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We deduce the qualitative phase diagram of a long flexible neutral polymer chain immersed in a poor solvent
near an attracting surface using phenomenological arguments. The actual positions of the phase boundaries are
estimated numerically from series expansion up to 19 sites of a self-attracting self-avoiding walk in three
dimensions. In two dimensions, we calculate phase boundaries analytically in some cases for a partially
directed model. Both the numerical and analytical results corroborate the proposed qualitative phase diagram.
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[. INTRODUCTION whether it is near the wall perpendicular to the preferred
direction (SAGJ) or the wall parallel to the preferred direc-
The behavior of flexible polymers in solution at large tion (SAG2. We determine the phase boundaries of SAG1
length scales is independent of the chemical nature of thand SAG2 phases by calculating their orientation dependent
polymer and the solvent, and these universal scaling propegurface energy. We also determine the transition between
ties are well understood in terms of the renormalizationSAGL and SAG2 phases when both walls are present. We
group approacti1,2]. The polymer chain is known to un- also summarize our results of analysis of exact series expan-
dergo a transition from a random-coil phase to a globulasion in three dimensions which we have extended by two
phase as the temperature or it of the solution is varied. more terms.
The model of a self-avoiding walk on a lattice with on-site  The paper is organized as follows. Section Il contains the
repu|si0n and nearest-neighbor attraction provides a S|mp|€ef|n|t|0n of the model and of the various phases. In Sec. ”l,
model for understanding the collapse transition in polymerdve briefly review earlier work before providing arguments
[3]. for the qualitative nature of the phase diagram in two and
When the chain interacts with an impenetrable surface itéhree dimensions. The phase diagram obtained is compared
conformational properties are Strong|y m0d|f[@:j5] Com- with numerical results from series eXpanSion in Sec. IV. Sec-
petition between the lower internal energy near an attractivéon V contains the analytical results obtained for the par-
wall and the higher entropy away from it results in a transi-tially directed model.
tion, where for a strongly attractive surface the polymer

sticks to the surface_, and fo.r Wgak attra(_:tion it stays away Il. MODEL AND DEEINITIONS
from the surface. This behavior finds applications in lubrica-
tion, adhesion, surface protection, €i6]. A simple lattice model for a linear polymer in a poor

If there is also self-attraction in the polymer, there is thesolvent is a self-avoiding walkSAW) on a regular lattice
possibility of a collapse transition in both the desorbed andvith an attractive interaction energy, between pairs of sites
adsorbed states. In addition, there is a surface-attacheaf the walk which are unit distance apart but not consecutive
globular (SAG) phase, in which the polymeric globule gets along the walk. The adsorbing surface is modeled by restrict-
attached to the attractive surfagg. In the thermodynamic ing the walk to lie in a upper half plane and by associating an
limit, the SAG phase has the same free energy per monomeitractive energyes with each monome(site of the walk
as the bulk globular phase, and the transition between thetying on the surface. In the partially directed self-avoiding
is a surface transition. In earlier papé8], we discussed walk (PDSAW) in two dimensions, there is an additional
the phase diagram in this case, and investigated the phagestriction that the walk cannot take steps in the negative
diagram in a lattice model using extrapolation of exact serieglirection.
expansions. This scheme has been found to give satisfactory We will work with the reduced variables =e”“ andu
results as it can take into account the corrections to scalings €°“u, where 8 is the inverse temperature. For clarity of
To achieve the same accuracy by the Monte Carlo method, argument, we start by defining the different phases. Consider
chain of about two orders of magnitude longer than in thea polymer chain consisting df monomers, attached to the
exact enumeration method has to be considggéd attractive surface at one end.df and €, are small in mag-

In this paper, we show that the qualitative features of thenitude, the polymer exists in the swollen random-coil phase,
phase diagram in three dimensions can be determined way from the surface. In this phase, the mean radius of
simple phenomenological arguments. In the case of a pagyration varies adN” where v takes the self-avoiding walk
tially directed polymer in two dimensions, we determine thevalue[ v~0.588 in(3D) and v=3/4 in 2D]. The number of
exact phase diagram of the SAG phase analytically. In thisnonomers in contact with the surface is of order 1 in this
case, the polymer has different behavior depending omase. We shall call this phase the desorbed extefiDé&l
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phase. Ife, is large andeg is small, the polymer exists away w W
from the wall as a compact ball of finite density. In this case,

the radius of gyration of the polymer varies B8" in d
dimensions. We shall call this phase the desorbed collapsed

