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Abstract
A companion paper (Nelson (1992)) showed that in data observed at high frequencies, an ARCH model may
do a good job at estimating conditional variances, even when the ARCH model is severely misspecified. While
such models may perform reasonably well at filtering (i.e., at estimating unobserved instantaneous conditional
variances) they may perform disastrously at medium and long term forecasting. In this paper, we develop
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forecasting. The key requirement (in addition to the conditions for consistent filtering) is that the ARCH
model correctly specifies the functional form of the first two conditional moments of all state variables. We
apply these results to a diffusion model employed in the options pricing literature, the stochastic volatility
model of Hull and White (1987), Scott (1987), and Wiggins (1987).
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1. Introduction 

Since their introduction by Engle (1982), ARCH models have been widely (and quite 

successfully) applied in modeling financial time series; see, for example, the survey paper 

of Bollerslev, Chou, and Kroner (1992). What accounts for the success of these models? 

A companion paper (Nelson (1992)) suggested one reason: under fairly mild conditions, 1 

high frequency data contain a great deal of information about conditional variances, and 

as a continuous time limit is approached, the sample information about conditional 

variances increases without bound. This allows simple volatility estimates formed, for 

example, by taking a distributed lag of squared residuals (as in a GARCH model), to 

consistently estimate conditional variances as the time interval between observations goes 

to zero. It is not surprising, therefore, that as continuous time is approached, a sequence 

of GARCH models can consistently estimate the underlying conditional variance of a 

diffusion, even when the GARCH models are not the correct data generating process. 

As shown in Nelson (1992), this continuous time consistency holds not only for 

GARCI-1, but for many other ARCH models as well, and is unaffected by a wide variety 

of misspecifications. For example, when considered as a data generating process, a given 

ARCH model might provide nonsensical forecasts--for example, by forecasting a negative 

conditional variance with positive probability, incorrectly forecasting explosions in the state 

variables, ignoring unobservable state variables, or by misspecifying the conditional mean. 

Nevertheless, in the limit as continuous time is approached, such a model can provide a 

consistent estimate of the instantaneous conditional variance in the ~nderlying data 

l) i.e .. if the observed data is generated by a diffusion or near-diffusion (i.e., by a stochastic 
process imbedded in a sequence of processes converging weakly to a diffusion). 



generating process. (Our use of the term "estimation" corresponds to its use in the filtering 

literature rather in the statistics literature--i.e., the ARCH model "estimates" the conditional 

variance in the sense that a Kalman filter estimates unobserved state variables. See, e.g., 

Anderson and Moore ( 1979, Chapter 2), or Arnold (1973, Chapter 12).) In other words, 

while a misspecified ARCH model may perform disastrously in medium or long-term 

forecasting, it may perform well at filtering. 

In this paper. we show that under suitable conditions, a sequence of misspecified 

ARCH models may not only be successful at filtering, but at forecasting as welL That is, 

as a continuous time limit is approached, not only do the conditional covariance matrices 

generated by the sequence of ARCH models approach the true conditional covariance 

matrix. but the forecasts generated by these models converge in probability to the forecasts 

generated by the true data generating process. 

The conditions for consistent estimation of the conditional distribution are 

considerably stricter than the conditions for consistent filtering; for example, all 

unobservable state variables must be consistently estimated and we must correctly specify 

the conditional mean and covariance of all state variables as continuous time is approached. 

These conditions are developed in Section 2. 

While the conditions in Section 2 are stricter than the consistent filtering conditions 

developed in Nelson (1992), they are broad enough to accommodate a number of 

interesting cases. In Section 3, we provide a detailed example, using a stochastic volatility 

model familiar in the options pricing literature (see, e.g., Wiggins (1987), Hull and White 

(1987), Scott (1987), and Melino and Turnbull (1990)). In this model, a stock price and its 
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instantaneous returns volatility follow a diffusion process. While the stock price is 

observable at discrete intervals of length h, the instantaneous volatility is unobservable. We 

show that a suitably constructed sequence of ARCH models (in particular, AR(l) 

EGARCH models) can consistently estimate the instantaneous volatility and generate 

appropriate forecasts of the stock price and volatility processes as h~O. 

2. Main results 

In this section, we develop our basic results on consistent estimation of forecast 

distributions. We begin by taking the nonnegative real line, chopping it up into pieces of 

length h. and considering, for each h, a stochastic processes {h~•hU 1 } which is a step 

function with jumps only (with probability one) at integer multiples of h--i.e., at times h, 

2h. 3h. and so on. We interpret {hX1} as the nx 1 discretely observable component of the 

process and C1 U1} as the m X 1 unobservable component. Associated with the true data 

generating process is a probability measure Ph, which we define below. 

The misspecified ARCH model produces an estimate h 01 of the true unobservable 

state variables 11 U1. Associated with the ARCH model is a (misspecified) probability 

measure i\ for { 11~ q1 Ul'h 0 1}. The ARCH model incorporates the false assumption that 

11 U1 = 11 01 for all t almost surely. Our interest is in comparing forecasts made using 

information at a timeT with the incorrect probability measure I\ to those made using the 

correct measure P11 • Specifically, how can we characterize the forecasts generated by Ph and 

i\ as h~O? Under what circumstances do they become "close" as h~O? Theorems 2.3 and 

2.4 below compare the conditional forecast distribwions generated by Ph and Ph, while 
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Theorem 2.5 compares the conditional forecast moments. Finally, Theorem 2.6 compares 

the very long term forecasts (i.e., the forecast stationary distributions) generated by Ph and 

I\. 

The Formal Setup 

Let D([O,oo),R0 xR2m) be the space of functions from [O,oo) into R0 xR2m that are 

continuous from the right with finite left limits. D is a metric space when endowed with the 

Skorohod metric (see Ethier and Kurtz (1986, Chapter 3) for formal definitions). For each 

h > 0, let hSfbe the a-algebra generated by h00, 11 Xo, hXh, hXzh• ... hXkh• and hU0, hUh, 

h U 211 , ... h Ukh for all kh :s t. In our notation, curly brackets indicate a stochastic process--e.g., 

{ 11 ~,hUt}[O.T] is the sample path of h~ and hUt as (random) functions of time on the 

interval 0 :s t :s T. We refer to values of a process at a particular time t by omitting the 

curly brackets--e.g., 11X, and (11X, ,11 U ,) are, respectively, the (random) values taken by the 

{ 11~} and { 11~. 11 U,} processes at timer. 

