23,004 research outputs found

    Corner transfer matrix renormalization group method for two-dimensional self-avoiding walks and other O(n) models

    Full text link
    We present an extension of the corner transfer matrix renormalisation group (CTMRG) method to O(n) invariant models, with particular interest in the self-avoiding walk class of models (O(n=0)). The method is illustrated using an interacting self-avoiding walk model. Based on the efficiency and versatility when compared to other available numerical methods, we present CTMRG as the method of choice for two-dimensional self-avoiding walk problems.Comment: 4 pages 7 figures Substantial rewrite of previous version to include calculations of critical points and exponents. Final version accepted for publication in PRE (Rapid Communications

    Drugs for neglected diseases: a failure of the market and a public health failure?

    Get PDF
    Infectious diseases cause the suffering of hundreds of millions of people, especially in tropical and subtropical areas. Effective, affordable and easy-to-use medicines to fight these diseases are nearly absent. Although science and technology are sufficiently advanced to provide the necessary medicines, very few new drugs are being developed. However, drug discovery is not the major bottleneck. Today's R&D-based pharmaceutical industry is reluctant to invest in the development of drugs to treat the major diseases of the poor, because return on investment cannot be guaranteed. With national and international politics supporting a free market-based world order, financial opportunities rather than global health needs guide the direction of new drug development. Can we accept that the dearth of effective drugs for diseases that mainly affect the poor is simply the sad but inevitable consequence of a global market economy? Or is it a massive public health failure, and a failure to direct economic development for the benefit of society? An urgent reorientation of priorities in drug development and health policy is needed. The pharmaceutical industry must contribute to this effort, but national and international policies need to direct the global economy to address the true health needs of society. This requires political will, a strong commitment to prioritize health considerations over economic interests, and the enforcement of regulations and other mechanisms to stimulate essential drug development. New and creative strategies involving both the public and the private sector are needed to ensure that affordable medicines for today's neglected diseases are developed. Priority action areas include advocating an essential medicines R&D agenda, capacity-building in and technology transfer to developing countries, elaborating an adapted legal and regulatory framework, prioritizing funding for essential drug development and securing availability, accessibility, distribution and rational use of these drugs

    Determination of Frequency and Distribution of Hessian Fly (Diptera: Cecidomyiidae) Biotypes in the Northeastern Soft Wheat Region

    Get PDF
    Fifteen collections of Hessian flies from the northern soft winter wheat region of the United States were used to determine the composition and frequency of biotypes. The wheat cultivars \u27Seneca\u27 (H7Hs), \u27Monon\u27 (H3), \u27Knox 62\u27 (~, H7Hg), and \u27Abe\u27 (Hs) were used as differentials. Biotypes J and L replaced biotype B as the prevalent biotype in Indiana, since wheat cultivars having the Hs and the H6 genes have been grown. Biotype GP, the least virulent of any Hessian fly biotypes, was still present in New York indicating that wheat cuItivars with no genes for resistance are still being grown there. The genetic variability of Hessian fly biotypes that enables them to overcome the resistance in wheat cultivars is discussed

    The Adsorption and Collapse Transitions in a Linear Polymer Chain near an Attractive Wall

    Get PDF
    We deduce the qualitative phase diagram of a long flexible neutral polymer chain immersed in a poor solvent near an attracting surface using phenomenological arguments. The actual positions of the phase boundaries are estimated numerically from series expansion up to 19 sites of a self-attracting self avoiding walk in three dimensions. In two dimensions, we calculate analytically phase boundaries in some cases for a partially directed model. Both the numerical as well as analytical results corroborate the proposed qualitative phase diagram.Comment: 8 pages, 8 figures, revte

    Filtering and Forecasting With Misspecified ARCH Models II: Making the Right Forecast With the Wrong Model

    Get PDF
    A companion paper (Nelson (1992)) showed that in data observed at high frequencies, an ARCH model may do a good job at estimating conditional variances, even when the ARCH model is severely misspecified. While such models may perform reasonably well at filtering (i.e., at estimating unobserved instantaneous conditional variances) they may perform disastrously at medium and long term forecasting. In this paper, we develop conditions under which a misspecified ARCH model successfully performs both tasks, filtering and forecasting. The key requirement (in addition to the conditions for consistent filtering) is that the ARCH model correctly specifies the functional form of the first two conditional moments of all state variables. We apply these results to a diffusion model employed in the options pricing literature, the stochastic volatility model of Hull and White (1987), Scott (1987), and Wiggins (1987)