(DC) phase. If the surface attractiaq is sufficiently large,

the polymer sticks close to the surface. In this case, a finite
fraction of monomers are on the surface, and the extent of

the polymer perpendicular to the surface is finite. Along the .
surface the polymer roughly acts as a polymer chair in

—1 dimensions. Depending on whether the attractive self-
interaction is large or small, the polymer is in a collapsed

phase with its transverse size varyingN&®~1), or in the

extended phase with the transverse size varying\la's
wherev’ is the self-avoiding walk exponent oh— 1 dimen-
sions. We shall call these phases the adsorbed colldpsad
and the adsorbed extend&dE) phases, respectively. In ad- FIG. 1. The qualitative phase diagram in three dimensions.
dition to these phases, the polymer may exist as a collapsed
globule of finite density which sticks to the surface. In this  The model is less studied in three dimensions. Monte
case, the size of the polymer in the directions transverse anQarlo simulationg19] and series expansion analy§& on
perpendicular to the surface variesNi$? and the number of ~ the cubic lattice showed the existence of four phases: AE,
monomers in contact with the surface variefNd& V. We  AC, DE, and DC. Whilg[19] claimed the existence of two
shall call this phase the surface-adsorbed globular phaseulticritical points, the earlier preliminary resulf8§] ob-
Note that in two dimensions there is no distinction betweenained from series expansion seemed to support one multi-
the AC and the AE phases. critical point. More careful analysis of the series, reported
The polymer undergoes a transition between the extendedter in this paper, shows that there are indeed two multicriti-
and collapsed phases as the temperature is varied. At thgl points. The question of whether or not a SAG phase
transition temperature between the DC and the DE phasesxists in three-dimensions has not been addressed so far.
called the ¢ point, the critical behavior is described by a Also, the possibility of surface transitions among the col-
tricritical point of the O(n) (n—0) spin system. At th&  lapsed phases has not been explicitly dealt with. Thus, in
point, R,~N"¢ with v,=4/7 for 2D[10] and 1/2 for 3D[1].  spite of many earlier studies, the qualitative behavior of the
The transition from AE to AC is described by, correspond-  system is not fully established.
ing to one lower dimension. In two dimensions, at the mul- We now determine the qualitative nature of the phase dia-
ticritical point where the DE, DC, and AE phases meet, thegram from phenomenological considerations. If the wall is
geometrical properties of the chain can be related to the paepulsive, i.e.,.w<1, the polymer will be in the desorbed
rimeter of percolation clusters near a wall, and hence can bstate. Asu is increased from 1 teo, the polymer undergoes

"
Usp

determined exactly11]. a collapse transition from the DE to the DC phase at a critical
value U3y (see Fig. 1 This transition valueu}, is clearly
Il. QUALITATIVE PHASE DIAGRAM independent of», and the boundary between the DE and DC

. . . . ) phases is vertical. It andw are both near 1, clearly, the

First, we briefly review earlier work on this problem. In polymer is in the DE phase. As is increased from 1 te
one of the earliest papers on the subject, Bouchaud and Vayie polymer undergoes a transition from the DE to the AE
nimenus derived the exact phase diagram on a Sierpinsignase. et this transition occur at a critical cumglu) that
gaske{12]. The phase diagram consisted of the AE, DE, anqtersects thes axis atw* .
DC phases. I1]13], the phase diagram in two dimensions nqy, consider the case when baitand w are large. At
was obtained approximately by series expansions and it wag_ o the polymer has the density 1, and can be described as
found to be qualitatively similar to that for the gasket{®, 5 pamiltonian walk. The bulk attractive energy per site is

the po;sibility of fche existence of the SAG phase. in tWO—(d—l)eu, and there is a surface energy which is easily
dimensions was discussed based on analysis of series eXPA%an to bede N VA Then the free energy of the DC
u .