Next, let 23(E) denote the Borel sets on a metric space E, and let vh and v h be 

probability measures on (Rn+lm,23(R0 XR2m)). Below, we will take vh and vh to be, 

respectively, probability measures for the starting values (hXo•hU0 ,hU0) under the true data 

generating process and under the misspecified ARCH model. 

The functional limit theorems we employ will require {11 Xkh•h Ukh•h Ukh}k=O."' to have 

a first order Markov structure under both Ph and i\. Accordingly, our next step is to 

introduce the Markov transition probabilities associated with. the true data generating 

process and the misspecified ARCH model respectively: For each h > 0, let Ilh(x,u, ~ •. )and 
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IT 11 (x,u,u,.) be transition functions on RnxR2m, i.e., IIh(x,u,u,·) and fih(x,u,u.-) are 

probability measures on (RnxR2m,23(RnxR2m)) for all (x,u, u) E RnxR2m, and IIh(·.-.-,f) 

and fth(-,·,·,f) are 23(RnxR2m) measurable for all r E 23(RnxR2m). Expectations 

evaluated under Ph and i\ are respectively denoted Eh[ ·] and Eh[ ·]. 

In our examples, {hUkh} consists either of the unique elements of the estimated 

conditional covariance matrix generated by an ARCH model or some invertible function 

of these conditional covariances. In ARCH models, the conditional covariance matrix is a 

function of past values of hXkh along with a startup value for the estimated conditional 

covariance matrix. In particular, we assume that h Okh is a measurable function of h O(k·l)h, 

11 X(k-l)b, and hxkh. This in turn implies that given the observed data hXo• hxh, hX2h, ... hXkh 

and the startup value 1100, we can derive the whole sequence {hUkh}j=l.k· Formally, we 

require that for each h > 0, there is a measurable function Uh from R2n+m into Rrn such 

that for all (x,u, u ), 

f fth(x,u,u,d(x',u',u')) = f ITh(x,u,u,d(x',u',u')) 1. (1) 

U 11 (x",x. u )} { ~ • = U h (X • ,X, ~ ) } 

We also assume that the misspecified ARCH model generated by v 11 and fi 11 treats u and 

~ as being identical almost surely--i.e., for all h > 0, and all (x,u, u) E Rn+ 2m 

f IT1Jx,u,u,d(x',u',li')) 
{u·=u·} 

1, (2) 

and 

1. (3) 

Finally, we assume that there is no feedback from the ARCH estimate {h Ukh }k=0.1.2 ... into 
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{hXkh·hukh}k=o.u ... --i.e., given hxkh and hukh, hX(k+J)h and 11 U(k+l)h are independent of 

hOkh under Ph. Formally, for any f E .23(Rn+m) and all h > 0, we require that 

(4) 

where "001 Xl" is an m x 1 vector of zeros. Now let P11 and I\ be the probability measures 

on D([O,oo),R0 XR201
) such that 

Ph[ (hXo•h Uo•h Uo) E r l = vh(f) for any r E .23(R0 X R2m), 

l\[ (hXo·hUO•hUo) E f] = ~ 11 (f) for any f E .23(R0 xR2m), 

Ph[ (11X,.hU,. 11 U,) = ( 11 Xkh•hUkh•h0kh), kh :5 t < (k+1)h] = 1, 

i\[ (h~·hut•hO,) = c,xkh•hukh•hOkhl· kh =o; t < (k+1)h l = 1, 

and finally, for all k ~ 0 and f E .23(R0 XR2m), 

Ph[ chx(k+l)ll'hu(k+l)h·ho<k+l)hl E r I hsrh J = rrhchxkh•hukh•hokh•r) 

almost surely under Ph, and 

i\[ chx<k+l)h'i,u(k+l)h•ho(k+l)hl E r I hsrh l = i\chxkh•hukh•hokh•r) 

almost surely under I\. 

(5) 

(5') 

(6) 

(6') 

(7) 

(7') 

For each h > 0, (5) specifies the distributions of the starting point (hXo , h U0 , h 0 0) 

under Ph. (6) fonns the continuous time process {hXt•hUt•hOt}O:st as a step function with 

jumps at times 0. h, 2h ..... 2 (7) specifies the transition probabilities for the jumps in 

2) Our step function scheme follows Ethier and Kurtz (1986). Many other schemes would 

work just as well--for example, we could follow Stroock and Varadhan (1979·, p. 267) and for 

kh:5t<(k+l)h, set (hXt , hut , hOt) - (hXkh hukh , hOkh) + 

h- 1(t-kh)[(hX(k+t)h. hu(k+I)h, hO(k+l)h)-(hXkh , hukh , hOkh)J. This scheme makes 
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D([O,oo ),R" x R2m) is a complete, separable metric space when endowed with the 

Skorohod topology, and for each h > 0, (D([O,oo),RnxR2rn),23(D([O,oo),R"xR2m)),Ph) and 

(D([O,oo),R"xR2111 ),23(D([O,oo),R0 xR2m)), I\) are probability spaces. Our interest is in 

characterizing the forecasts generated by Ph and Ph' In particular, if we use the 

misspecified probabilities Ph to generate forecasts regarding the future path of {h~•h U,}, 

under what circumstances will our forecast be "close" to the forecast that would have been 

obtained using the (correct) conditional probability generated by Ph ?3 

Now consider the time-r forecasts of the future path of {h~, h U,} generated by Ph 

In particular, Jet the set A E 23(D([-r,oo),R"xRm)). (Note: R"xRm not R"xR2m!) The 

conditional probability under Ph that {h~, h U,} rst<oo E A is given by 

(8) 

The first equality in (8) holds since {hXkh, h Ukh, h Okh} is a Markov chain under Ph. The 

second equality follows from ( 4 ), the "no feedback" assumption, which assures that {hXkh , 

hUkh} is also a Markov chain under Ph. This Markov structure allows us to think of the 

conditional probability that {h~, h U,} rst<oo E A as a function of the time-r and the state 

{hX,.11 Ut•h Ot} piecewise linear and continuous. Presumably splines should also work in the limit 

as htO, but for each h > 0 they are "forward looking"--i.e., {hXkh, h Ukh, h Ukh }k~O.oo would still 

be Markov, but {hXt, hUt, h Otlost<oo would not be, since hY,:' contains information about {hXt 

, 11 Ut, h0t}T,,<, beyond the information in (hXT, hu,, hOT). 

