846 research outputs found

    Vapor pressure isotope fractionation effects in planetary atmospheres: application to deuterium

    Full text link
    The impact of the vapor pressure difference between deuterated and nondeuterated condensing molecules in planetary atmospheres is quantitatively assessed. This difference results in a loss of deuterium in the vapor phase above the condensation level. In Titan, Uranus and Neptune, the effect on CH3D is too subtle to alter current D/H ratio determinations. In Mars, the effect can induce a large depletion of HDO, starting about one scale height above the condensation level. Although the current infrared measurements of the D/H ratio appear to be almost unaffected, the intensity of disk-averaged millimetric HDO lines can be modified by about 10%. The effect is much stronger in limb sounding, and can be easily detected from orbiter observations.Comment: 24 pages, 1 table, 6 figures. Paper accepted for publication in ICARU

    Analysis of high altitude clouds in the martian atmosphere based on Mars Climate Sounder observations

    Get PDF
    International Symposium on Sun, Earth, and Life, Jun 2016, Bandung, IndonesiaInternational audienceHigh altitude clouds have been observed in the Martian atmosphere. However, their properties still remain to be characterized. Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO) is an instrument that measures radiances in the thermal infrared, both in limb and nadir views. It allows us to retrieve vertical profiles of radiance, temperature and aerosols. Using the MCS data and radiative transfer model coupled with an automated inversion routine, we can investigate the chemical composition of the high altitude clouds. We will present the first results on the properties of the clouds. CO2 ice is the best candidate to be the main component of some high altitude clouds due to the most similar spectral variation compared to water ice or dust, in agreement with previous studies. Using cloud composition of contaminated CO2 ice (dust core surrounded by CO2 ice) might improve the fitting result, but further study is needed

    An intense narrow equatorial jet in Jupiter’s lower stratosphere observed by JWST

    Get PDF
    The atmosphere of Jupiter has east–west zonal jets that alternate as a function of latitude as tracked by cloud motions at tropospheric levels. Above and below the cold tropopause at ~100 mbar, the equatorial atmosphere is covered by hazes at levels where thermal infrared observations used to characterize the dynamics of the stratosphere lose part of their sensitivity. James Webb Space Telescope observations of Jupiter in July 2022 show these hazes in higher detail than ever before and reveal the presence of an intense (140 m s−1) equatorial jet at 100–200 mbar (70 m s−1 faster than the zonal winds at the cloud level) that is confined to ±3° of the equator and is located below stratospheric thermal oscillations that extend at least from 0.1 to 40 mbar and repeat in multiyear cycles. This suggests that the new jet is a deep part of Jupiter’s Equatorial Stratospheric Oscillation and may therefore vary in strength over time.JWST-ERS-01373, NASA/ESA Hubble Space Telescope programmes no. 16913, 15502 and 16790, PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/, Grupos Gobierno Vasco IT1742-22. I.d.; European Research Council Consolidator Grant (under the European Union’s Horizon 2020 research and innovation programme, grant agreement no. 723890), STFC PhD Studentship, NASA grants 80NSSC21K1418 and 80NSSC19K0894

    The SuperCam Remote Sensing Instrument Suite for Mars 2020

    No full text
    International audienceThe Mars 2020 rover, essentially a structural twin of MSL, is being built to a) characterize the geology and history of a new landing site on Mars, b) find and characterize ancient habitable environments, c) cache samples for eventual return to Earth, and d) demonstrate in-situ production of oxygen needed for human exploration. Remote-sensing instrumentation is needed to support the first three of these goals [1]. The SuperCam instrument meets these needs with a range of instrumentation including the highest-resolution remote imaging on the rover, two different techniques for determining mineralogy , and one technique to provide elemental compositions. All of these techniques are co-boresighted, providing rapid comprehensive characterization. In addition, for targets within 7 meters of the rover the laser shock waves brush away the dust, providing cleaner surfaces for analysis. SuperCam will use an advanced version of the AEGIS robotic target selection software

    Martian dust storm impact on atmospheric H<sub>2</sub>O and D/H observed by ExoMars Trace Gas Orbiter

    Get PDF
    Global dust storms on Mars are rare but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere, primarily owing to solar heating of the dust. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes, as well as a decrease in the water column at low latitudes. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere

    No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations

    Get PDF
    The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere, which-given methane's lifetime of several centuries-predicts an even, well mixed distribution of methane. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally

    The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description

    Get PDF
    On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds
    corecore