sions. Evidence for the existence of a surface transition fro
the SAG to DC phase was also presented. A variant of th
model, the PDSAW model in two dimensions, has been more
amenable to analytical calculations. For a PDSAW in two
dimensions, the exact calculation of the phase boundary be-

tween the collapsed and the extended ph&tds-16 was In the SAG phase, af=0, the polymer exists as a rectan-
numerically confirmed if17]. The phase diagram thus ob- gular parallelepiped of size andL, in directions parallel
tained is qualitatively similar to that of the undirected two- and perpendicular to the surface. Its bulk energy is the same
dimensional model. 1118], the existence of the SAG phase as in the DC phase and the surface energ)eis—(es)L‘T"l

in the PDSAW was suggested based on series expansion(d—1)e,N/L. Minimizing the surface energy with re-
analysis. spect toL |, we obtain

hase aff=0 is

Epc=—(d—1)e,;N+de,NE~1/d, (1)
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Esac=—(d—1)eN+def (e, — e N,

@)

AL (B,) (c
In the AC phase, we have, =1, Lj=N""1Y and the Cy N \D
free energy af=0 is
Eac=—(d—2)e,N— €N+ (d—1)¢,N@ 201 (3)
i i ) R (c
Comparing the energies of these phases, we see that the SAG @/ \P’/ @)

phase has lower free energy than the DC or the AC phases
for 0<eg=<¢,. Thus the lower and upper boundaries of the
SAG phas€lines w.; andw, in Fig. 1) tend tow,;=1 and
w¢,=u for largeu.

If w=o, the polymer is adsorbed onto the ~ N /e
(d—1)-dimensional surface. Id>2, there is a transition @y \By \\CD

from the AE to the AC phase at the critical value of
=uj_,, corresponding to ad—1)-dimensional collapse.
Clearly,u}_,>u} . The partition function, when written as a
perturbation series im %, is

FIG. 2. The schematic flow diagram in two dimensions.

Z(u,0)=Zo(u) &N SAG is such that the part in contact with the wall has orien-
’ tation #=0. Clearly, this configuration becomes unfavorable
in comparison to the DC phase when

a(0)=0,,. (6)

1 N
+ —
0.)2

X

A

np np
Not+ —+— |+
u u2

where n; is the fraction of bonds whose end points haveFor the DE-DC transition, clearly the surface tension must
exactlyj nearest-neighbor monomers. We expect tiiais  vanish at the collapse point. Thus, alomgwe have

larger in the AE phase as compared to the AC phase, while

n, andn, are smaller. Usingio=1—n;—n, in Eq. (4), it a(0)=0. ()
follows that for large but finite, the free energy is lower for

the AE phase. H , the ph b betw th X . .
AE and ?Agsshasggcsehoulz Euzra\/seetocllrjlgdﬁé%t elween the on all the three lines Eqg5)—(7). It still remains to argue

The phase diagram for the two-dimensional problem isthat we Will alsg pass through the same point ,as the Iother
qualitatively the same as that of the three-dimensional propPNase boundaries. Letandw be transformed tor" and w
lem except that there is no AC phase, and henceogp UNder a scale transformation as
phase boundary. We now argue that the phase boundarjes u'=f(u) ®)
w¢, wer, andw, Meet at one point. For the sake of clarity, '
we will illustrate the arguments for the two-dimensional 0 =g(U,). (9)
problem. In the DC and the SAG phases, the polymer is a
compact two-dimensional object with finite density. We de-The functionf (u) is independent of the surface parameter
fine o(#) as the surface tension between the surface of thigecauseu is a bulk parameter. There will be three fixed
object and the liquid, wher@ is the angle the surface makes points for Eq.(8), namely,u=0, u=u*, andu= % whereu*
with the horizontal. For a shapg6), the free energy is a is the only repulsive fixed point. Consider E§) whenu is
sum of two terms: the bulk term, which dependstoalone,  fixed at each of its three fixed points. In the simplest sce-
and a surface term, which can be written as an integral oveiario, for each value af, there will be three fixed points of
the angle dependemt(6). Eq. (9). The schematic diagram showing the renormalization

Near the phase boundaty., separating the AE and the group flows between these nine fixed points is shown in Fig.
SAG phases, the shape is highly anisotropic & R,, 2. The attractive fixed points,, A,, C;, andC, correspond
where Rs and R, are the extent of the polymer along and to the four phases. The fixed poimsB;, C, andB, corre-
perpendicular to the surfacB diverges as we approach the spond to the four critical phases corresponding to the phase
phase boundary from within the SAG phase. The additionaboundaries and the poiBtcorresponds to the repulsive mul-
cost of creating two surfaces of orientatiés-0 should be ticritical point.
zero. Hence, along the phase boundagy, we have