3) For proof that these conditional probabilities are well defined, see Stroock and Varadhan 
(1979. Theorem 1.1.6). 
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variables hX, and hUT' Informally, define the forecast function of the set A at time -r under 

P, by: 

Fh(A,x,u,-r) = Ph[{h~, hUt},st<oc E Al(hXT, hUT)=(x,u)]. (9) 

Recall that under i\, {hXkh, hukh, hOkh} is also Markov chain. Due to (1)-(3), so 

is {hXkh, hOkh} (i.e., the state variable hut is redundant under 1\, since 1\[hUt=hOt for 

all t J = 1 ). Accordingly, 

Pb[{h~ • hUt}T:St<oc E Ah,9,1 = Ph[{h~ • hUt}T:St<, E AlhXT • hUT • hOT] a.s. [I\] 

= Ph[{h~ • hUt}T:St<oo E AlhXT • hOT] a.s. [Ph], 

so we (again. informally) define the forecast function 

(10) 

(11) 

Unfortunately, our informal definitions of Fh(A,x,u,-r) and I\(A,x,u,r) are 

inadequate, since the conditional expectations on the right-hand sides of (9) and (11) are 

random variables which are unique only up to probability 0 transforms. Since we will be 

evaluating conditional probabilities under both Ph and Ph, which may well have different sets 

of probability zero, we must provide more detail on the version of the conditional 

probabilities we are using; in particular, we must carefully state how we condition on events 

of the form "(hXT, 11 U,)=(x,u)". We use the version of the conditional probabilities that 

follows naturally from the transition probabilities Ilh(x,u, u ,. ) and fih(x,u, u ,. ): namely, if we 

are conditioning on the event "(hXT , 11 U T, h 0 T) = (x, u, u )," we evaluate conditional 

moments and conditional probabilities by "restarting" the {h~ ' hut ' hot} process at time 

'with (11 XT , h U,, h 0 ,) set equal to (x,u, ~) with probability one. Since our interest will be 

in forecasting {h~, hUt} rather than {h~, hUt, hOt}, we will use the Markov structure of 
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{hX,, hU,} under both P11 and i\ to "drop" {h0,}. Formally, we proceed as follows: for 

every (x,u,~,r) E Rn+lm+r, define measures P(h.x.u.r) and P(h.x.u) on 

(D((r,oo ),R0 X R"'),23(D((r,oo ),R0 X Rm))) by replacing Ph, Ph and "k;::O" in (6)-(7) and (6')-

(7') with P(h.x.u.r)• P(h.x.u.r) and "k 2: Int[-r/h]", and replacing (5)-(5') with 

P(h.x.u.r)( (hXr • hUr • hU,) = (x,u,u)] = 1. 

Then (formally) define F11 (A,x,u,r) and F 11 (A,x, ~.r) by 

Fh(A,X,U,T) == P(h.x.u.r)({ 11~, 11 U,}r$t<oo E A] 

F 11 (A,x,u,r) == P(h.x.u,r)({ 11~, hUt}rSt<"' E A]. 

(5") 

(5'") 

(9') 

(11') 

Note that Fh(A,x,u,r) and Fh(A,x,u,r) are now functions of A, x, u, and T, and are not 

random variables, since they are defined in terms of unconditional rather than conditional 

probabilities. (In essence we have constructed F 11 (A,x,u,r) and Fh(A,x,u,r) directly from the 

measures IT11 (x,u,u,.) and fih(x,u,u,.) without resorting to a sample space.) F11 (A, 11X,, 

hUr ,r) and I\(A, 11 X,, hO, ,r), however, are random variables on the same sample space. 

A natural definition of "close" timeT forecasts generated by Ph and I\ is that Fh(A, hX,, 

11 U, ,r) and F 1JA, 11 X,, 11 0, ,r) are close with high probability--i.e., that for every E > 0 and 

every "well-behaved" set A, Ph( I Fh(A, hXr, hUr ,r)- Fh(A, hXr, h 0, ,r) I><]-+ 0 as h~O--that 

is, the difference between the forecasts generated by the two models converges ro zero in 

probabilitv under Ph. We postpone our formal definition until the admissible sets A are 

characterized. 

4) It is without loss of generality in (5") that hUr = hOr = u, since the forecasts generated 
using these probabilities will regard only the future paths of {h~, hU,}, and under (1)-(4) once 

11 U, is fixed the value of hOr is irrelevant. 
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The Basic Intuition 

There are three natural steps in proving that I\ consistently estimates the forecast 

distribution for P11 over the interval [T,oo): first, we show that given hOT = hUT, the 

forecasts generated at time T by Ph and Ph become arbitrarily close as h~O--i.e., for T > 0 

and for every (x,u) E Rn+m, Fh(A,x,u,T) - i\(A,x,u,T) -+ 0 as h~O. This first step, 

considered in detail in Nelson (1990), is concerned with the continuous limit properties of 

.ARCH models as data generating processes. The results are summarized in Lemma 2.1. The 

second step is to show that I\ is a consistent filter for Ph at time T--i.e., that h 0 T - hUT --> 

0 in probability under Ph as h~O. This second step is concerned with the filtering properties 

of misspecified ARCH models, considered in Nelson (1992). These results are summarized 

in Lemma 2.2. The third step is to show that the forecasts generated by the ARCH model 

are "smooth" in the underlying state variables, so that as h 0 T - hUT approaches zero, the 

forecasts generated by the ARCH model approach the forecasts generated by the correct 

model--i.e., Fh(A,x,u,T) - F11 (A,x, u ,T) --> 0 as u -- u and h~O. The three steps, taken 

together. yield Theorems 2.3-2.4, the main results of this paper. Theorems 2.5 and 2.6 

extend these results. 

Step One: Convergence as data generating processes 

The first set of assumptions assures that {h~, 11 U,}[O.TJ and {h~, h 0,} 10,TJ converge 

weakly to limit diffusions{~ ,U1}[0.TJ and{~ ,0,} 10.TJ under Ph and P 11 respectively as h~O, 

where {~ ,U,}[O.TJ and {~ ,U1}[0.TJ are generated by the stochastic integral equations 
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(Xt'•Ut')' 

c~·.Ot'l' 

(XcJ',U0')' + f6 IJ.(X,. ,U,)ds + f6 i1112(X,. ,U,)dW,, and 

(XcJ',U0')' + f6 ~(X,. .O,)ds + f6 tP12(X,. ,O,)dW,. 

