensional densitometric measurements using laboratory source X-ray micro-computed tomography

    Get PDF
    We present new software allowing significantly improved quantitative mapping of the three-dimensional density distribution of objects using laboratory source polychromatic X-rays via a beam characterisation approach (c.f. filtering or comparison to phantoms). One key advantage is that a precise representation of the specimen material is not required. The method exploits well-established, widely available, non-destructive and increasingly accessible laboratory-source X-ray tomography. Beam characterisation is performed in two stages: (1) projection data are collected through a range of known materials utilising a novel hardware design integrated into the rotation stage; and (2) a Python code optimises a spectral response model of the system. We provide hardware designs for use with a rotation stage able to be tilted, yet the concept is easily adaptable to virtually any laboratory system and sample, and implicitly corrects the image artefact known as beam hardening

    Discovery, activity and characterisation of an AA10 lytic polysaccharide oxygenase from the shipworm symbiont Teredinibacter turnerae

    Get PDF
    Background: The quest for novel enzymes for cellulosic biomass-degradation has recently been focussed on lytic polysaccharide monooxygenases (LPMOs/PMOs), Cu-containing proteins that catalyse the oxidative degradation of otherwise recalcitrant polysaccharides using O2 or H2O2 as a co-substrate. Results: Although classical saprotrophic fungi and bacteria have been a rich source of lytic polysaccharide monooxy genases (LPMOs), we were interested to see if LPMOs from less evident bio-environments could be discovered and assessed for their cellulolytic activity in a biofuel context. In this regard, the marine shipworm Lyrodus pedicellatus represents an interesting source of new enzymes, since it must digest wood particles ingested during its natural tunnel boring behaviour and plays host to a symbiotic bacterium, Teredinibacter turnerae, the genome of which has revealed a multitude of enzymes dedicated to biomass deconstruction. Here, we show that T. turnerae encodes a cellulose-active AA10 LPMO. The 3D structure, at 1.4 Å resolution, along with its EPR spectrum is distinct from other AA10 polysaccharide monooxygenases insofar as it displays a “histidine-brace” catalytic apparatus with changes to the surrounding coordination sphere of the copper. Furthermore, TtAA10A possesses a second, surface accessible, Cu site 14 Å from the classical catalytic centre. Activity measurements show that the LPMO oxidises cellulose and thereby signifcantly augments the rate of degradation of cellulosic biomass by classical glycoside hydrolases. Conclusion: Shipworms are wood-boring marine molluscs that can live on a diet of lignocellulose. Bacterial sym bionts of shipworms provide many of the enzymes needed for wood digestion. The shipworm symbiont T. turnerae produces one of the few LPMOs yet described from the marine environment, notably adding to the capability of shipworms to digest recalcitrant polysaccharides

    Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expression of genes in winter-habit (winter Norstar and winter Manitou) and spring-habit (spring Manitou and spring Norstar)) cultivars, wherein the locus for the vernalization gene <it>Vrn-A1 </it>was swapped between the parental winter Norstar and spring Manitou in the derived near-isogenic lines winter Manitou and spring Norstar. Global expression of genes in the crowns of 3-leaf stage plants cold-acclimated at 6°C for 0, 2, 14, 21, 38, 42, 56 and 70 days was examined.</p> <p>Results</p> <p>Analysis of variance of gene expression separated the samples by genetic background and by the developmental stage before or after vernalization saturation was reached. Using gene-specific ANOVA we identified 12,901 genes (at <it>p </it>< 0.001) that change in expression with respect to both genotype and the duration of cold-treatment. We examined in more detail a subset of these genes (2,771) where expression was highly influenced by the interaction between these two main factors. Functional assignments using GO annotations showed that genes involved in transport, oxidation-reduction, and stress response were highly represented. Clustering based on the pattern of transcript accumulation identified genes that were up or down-regulated by cold-treatment. Our data indicate that the cold-sensitive lines can up-regulate known cold-responsive genes comparable to that of cold-hardy lines. The levels of expression of these genes were highly influenced by the initial rate and the duration of the gene's response to cold. We show that the <it>Vrn-A1 </it>locus controls the duration of gene expression but not its initial rate of response to cold treatment. Furthermore, we provide evidence that <it>Ta.Vrn-A1 </it>and <it>Ta.Vrt1 </it>originally hypothesized to encode for the same gene showed different patterns of expression and therefore are distinct.</p> <p>Conclusion</p> <p>This study provides novel insight into the underlying mechanisms that regulate the expression of cold-responsive genes in wheat. The results support the developmental model of LT tolerance gene regulation and demonstrate the complex genotype by environment interactions that determine LT adaptation in winter annual cereals.</p

    Risk factors for delayed presentation and referral of symptomatic cancer: Evidence for common cancers