It is clear that the point corresponding &40)=o,,=0 lies

IV. SERIES EXPANSION RESULTS
o(0)+0,=0, ©)

We enumerated all SAWs up to a certain length on the
where o, is the free energy cost per unit length when thecubic lattice in which the first site of the walk lies at the
polymer is along the wall. Near the phase boundapy  origin and all sites are confined to the half playrz0. Let
separating the DC and the SAG phases, the shape of tt@(Ng,N,) be the number of SAWs ol sites havingNg
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FIG. 3. The dependence 6{Ns)/des on w. Foru=2.0, there is FIG. 4. The dependence 6fN,)/de, onu. For w=2.0 there is

only one peak corresponding to the DE to AE transition. Bor only one peak corresponding to the DE to DC transition. bor
=3.5, there are two peaks corresponding to the DC to SAG to AC=3.8, there are two peaks corresponding to the AE to AC to SAG
transitions. transitions.

monomers ory=0 andN, nearest-neighbor monomer pairs.  Using the above method, we obtaif,=1.76 andw*
In [8], we reported the enumeration and analysis of the series 1.48, which accord fairly well with the previously obtained
Cn(Ng,Ny) up toN=17 for the cubic lattice. We have now results. The phase diagram obtained from series analysis
extended the series for three-dimensions by two terms anagrees qualitatively with the phase diagram proposed in Sec.
reanalyzed the data to obtain a better estimate of the phask (see Fig. L
boundaries.
For fixedu, we identify the pOSitiOﬂ of the phase bound- V. ANALYTIC CALCULATION EOR THE
ary separating the desorbed phase from the adsorbed or at-  TWO-DIMENSIONAL DIRECTED POLYMER
tached phases as that value wfat which d(Ng)/deg is a _ . . .
maximum. Figure 3 shows the variation@fNs)/ de, for two In this section, we analytically determine the phase
values ofu for N=109. boundary separating the SAG phase from the DC and AE
For fixed w, we identify the position of the phase bound- Phases in the PDSAW model. We do so by calculating the
ary separating the extended phase from the collapsed phaBcroscopic shape of the collapsed phases at low tempera-
as that value ofi at whichd(N,)/ e, is a maximum. Figure tures. At zero temperature, it is easy to see that the configu-
4 shows the variation of(N,)/de, for two values ofw for ~ rational energy of the polymer is minimized if it assumes a
N=19. square shape of sizgNx \/N. For small nonzero tempera-
The values ofu} , and w* obtained by this method are tures, the polymer assumes a shape that is slightly perturbed

2.00 and 1.49, respectively. The previous results weg from this zero temperature square shape. We will derive an
—1.76 by the series expansion metH&dl and w* = 1.45 by effective surface energy for these fluctuations in Sec. VA.
' _ Cear Using these results, we determine the shapes of SAG1 and
the Monte Carlo method20] and w* =1.5 by the series S
420] © y SAG2 phases in Sec. VB. In Sec. VC, we calculate the

expansion method21]. It is possible to obtain better esti- .
P ¢21] P phase boundary between the various phases.

mates ofu}, as well as the phase boundaries by extrapolat

ing for largeN. Let
A. Effective surface energy

For the directed polymer in the collapsed or SAG phase,
the density in the bulk is exactly 1 and the configuration is
“frozen.” Only the position of the boundary can change, as
be the partition function. Then, the reduced free energy pefhere is some fluctuation of height allowed at the boundary.

Consider a polymer shape as shown in Fig. 5. The energy of

the configuration is

Zn(w,u) = ZN Cn(Ng,N,) oNsuNu (10)

s u

1
G(w,u)=lim =InZy(w,u). (11 b2
N—c N € €
u u
E=—eN+ 5 (a+ay+2b)+ ZO 1yj+2-Vil-
We refer to[7,8] for details of the methods used for extrapo- : (12)

lating to largeN in Eq. (11). The phase boundaries are then

found from the maxima of’G(w,u)/des (= Ng)ldes) By a redefinition ofE, we drop the bulk term proportional to
and 7°G(w,u)/de> (= a(Ny) dey). N. The shape of the polymer is determined by the rest of the
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Yo SAG1

Y1
b SAG2

a FIG. 6. Schematic diagram of the macroscopic shapes of SAG1
1 a, and SAG2.

+ 4 oo for the eigenfunction, it is not difficult to verify that
the largest eigenvalue of the transfer maiffiis

L A_wz(wz—l)(u—l).