(12) 

(12') 

In (12), {W,} is an (n+m)X1 standard Brownian motion, 1-1(~ ,Ut) is the (n+m)X1 

instantaneous drift per unit of time in {~ ,Ut}, and i1(~ ,Ut) is the (n+m)X(n+m) 

instantaneous conditional covariance matrix per unit of time of the increments in {Xc ,Ut}. 

[Xo ,U0] is taken to be random with a distribution rr. In (12'), ~. fi, Ot, and;;. replace IJ., 

D, Ut and rr. We call the probability measures on D([O,oo),RnxRm) generated by (12) and 

(12') P0 and P0. 

Under certain regularity conditions, four things completely characterize the 

distribution of {X, ,U,} in (12): the functions IJ., and i1, the distribution rr, and the almost 

sure continuity of the sample path of {Xc ,Ut}. We achieve weak convergence of {hXc, hUt} 

to { ~ , U,} matching these four things in the limit as h~O by making the drift, conditional 

variance, and time zero distribution of {hXc, hUt} converge to IJ., i1, and rr respectively, and 

by making the sizes of the jumps in {h~, hUt} converge in probability to zero at an 

appropriate rate. This holds for (Xc ,0,) in (12') as well, making suitable substitutions for 

IJ., D, U, and rr. For further discussion and interpretation of these assumptions and relevant 

references to the probability literature, see Nelson (1990, 1992). 

Assumption I. Under Ph, (1,:<0 , 1,U0 , hU0)"" (X0 ,U0 ,U0) as h-10, where (X0 ,U0 ,U0) 

has probabilitv measure l'o. Under l"J,, (1,:<0 , hU0 , hU0) "" (X0 ,U0 ,U0) as h~O, where 

(X0 , U0 , U0) has probability measure ~ 0 . 
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Assumption 2. There exists an E > 0 such that for every R > 0 and every k > 0, 5 

(13) 

for i = I to n, and 

0 (14) 

a.s. [P1J for ail i = 1 tom. Funher, (13)-(14) continue to hold when E~z is replaced by Elz. 

Assumption 1 says that the distributions of the random starting points (11 Xo, 11 U0 , 

11 00) converge to (perhaps distinct) limit measures under P11 and I\ as htO. Assumption 

2 contains conditional moment restrictions guaranteeing that the jump sizes in {11X,, 11 U,, 

11 0,} vanish to zero at an appropriate rate as htO. This is necessary because the sample 

paths of the limit diffusion are continuous with probability one. 

Next, define the first and second conditional moments 

~ 11 (x,u) = h' 1 
E(h.x.u.kh)[ [ hX(k+l)h ~ hXkh]J. 

hu(k+l)h hukh 

(15) 

5) More notation: X;,, is the i' 11 element of the vector X,, and B;i is the i-/ 11 element of the 

matrix B. "=:-" denotes weak convergence. liB II is a norm of the q x r real matrix B defined 

by IIBIJ = [ ~i~I.q ~i~l.r B;} ]112 
E(h.x,u.kh)[·] is an expectation taken under P(h.x.u,T)' and 

E(h.x.u.kh)[ ·] is an expectation taken under P (h.x.u,T)' By (7) and (7'), the expectations in (13)

(14) do not depend on r, and neither do the moments on the right-hand side of (15)-(15') 

below. 
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~ ( ) = h-1 E~ - 'L rl hx(k+l\h - h~]l ~h X,U - (h.x.u.kh) ~ ' ~ ' 
hu(k+lJh - hukh 

fih(x,u) = h-lj~'(h.x. u.kh)[ [ h~(k+l)h =h~kh l [ h~(k+l)h-=-h~ l ' ]. 
hu(k+!Jh huk.., hu(k+lJh hukh 

(15') 

Note that (1)-(4) allow us to ignore hukh in the definitions of ~hand~ and hukh 

in the definitions of ~h and nh. ~h and ~ are the conditional drift and second moment 

matrix of the {h~, hUt} processes under Ph. Each is normalized by dividing by h. ~h and 

nh are the conditional drift and second moment matrix under i\. Our next assumption 

requires them to converge, uniformly on compact subsets of the state space, to appropriate 

limits: 

Assumption 3. There exist continuous functions 1-'(x,u), ~(x,u), !L(x,u), and D(x,u) such 

that for every R > 0, 

lim sup ff 1-'h(x, u) - 1-'(x,u) ff = 0, 
hj.O 1/Xff-s.R, lfrtii5.R 

(16) 
lim sup ff !111 (x,u) - !l(x,u) II 0, 
hj.O /M5.R, lluiiSR 

lim sup II ~11 (x,u) - ~(x,u) ff = 0, and 
hj.O 1/X/ISR, lftii/SR 

lim sup II D 11 (x,uJ - D(x,u) II 0. 
(16') 

hj.O 1/XffSR, *tiiSR 

We also require that ~(x,u), ~(x,u), fl(x,u), D(x,u), 1•0 and v 0 completely 

characterize the distributions of the limit diffusions {~ ,Ut}[O.TJ and {~ ,Ot}[O.TJ: 

Assumption 4. For any choice of rr0 and ;;.0 , distributionalZv unique solutions exist to 
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the stochastic integral eqr<ations (12) and (12'). 6 

Lemma 2.1 (Stroock-Varadhan (1979)). Under Assumptions 1-4, {1;r,, 11 U,} 10,,! => 

{X,, U,} ro. "'! under P11 as h ~ 0, where the initial distribution 1T is given by 

(17) 

for every r E '13 ( R" x R'"). If 1T and v 0 in ( 17) are replaced with ;r and ~ 0 , { 1;r, /!,} {O, "') => 

{X,,U)ro."') under P11 ash~ 0. 

Proof' See Nelson (1990, Theorem 2.2). 