    Get PDF
    Background:It has been suggested that the known poorer survival from cancer in the United Kingdom, compared with other European countries, can be attributed to more advanced cancer stage at presentation. There is, therefore, a need to understand the diagnostic process, and to ascertain the risk factors for increased time to presentation.Methods:We report the results from two worldwide systematic reviews of the literature on patient-mediated and practitioner-mediated delays, identifying the factors that may influence these.Results:Across cancer sites, non-recognition of symptom seriousness is the main patient-mediated factor resulting in increased time to presentation. There is strong evidence of an association between older age and patient delay for breast cancer, between lower socio-economic status and delay for upper gastrointestinal and urological cancers and between lower education level and delay for breast and colorectal cancers. Fear of cancer is a contributor to delayed presentation, while sanctioning of help seeking by others can be a powerful mediator of reduced time to presentation. For practitioner delay, ‘misdiagnosis’ occurring either through treating patients symptomatically or relating symptoms to a health problem other than cancer, was an important theme across cancer sites. For some cancers, this could also be linked to inadequate patient examination, use of inappropriate tests or failing to follow-up negative or inconclusive test results.Conclusion:Having sought help for potential cancer symptoms, it is therefore important that practitioners recognise these symptoms, and examine, investigate and refer appropriately. © 2009 Cancer Research UK All rights reserved

    Explosive Nucleosynthesis: What we learned and what we still do not understand

    Full text link
    This review touches on historical aspects, going back to the early days of nuclear astrophysics, initiated by B2^2FH and Cameron, discusses (i) the required nuclear input from reaction rates and decay properties up to the nuclear equation of state, continues (ii) with the tools to perform nucleosynthesis calculations and (iii) early parametrized nucleosynthesis studies, before (iv) reliable stellar models became available for the late stages of stellar evolution. It passes then through (v) explosive environments from core-collapse supernovae to explosive events in binary systems (including type Ia supernovae and compact binary mergers), and finally (vi) discusses the role of all these nucleosynthesis production sites in the evolution of galaxies. The focus is put on the comparison of early ideas and present, very recent, understanding.Comment: 11 pages, to appear in Springer Proceedings in Physics (Proc. of Intl. Conf. "Nuclei in the Cosmos XV", LNGS Assergi, Italy, June 2018

    Particular genomic and virulence traits associated with preterm infant-derived toxigenic Clostridium perfringens strains

    Get PDF
    Clostridium perfringens is an anaerobic toxin-producing bacterium associated with intestinal diseases, particularly in neonatal humans and animals. Infant gut microbiome studies have recently indicated a link between C. perfringens and the preterm infant disease necrotizing enterocolitis (NEC), with specific NEC cases associated with overabundant C. perfringens termed C. perfringens-associated NEC (CPA-NEC). In the present study, we carried out whole-genome sequencing of 272 C. perfringens isolates from 70 infants across 5 hospitals in the United Kingdom. In this retrospective analysis, we performed in-depth genomic analyses (virulence profiling, strain tracking and plasmid analysis) and experimentally characterized pathogenic traits of 31 strains, including 4 from CPA-NEC patients. We found that the gene encoding toxin perfringolysin O, pfoA, was largely deficient in a human-derived hypovirulent lineage, as well as certain colonization factors, in contrast to typical pfoA-encoding virulent lineages. We determined that infant-associated pfoA+ strains caused significantly more cellular damage than pfoA- strains in vitro, and further confirmed this virulence trait in vivo using an oral-challenge C57BL/6 murine model. These findings suggest both the importance of pfoA+ C. perfringens as a gut pathogen in preterm infants and areas for further investigation, including potential intervention and therapeutic strategies

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Mucin Variable Number Tandem Repeat Polymorphisms and Severity of Cystic Fibrosis Lung Disease: Significant Association with MUC5AC

    Get PDF
    Variability in cystic fibrosis (CF) lung disease is partially due to non-CFTR genetic modifiers. Mucin genes are very polymorphic, and mucins play a key role in the pathogenesis of CF lung disease; therefore, mucin genes are strong candidates as genetic modifiers. DNA from CF patients recruited for extremes of lung phenotype was analyzed by Southern blot or PCR to define variable number tandem repeat (VNTR) length polymorphisms for MUC1, MUC2, MUC5AC, and MUC7. VNTR length polymorphisms were tested for association with lung disease severity and for linkage disequilibrium (LD) with flanking single nucleotide polymorphisms (SNPs). No strong associations were found for MUC1, MUC2, or MUC7. A significant association was found between the overall distribution of MUC5AC VNTR length and CF lung disease severity (p = 0.025; n = 468 patients); plus, there was robust association of the specific 6.4 kb HinfI VNTR fragment with severity of lung disease (p = 6.2 x 10(-4) after Bonferroni correction). There was strong LD between MUC5AC VNTR length modes and flanking SNPs. The severity-associated 6.4 kb VNTR allele of MUC5AC was confirmed to be genetically distinct from the 6.3 kb allele, as it showed significantly stronger association with nearby SNPs. These data provide detailed respiratory mucin gene VNTR allele distributions in CF patients. Our data also show a novel link between the MUC5AC 6.4 kb VNTR allele and severity of CF lung disease. The LD pattern with surrounding SNPs suggests that the 6.4 kb allele contains, or is linked to, important functional genetic variation
    corecore