16
— w?(u—1)—u (19

Yi v — e Then,o,,=—In(A)/(2B). Clearly, asu—%, o, has the
Y; L] correct limit — €.
X

FIG. 5. Schematic diagram of a partially directed polymer for B. Calculation of the macroscopic shape

T=0. In this subsection we describe the shape determined by

minimizing the surface energy of the collapsed phases.
terms which are all proportional tgN. We replace the terms Given the expression for the temperature and orientation de-
under the summation by an integral over an effective orienpendentf(6), and also the value of surface energy of the
tation dependent surface enerfyf), where # is the angle polymer attached to the wall, it is straightforward to deter-
the surface makes with the horizontal. In this case, it ismine the globular shape that minimizes the surface energy
straightforward to calculatf( §). Consider all possible walks given a fixed volume. This is the classical Wulff construc-
with an average slope tafi(=y/x. Then, the sum over all tion. The result is that the macroscopic shape of the polymer
weighted paths is is given by

x x e?PV=c,e(1—pc,e” ™M) (ceM—p), (17
g Pxsec®)f(— 5(2 Yi_Y)H pvil, (13 _
Vi, oooyx o \1=1 i=1 where the two constants; and c, are fixed by the two
_ ez _ boundary conditions. The Lagrange multipligris deter-
wherep=e ~ and § is the usual Kronecker delta func- mined by the constraint that the total area under the curves is
tion. Taking the Laplace transform with respectyfave ob- N The constants ., and ¢, are now varied to obtain the
tain independent summations owgr These are easily done, shape with the lowest surface energy.
giving We briefly describe the calculation af; and c, for
SAG1. The corresponding calculation for SAG2 is a straight-
t(6)= 1 singIn(ze)+ 0059|n (zo—=p)(1—pz) forward generalization and we omit the details. Let the mac-
B 0 2 20(1—p?) roscopic shape of SAG1 have linear extandb in the two
(14) directions(see Fig. 6. The two constants; andc, in Eq.
(17) are fixed by the two boundary conditiopé0)=a/2 and

where y(b)=0. Letg=exp(B\a) andh=exp(—B\b). Then,
2 —12\2 2 1-pcy)(ci—
ZO:(1+p ytan6+ (1—p?)?tarf6+p | 19 g=( pci)(cy IO), 19
p(1+ 2 tand) C2
We also need to calculate the energy aagtof adsorbing
onto the wall unit length of the polymer. For SAGL, it is h— (1—pcih)(cih—p) (19
trivially equal too ;= — €5. We calculater,,, for SAG2 by (o '

the transfer matrix method. If; denotes theg coordinate of

the lowest portion of the polymer at sitethen the weight of whereh and g are functions of onlyc; andc,. We fix the
obtaining ¢, from ¢ is (Wi|T|is)=[1+(w? Lagrange multiplierA by the constraint thaf Jy dx=N/2.
—1)5¢H2,0]u*|‘/’i*¢i+2’2. By trying out an ansatay;=a'  We obtain\ as a function ot; andc, as
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—In(h) 1—pc e_z C e_z_ eZ w=1.5 w=3.0 ®=5.0 ®=38.0
BZ)\ZN:J len( PG )( 1 p) T Tt B
0 Cz w=6.8
(20)
We also require the integral of the surface free energy along 15
the curvey(x). Using Eqs.(17), (14), and(15), we obtain e R N——
InCh u—1)c; In
po i (u=te, In(g) Inc,+AN, (21
282\ CoU 2\ =30 4
whereF is the total surface energy along the curve.
The total surface energy for SAG1 may be obtained from .
Eq. (12) to which the energy gain of attaching to the wall has 02l
been added. Then from Eq4.2) and(21) we obtain
InCh u—1)c; In u =1.4
E= ( )In( ) 1y (g)i.;.)\N_ (27— A SR
28°\ c,ou? 23\ C1o
X
We now minimizeE with respect to the variables andc,.
Differentiating with respect t@; andc, and simplifying, we FIG. 7. The shape of SAG polymer is shown for different values
obtain of w whenu is kept fixed at 10.0. The position of the wall is