( 12) and ( 12') define Markov processes. P0 and P 0 are the measures on 

(D([O,oo),RnxR01 ),'13(D([O,oo),RnxR01
))) generated by (12) and (12'). Consequently 

(D([O,oo),RnXR 01 ),'13(D((O,oo),RnxR 01 )),Po) and 

(D([O,oo),RnXR01 ),'13(D([O,oo),RnxRm)), P0) are probability spaces. (Note: Ph and Ph used 

D([O,co),RnxR201
) not D([O,oo),RnxR01

).) Accordingly, we define the forecast functions 

associated with P 0 and P 0: 

F0(A,x,u,r) = P(O.x.u.,)[{~ ,Ut}T:St<oe E A] and 

F0(A,x,u,r) = P(o.x.u,,)({~ ,Ut}T:st<"' E A], 

(18) 

(18') 

where again A E 'l3(D([r,oo),RnXR01
)), and P(O.x,u,T) and P(o,x,u,T) are measures on 

(D([r,oo),RnxR01 ),'13(D([r,oo),RnxR01
)) constructed in the manner that P(h.x.u,,) and 

P (lu.u.T) were--i.e., by starting the diffusions (12) and (12') at timer with (X, ,U,)=(x,u) 

with probability one. 

6) See Ethier and Kurtz (1986) pp. 290-291 for formal definitions. Several sets of sufficient 
conditions for Assumption 4 are summarized in Appendix A of Nelson (1990). 
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Lemma 2.1 gives conditions under which Ph and Ph are associated with weB-behaved 

limit diffusions for { 11~, hU1} and {h~, hU1} as h~O. Consistent estimation of the forecast 

distribwion will also require that the drifts and conditional co variances of these diffusions are 

the same--i.e., we require 

Assumption 5. For all (x,u) E /f'+m, ~(x,u) Jl.(x,u) and D(x,u) = !l(x,u). 

Assumption 5 says that the (misspecified) ARCH model generating i\ correctly 

specifies the functional form of the first two conditional moments of h>; and hUt" It is the 

most important additional assumption required to move from consistent filtering to 

consistent estimation of the forecast distribution. We have kept Assumption 5 separate 

from the first four assumptions, however, since we are also interested in characterizing the 

forecasts generated by i\ when Assumption 5 is not satisfied (see Theorem 2.4 below). 

The conditions of Lemma 2.1 (with the addition of Assumption 5) accomplish step 

1--i.e., if hUT= hUT, and if~ = fl and {2 = !l, the forecast distributions generated by Ph 

and i\ at time -r become close (and both become close to the forecast distribution 

generated by the limit diffusion P0) as h~O. 

Step Two: Consiscent Filtering 

Definition: We say that {hU1} (or, equivalently P1J is a consistent filter for {hU) at time 

-r under {P1)hiO' if for all£> 0, limhiO Ph[l/hUT-hUT/1 > £j = 0. 

In addition to Assumptions 1-4, three (quite technical) regularity conditions are 

required for consistent filtering. These are reproduced in the appendix as Assumptions 6-8. 
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Detailed discussion of these conditions can be found in Nelson ( 1992, section 2). 

Lemma 2.2 accomplishes step 2: 

Lemma 2.2 (Ethier-Nagylaki (1988)). Let Assumptions 1-4 and 6-8 hold. Thenforevely 

-r, 0 < -r < oo, {"U) is a consistent filter for {11 U1} at time-r under {Phhjo· 

Proof" See Ethier and Nagylaki (1988) or Nelson (1992, Theorem 2.2). 

Step 3: Consistent Estimation of Forecast Distributions 

Definition: Let {1,X,, hU1} [O.oo) =<> {X1 , U1} [O,oo) under Ph as h~O, where {X, U1} [O,oo) is 

generated by the diffusion (12). Let i!A be the boundary of the set A--i.e., the set of all points 

in D([-r, oo ),R" xR"') which are limit points both of A and of its compliment. Let d!i, be the 

collection of sets A such that A E 23(D(['r, oo ),R" xlf")) and Pro,x,u,T)[ {X,, U1} TSt<ooEi!AJ = 

0 for all starting points (x,u). We say that {1,X, hUt}[,,oo) consistently estimates the forecast 

distribwion of {~zX,, ~zU1 } fT.'-"! at time-r if for every A E c;·l1, and every E > 0, Ph[IF1,(A, ~', 

~zU,)-FJJA, 1,X,, /J,) I >Ej- 0 as hW 

Theorem 2. 3. If Assumptions 1-8 are satisfied, then for eve1y T with 0 < T < oo, {1,X,, 

hU1} [r.oo) consistentZv estimates the forecast distribution of{~, hU1} [,,oo) ash ~ 0. In addition, 

for every E > 0 and for every A E dv1, 

P1JIF1,(A, 1,X,, !JU,) - F0(A, 1,X,, 1,U,) I >E]- 0 and 

?1,[ I F1,(A, ~zX,, /J,) - F 0(A, 1,X,, "U,) I >Ej - 0 as h.IO. 

Proof" See Appendix. 

(19) 

(20) 

Theorem 2.3 gives conditions for the difference between forecast distributions 
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generated by the sequence of misspecified ARCH models and the forecasts generated by 

the "correct" model to vanish (in probability) at time T as h~O. In addition, both the true 

and ARCH forecast distributions approach the forecast distribution generated by the limit 

diffusion P 0. This holds for forecasts involving any of the state variables, whether observable 

or unobservable. As indicated earlier, the proof of Theorem 2.3 consists of Lemmas 2.1 and 

2.2, plus "smoothness" of the forecast distributions as functions of the unobserved state 

variables. See the Appendix for details. 

Together, the conditions of Theorem 2.3 ensure that the probabilities i\ generated 

by the misspecified ARCH model provide both consistent filtering (for all t > 0) and 

consistent estimation of the forecast distribution for all time intervals [r,oo) for 0 < r < oo. 

In addition, they insure that the time r conditional probabilities generated by 1\ and P
1
, 

are well-approximated by the timer conditional probability generated by the limit diffusion 

Po. 

What can we say about the forecasts generated by misspecified ARCH models when 

the conditions of Theorem 2.3 fail? Assumptions 1-4 and 6-8 allow a weaker 

characterization of the forecasts produced by the ARCH model: 

Theorem 2. 4. Let the conditions of Theorem 3 hold, except for Assumption 5. Then 

(!9)-(20) still hold. 

Proof' See Appendix. 

Theorem 2A is easily summarized: when we drop Assumption 5, the ARCH model 

provides a consistent filter but uses the wrong limit diffusion (i.e., (12') instead of (12)) to 
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form the forecast. 