    Clustering Phase Transitions and Hysteresis: Pitfalls in Constructing Network Ensembles

    Get PDF
    Ensembles of networks are used as null models in many applications. However, simple null models often show much less clustering than their real-world counterparts. In this paper, we study a model where clustering is enhanced by means of a fugacity term as in the Strauss (or "triangle") model, but where the degree sequence is strictly preserved -- thus maintaining the quenched heterogeneity of nodes found in the original degree sequence. Similar models had been proposed previously in [R. Milo et al., Science 298, 824 (2002)]. We find that our model exhibits phase transitions as the fugacity is changed. For regular graphs (identical degrees for all nodes) with degree k > 2 we find a single first order transition. For all non-regular networks that we studied (including Erdos - Renyi and scale-free networks) we find multiple jumps resembling first order transitions, together with strong hysteresis. The latter transitions are driven by the sudden emergence of "cluster cores": groups of highly interconnected nodes with higher than average degrees. To study these cluster cores visually, we introduce q-clique adjacency plots. We find that these cluster cores constitute distinct communities which emerge spontaneously from the triangle generating process. Finally, we point out that cluster cores produce pitfalls when using the present (and similar) models as null models for strongly clustered networks, due to the very strong hysteresis which effectively leads to broken ergodicity on realistic time scales.Comment: 13 pages, 11 figure

    The competition of hydrogen-like and isotropic interactions on polymer collapse

    Full text link
    We investigate a lattice model of polymers where the nearest-neighbour monomer-monomer interaction strengths differ according to whether the local configurations have so-called ``hydrogen-like'' formations or not. If the interaction strengths are all the same then the classical θ\theta-point collapse transition occurs on lowering the temperature, and the polymer enters the isotropic liquid-drop phase known as the collapsed globule. On the other hand, strongly favouring the hydrogen-like interactions give rise to an anisotropic folded (solid-like) phase on lowering the temperature. We use Monte Carlo simulations up to a length of 256 to map out the phase diagram in the plane of parameters and determine the order of the associated phase transitions. We discuss the connections to semi-flexible polymers and other polymer models. Importantly, we demonstrate that for a range of energy parameters two phase transitions occur on lowering the temperature, the second being a transition from the globule state to the crystal state. We argue from our data that this globule-to-crystal transition is continuous in two dimensions in accord with field-theory arguments concerning Hamiltonian walks, but is first order in three dimensions

    An Ammonia Spectral Atlas of Dense Cores in Perseus

    Full text link
    We present ammonia observations of 193 dense cores and core candidates in the Perseus molecular cloud made using the Robert F. Byrd Green Bank Telescope. We simultaneously observed the NH3(1,1), NH3(2,2), CCS (2_1 -> 1_0) and CC34S (2_1 -> 1_0) transitions near 23 GHz for each of the targets with a spectral resolution of dv ~ 0.024 km/s. We find ammonia emission associated with nearly all of the (sub)millimeter sources as well as at several positions with no associated continuum emission. For each detection, we have measured physical properties by fitting a simple model to every spectral line simultaneously. Where appropriate, we have refined the model by accounting for low optical depths, multiple components along the line of sight and imperfect coupling to the GBT beam. For the cores in Perseus, we find a typical kinetic temperature of T=11 K, a typical column density of N(NH3)~ 10^14.5 /cm^2 and velocity dispersions ranging from sigma_v = 0.07 km/s to 0.7 km/s. However, many cores with velocity dispersions > 0.2 km/s show evidence for multiple velocity components along the line of sight.Comment: 19 pages; Accepted to ApJS; version with high resolution figures available at http://www.cfa.harvard.edu/COMPLETE/papers/nh3-paper1.pdf ; online data at http://www.cfa.harvard.edu/COMPLETE/data_html_pages/GBT_NH3.htm
    • …
    corecore