denoted by a dotted ling¢vertical for SAG1 and horizontal for

\/G 1 dg In(g) d\ SAG2). The shape of SAG1 corresponds to the part of the curve
0=In o a do. . N do from the wall to the right, while the shape of SAG2 corresponds to
! ! 1 part of the curve above the wall.
u—1)c;|1 dh In(h) dx
+ In% n d__(_) acl (23)  of directedness. The surface transition from SAG1 to SAG2
Cou G A ¢ is one in which the globule would have lower free energy if
q attached to thex wall rather than the wall.
an Transition from DC to DE(u.). The critical valueu, is
ul1d In d obtained from Eq(7), i.e, ¢(0)=0. This is equivalent to the
0= n£ — —g—ﬂ— 2f(0)+ ¢,=0. Substituting forf(0), we obtain
ciw|g dc, N dc,
(U=1)c,[1 dh In(h) dx Ja_123, 27
2 |hde, T\ do (24) Ju+1 U
CoU Cc A dc
The solution of Eqs(23) and (24) is In[Ju/(c,0)]=0 and which has the solution
In[(u—1)c,/(c,u?)]=0, implying u.=3.3828.. .. (28)
c— ﬂ (25) Note that this result matches exactly with the result for the
e DC-DE transition obtained by the transfer matrix method
[14-16.
u—1 Transition from SAGL1 to AEw.,). This phase boundary
Co= s (26)  is determined by equating the coefficient¥® in the per-
w

pendicular extent of the polymer in the SAG1 phase to zero.
_Using Egs.(19), (25), and(26) and settingh=1, we obtain

The calculation for SAG2 proceeds on similar lines ex
rlilPe phase boundary

cept for the fact that the shape consists of one extra segme

Figure 7 shows the shape of the SAG polymer for different 1402+ V(1) 7= a
values ofw. All the shapes lie on top of each other if we Wer= i (29)
scale the coordinates &= BAx andY=B\y. 2u

This solution has a natural boundaryuat u. at which value

the expression under the square root sign becomes equal to
We calculate the phase diagram for the directed polymezero.

from Eqgs.(5)—(7). These equations give most of the phase Transition from SAG1 to DGw,;). The transition from

boundaries except the transitions involving SAG1. This iSSAG1 to DC occurs when the energy cost of creating a glob-

because the shape in contact with the surface does not haute sticking to the wall becomes equal to the energy of a DC

orientation#=0. This anomaly arises due to the constraintpolymer. This can be determined by setting the linear extent

C. Phase diagram
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of SAG1 along the wall to zero. Using Egd.8), (25), and
(26) and settingg=1, we obtain the phase boundary

1+u?—(1+u?)?—4u®

2u

w1 (U)= (30

Previous analytical studies on the PDSAW—16 con-
sidered the case when the wall was only alongxtdrec-
tion. The results obtained above for SAG1 are for a wall
along they direction. While the numerical values for the
phase boundary differ, the phase diagrams are qualitatively
similar.

Transition from SAG2 to AEw.,). From Eq.(5), the
phase boundarw., is given byo(0)+ o,=0. Substituting
the values of the surface energies and solving dorwe
obtain

u

FIG. 8. The phase diagram for the two-dimensional PDSAW

, a+ a2—4ud model. The DE-AE phase boundary is schematic.

Wer=
2(1+u - .
(1+3u) the possibility of both SAG’s are allowed, then there is a
wherea =1+ Ju—u?+u®2 The phase boundawy,, has a Surface transition from one to the other wherand » are
natural boundary ati=u., at which value the expression varied.

under the square root sign becomes equal to zero. The result Transition from SAG1 to SAGZhis transition is deter-
differs from the transfer matrix resuftl4—16, w.,=(u  Mined by equating the surface energies of SAG1 and SAG2.

+1)/2+ J(UZ+1)%=4u32(u—1). However, this discrep- HOWever, it turns out that we cannot obtain a closed form
ancy is solely due to the fact that we consider only one wall€XPression for the phase boundary. Instead, we solved for it

31)

while the transfer matrix approach required two parallelMUmerically USINQUATHEMATICA.
walls. This corresponds to changing E&) to 20,,+ €,
=0.

Transition from SAG2 to DQw.;). From Eq.(6), this
transition occurs whenr(0)=0,,. The resulting equation
can be solved to obtain

, _ \u
w5 = Ja-1

(32

In Fig. 8, we plot the phase diagram when both SAG1 and
SAG?2 are allowed to exist. Note that the phase diagram ob-
tained is qualitatively similar to the phase diagram proposed
in Sec. lll. The additional transition between the SAG’s is a
consequence of the directed nature of the PDSAW model.
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