Forecast Moments and Stationmy Distributions 

While Theorems 2.3 and 2.4 give convergence results for conditional distributions, 

they do not guarantee convergence of either forecast moments or of forecast stationary 

distributions. Theorem 2.5 considers convergence in probability of forecast moments of 

Theorem 2.5. Let 0 < T < co, and let Assumptions 1-4 and 6-8 be satisfied. Let g be 

a functional mapping D([-r,co),R"xR"') into R 1. Let I C D([-r,co),R"xR"') be the set of 

discontinuity points in g. For every (x, u) E R!'+"', let 

In addition, let g satisfy the following uniform integrability condition: for every bounded A C 

lim lim sup sup E1h.x.u.,!flg({1,X1 , hU1}[7,=!) I ·/(lg({1,X1 , hU1}[7,,.,;) I >K)J = 0 (21) 
K_.co h~O (x,u)EA 

and 

lim lim sup sup E 1h.x.u.d lg({1,X,, "U,} [T."')) I ·I(Ig({,X,, 11 U,} [T,=)) I> K)J = 0, (22) 
K ..... co h~O (x,u)EA 

where I(·) is an indicator function (i.e., /(xEH) = 1 if x E Hand l(xEH) = 0 otherwise), 

and E1h .. ~u. 7i} and E1h.x.u.,i} are expectations taken under P(h,x,u,T) and Prh.x.u. 7J '].Define 

the forecast functions 

Gh(g,x,u,-r) = E 1h.x.u, 7 Jfg({1,X,, 11 U,}r 7.,.,1Jj, 

G0(g,x,tt,-r) = E1o.x. 11.,j{g({X, ,U,}[T."'))j, 
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G11 (g,x,u,rj = E(h.x.li.T;{g({1;<,, hUr}[r,oc)JJ, and 

G0 (g,x,u,r) = E(O.x.li,T)[g({X1 , U1}[T."'))j. 

Then for every r > 0 and every E > 0, 

PfiiG;,(g, ,;<T, lrUT,r)·G0(g, ~T' 1rUT,r) I > E}-+ 0, and 

PfiiG~r(g, 1l<T' 1rU T,rj·Go(g, ~T' J,UT,rJI > E}-+ 0 

as hW If Assumption 5 is also satisfied, then for every r>O and every E>O, 

(25j 

(26) 

(27) 

(28) 

(29) 

A sufficient condition for (21)-(22) is that there exists an s > 0 such that for every 

lim sup 
lzto 

lim sup 
!dO 

sup E(lr.x.u,T;{Ig({,;<,' /rUt}[T,"')) II+'] < 00 

~>;u)Ei\ 

Proof' See Appendix. 

(21 ') 

(22') 

The uniform integrability conditions described in Theorem 2.5 are similar to 

standard conditions allowing integration to the limit (see, e.g., Billingsley (1986, pp. 347-

348)). 

The next result. due to Kushner (1984), gives conditions for convergence of forecast 

stationary distributions. It also gives conditions for moment boundedness, which sometimes 

can be used to verify (21')-(22'). 

Theorem 2. 6 (Kushner). Let Assumptions 1-4 be satisfied, and let the diffusion (12) 

admit a unique invariant measure for (X1 , U1)--i.e., there exists a random vector (X,, U ,) on 
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R"+m such thai for any probability measure rr( ·)for (X0 , U0) in (12), (X,, U,) => (X~, U,) as 

t ---+ co under P{! For each sufficientzv small h > 0, let Ph also admit a unique invariant 

measure--i.e .. for any probability measure vh( ·)for (1,X0 , hU0) in (5), (1,Xt> 1,U,) => (1,X~, 

"U ,) as t ---+ co under P,. Let there be a twice-continuousZv differentiable Liapunov function 

~(x,u) and positive numbers h *, A, and 11 such that for all h, 0 < h < h ·, 

lim inf ~(x,u) = co, (30) 
ff[x' u'}ff-+<~:~ 

min ~(x,u) 0, (31) 
(x' u 'jER"+m 

(32) 

and for all (x,u) E Rn+m and all h, 0 < h < h • 

h-1E1h .. w.,l~(,,X1k+l)h, ,uik+l)h) - l;(x,u)] < ~ - wl;(x,u). (33) 

Then (1,X,, 1,U1) => (X, , U ,) under Ph as r -+ <~:~ and h ~ 0, and there exits a constant K and 

a sequence 11h - T) as h ~ 0 such that for alit 2: 0, 

(34) 

If a second Liapunov function ~ (-~,u) exists such that (30)-(34) hold when Eh, Ph, P0 , 

Ux.uJ, llh(-J, hu,, and (12) are replaced by Eh, Ph, P0 , ~(x,uJ, vh(·J, ,u" and (12') 

respectively, then (1,X,, "U,) => (X,, U ,) under Ph as t-+<~:~ and h~O, and there exits a constant 

k and a sequence 0 h __,. 11 as h to such that for all t 2: 0 

(35) 

Proof' See Appendix. 

In some applications, {h~} may be nonstationary even when {hUt} is stationary. For 
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example, {h~} may be the (nonstationary) cumulative return on a portfolio, while {hUt} 

may be the (stationary) instantaneous conditional variance of this return. Theorem 2.6 can 

be adapted to this case: If there is no feedback from {h~} to {h U 1} so that {hUt} is a 

stationary Markov process under Ph in its own right (i.e., without reference to h~). replace 

"(h~, hOt)" and "(h~, hUt)" with "(hUt)" and "(hUt)" in the statement of Theorem 2.6, and 

it continues to hold. 

The conditions of Theorem 2.6 are difficult to verify unless the innovations in {h~ , 

11 0,} are bounded either above or below: fortunately, in ARCH models they often are. For 

an ARCH example in which the conditions of Theorem 2.6 are verified (specifically, for 

GARCH(1, 1), in which the innovations in the conditional variance process are bounded 

below), see the proof of Theorem 2.3 in Nelson (1990). Sometimes, as in the example in 

the next section, it is possible to verify convergence of steady state distributions by other 

means. 

3. A stochastic volatility model 

On first inspection, the assumptions underlying the results in Section 2 are quite 

forbidding. In practice, however, they can often be verified. In this section we provide an 

example, based on a stochastic volatility model employed in the options pricing literature. 

Variations of this model have been investigated by Wiggins (1987), Scott (1987), Hull and 

White (1987) and Melina and Turnbull (1990). We propose an ARCH discretization and 

show that it satisfies Lemmas 2.1 and 2.2 and Theorems 2.3, 2.5, and 2.6 .. 
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The Model: 

Let S, be the time t price of a non-dividend paying stock. a, is its instantaneous 

returns volatility. We assume that 

d(ln(S,)] 

d[ln(a,2
)] 

W l.t and W2.t are standard Brownian motions with correlation p, i.e., 

[ ~;:l.t l ( dWu dW2.t ] = [ ~ ~ ]dt. 
2.t 

(36) 

(37) 

(38) 

~. i\, {3, and a are constants with {3 2: 0. If a, were constant, s, would follow a geometric 

Brownian motion. (36)-(38) generalize this much-used model by allowing a, to vary 

randomly, with ln(a,2) following an Ornstein-Uhlenbeck process. 

We assume that we observe s, at discrete intervals of length h, so for every t, hSt = 

Sb[tih]' In the notation of Section 2, h-"'t = ln(hSt), and hUt= ln(hat2
). We take S0 > 0 and 

a0
2 > 0 to be nonrandom. We define hOt by (36')-(38') below and thus obtain the process 

{b-"'t · bu,, bOt}. 

We consider a discretization based on the AR(l) EGARCH model of Nelson 

( 1991 ): specifically, we form our forecasts and our estimated conditional variances h akh 2 

assuming that the data are generated by the model 

~ ' ~ ' ~ 0 1/2 ln(ha(k+l)h-) = ln(11 ak11-)- {3·h·[ln(hakh-)- a] + h ·g(hZkh), 

where for all h > 0, 11 a0
2 > 0 is fixed, hzkh - i.i.d. N(O,l), and 

g(z) = (}·z + Y[ I z I -(2/rr) 112]. 
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1,;. 

Though the residuals {hZkh} in (36')-(38') are not directly observable, they can be 

obtained by rearranging (36'): 

(39) 

Given ;; 0 
2 and {hSkh}k=O.K , (36')-(38') and (39) allow us to recursively compute {hZkh}k=O.K 

and {h;;k2}k=O.K. Note that although the ARCH model (I\) assumes that ;;0
2 = a0

2, this 

needn't be true under Ph. (This is why we required T to be strictly positive in Section 2--

clearly consistent filtering is impossible at time 0 if ;; 0
2 "' a 0

2!) 

As in Section 2, we create the continuous time processes {hSt, h(;t2} by interpolating 

the discrete processes {hSkh , h ;;kh 2}. While (36)-(38) (and (36')-(37') and the g( ·) of (38') 

for hOt) generate the true probabilities Ph, the misspecified probabilities Ph are generated 

by (36')-(38') and the requirement that hat2 = h;;t2 for all t with probability one. 

As indicated in (38'). the EGARCH model generating P 11 assumes that {hZkh} is 

i.i.d. N(O,l). When (36)-(38) generate the data and hzkh is recursively defined by (39), this 

will not be true. As we will see, however, this ARCH model, though misspecified, is able 

to provide consistent filtering and consistent estimation of forecast distributions for the true 

model (36)-(38) as h~O. As shown in Nelson (1992), the main requirement for consistent 

filtering for this model is y > 0. For consistent estimation of forecast distributions, 

however, we must match the first two conditional moments of the ARCH model considered 

as a data generating process to the corresponding moments of the true data generating 

process (36)-(38). 

~ 2 
m ln(h a (k+ l)h ), and has variance 

h[i12 +y2(1 - 2/rr) ]. The instantaneous correlation of the increments in ln(hSkh) and 
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ln(1,ak1,2) under i\ is 11/[112 + y2(1 - 2/rr)]li2. Matching these conditional second moments 

(under f\ and P11) requires that 

Var[g(hZkh)] = 112 + y2(1 - 2hr) = 11.2, and 

p = &/[&2 + y2(1 - 2/1T)]li2, 

(40) 

(41) 

which is easily accomplished by setting & = p·l\. andy = IAI(l-p2) 112/(l - 2/1T) 112. The 

drifts of ln(S1) and ln(a1
2) in (36)-(37) are (~.~o-~/2) and -j3[ln(a1

2) - a] respectively. (36') 

implies that the drift of ln(hSkh) is also (~.~o-~/2), and sets the drift in ln(h;;kh 2) equal to 

Theorem 3.1. For each h > 0, let {115" 11a/} be generated by (36)-(38) observed at 

discme intervals of length h. Let {11 £;/} be generated by the EGARCH model (36')-(38') and 

(40)-(41). Then 

(a) For every T, 0 < T < co, {11 (;/} is a consistent filter for {11a/}. 

(b) For every T, 0 < T < co, {1151' 11 (;/}1T,ocJ consistently estimates the forecast 

distributions of C,S,, ha/} h "'!' The other conclusions of Theorem 2.3 also hold. 

(c) Let G(s 1 ,s2 ,a1 ,a2) be a continuous function from R4 into R 1 satisfying 

(42) 

for finite, non-negative A, B, a, b, c, and d. Then the conditions of Theorem 2.5 are satisfied 

I < T < CO, 

(d) If f3 > 0, the stationwy distribwions of a/ and h £;,2 for each h > 0 exist--i.e., a/ 

=:- a,/ as t --+ co, and for each h > 0, h£;,2 =:> h (;,/as 1 -+ co. Further, ,,;; } => a,/ as h~O. 

Proof' See Appendix. 
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(a) and (b) are applications of Lemma 2.2 and Theorem 2.3 respectively. (c) is an 

application of Theorem 2.5 for a class of G( ·) functions encompassing moments and cross 

moments of forecast stock returns (continuously compounded) and conditional variances. 

(d) yields the convergence in distribution of ha, 2 to a, 2. (hS, doesn't converge, since {S1} 

is nonstationary). 

Non-uniqueness of consistent estimates of forecast distributions 

It is important to note that there are many ARCH discretizations of the model (36)-

(38) which achieve consistent estimation of the forecast distribution. For example, Nelson 

and Foster ( 1992) replace the g(-) of (38') with 

g(z) = Al12fpz + [(l-p2)/2]112.[z2-l]J. (43) 

Though (43) is not a model familiar in the ARCH literature, Nelson and Foster show that 

it has slightly better filtering properties than (38') when (36)-(38) generate the data (i.e., 

(ha 1\,a/) approaches zero at a slightly faster rate as hJ,O). Theorem 3.1 continues to hold 

for ( 43). We leave the verification to the reader. 

Consistent filtering wichout consistent estimation of the forecast distribution 

It is important to emphasize that the conditions in Theorem 3.1 are much stricter 

than would be required for consistent filtering alone. For example the second moment 

matching conditions (40)-(41) are not needed for consistent filtering. For example, suppose 

we select (li,y) withy> 0 but not satisfying (40)-(41). In this case, the conditions of lemmas 

2.1-2.2 and theorem 2.4 are satisfied, but the conditions of theorem 2.3 are not. That is, the 
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unobservable state U, is recovered as h~O, but the time 1" forecasts generated by l\ 

approach the forecasts generated by the diffusion 

d[ln(S,)] 

d[ln(a/)] 

( iJ. - a, 1 /2)dt + a,dW l.t' 

-f3[ln(a/)- a]dt + i\··dW2.t' 

[ dWu] [ dWu dWz.t] = [ 1. p.] dt, 
dW2_, p 1 

where 

i\• _ [02 + y2(1 - 2hr)]lf2, and 

p - 0![02 + y2(1 - 2/7r)] 112. 

(36") 

(37") 

(38") 

(40') 

(41') 

We could also allow the f3's and a's in (37) and (37') to differ. Again, this would not affect 

consistent filtering or the results of lemmas 2.1 and 2.2, but it would prevent consistent 

estimation of the forecast distribution. Alternatively, suppose GARCH(1,1) was used for 

filtering and forecasting (36)-(38). Under weak conditions on the GARCH coefficients, 

GARCH achieves consistent filtering (see Nelson (1992)), but the time 1" forecasts 

generated by i\ would approach the forecasts generated by the diffusion limit of 

GARCH(1, 1) (given in Nelson (1990, (2.39)-(2.40)) rather than the forecasts generated by 

the true data generating process (36)-(36). 

ARCH models as discretizalions of diffusions 

In empirical applications of stochastic volatility models such as (36)-(38) in options 

pricing, researchers have often adopted the following rather cumbersome procedure: 7 first, 

7) See, e.g., Scott (1987), Wiggins (1987), Nelson (1988, Chapter 1), Melino and Turnbull 
(1990). and Ruiz (1992). 
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approximate (36)-(38) with a discrete time stochastic volatility model such as 

ln(hS(k+l)h) = ln(hSkh) + (IJ.-hakh212)·h + h112 ·hakh·hZ!.kh 

ln(ha(k+l)h2) = ln(hakhz) - f3·h·[ln(hakh2)- a] + t\·hl/2,hZz.kh 

where {hZI.kh, hzZ.kh} are i.i.d. bivariate normal with 

E[hZI.kh , hzZ.khl = [0, OJ and Cov[hZI.kh , hZz.khl = [ ~ ~ J. 

(36"') 

(37"') 

(38"') 

(36"')-(38"') is the standard Euler approximation to (36)-(38) (see, e.g., Pardoux and Talay 

(1985)). Next, proceed with estimation as if this discretization were the true data generating 

process. Although it is easy to show using Lemma 2.1 that (36'")-(38"') converges weakly 

(i.e., as a data generating process) to (36)-(38), {ha1
2} is unobservable, so maximum 

likelihood estimation is intractable. Therefore, employ an alternative procedure such as the 

generalized method of moments (GMM) to estimate IJ., /3, a, t\, and p. With the estimated 

parameters and some nonlinear filtering procedure (e.g., the extended Kalman filter), 

estimate the unobservable volatility process {ha1
2}. Finally, price options using these 

estimated conditional variances h;;./, the observed values of hS1, the estimated parameters, 

and a continuous-time options pricing model. 

There are at least three potential problems with this procedure: first, the model that 

is being estimated is not the true data generating process, but a weakly converging 

approximation. Second, the regularity conditions yielding consistency and asymptotic 

normality of the GMM parameter estimates have not been successfully verified for this 

model, so considerable caution is required in using these parameter estimates in options 

pricing. There may also be considerable loss of efficiency in going from maximum 

likelihood to GMM estimation. Third, in the discretization (36"')-(38"'), {ha1
2} is 

27 



unobservable, so potentially cumbersome procedures such as extended Kalman filters must 

be employed to estimate conditional variances.8 

The EGARCH discretization (36')-(38') and (40)-(41) eliminates the third problem, 

but not the first two: a researcher using either of the ARCH discretizations proposed in 

this section would estimate the coefficients by quasi-maximum likelihood, acting as if the 

(weakly converging) ARCH discretization were the true data generating process. The 

regularity conditions justifying this procedure have not been verified either, so the first two 

problems remain. The third problem vanishes, however, since under the ARCH 

discretization, {h a?} is observable,9 rendering the filtering step trivial. That is, one virtue 

of ARCH discretizations is that they are "self-filtering."10 For application of this ARCH 

8) {ha,1} in the extended Kalman filter is produced by a Markov updating rule just as the 
ARCH models of Section 2 are (see e.g., Anderson and Moore (1979)). In fact, the extended 
Kalman filter can itself be regarded as an ARCH model, except that an ARCH model would 
typically call the resulting {h a ,1 ) the "true" conditional variance process rather than explicitly 
acknowledging it as a noisy estimate. (This is probably a virtue of the Kalman filter.) An 
extended Kalman filter may or may not provide the most convenient, efficient, or tractable 
ARCH model in a given application. The extended Kalman filter can also be used for 
smoothing, but so can ARCH models (of course, this requires that the ARCH model is 
explicitly regarded as a filter). See Foster and Nelson (1991) for a two-sided version of 
GARCH. 

9) That is. it is observable given the initial value hal The effect of an incorrect initial 
guess for ha0

1 vanishes quickly, however--see Nelson (1992). 

10) At first glance. it is surprising that (36')-(38') can converge weakly to (36)-(38), since 
there arc two noise terms--dW1.t and dW2.,--driving (36)-(38) and two noise tcrms--hzl,kh and 
hz:!.kh--driving the Euler approximation (36")-(38"), but only one noise term (hZkh) driving (36')
(38'). To grasp the intuition behind this, consider the following illustration: let 71k be iid N(O,l), 
so E[77k[ = (2/rr) 112 Although [[77kl-(2/rr)1/:!] and 71k are certainly not independent, they are 
uncorrelated. By the central limit theorem therefore, k-wri= l,k71j and k- 112Ii=l,d l77j [-(2/rr) 112] 

converge to independent normal random variables. What happens in the continuous time limit 
of (36')-(38') is similar: hzkh and g(hZkh) are perfectly dependent but imperfectly correlated. 
so their partial sums converge weakly to the imperfectly correlated Brownian motions Wl,t and 
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approach to options pricing see, e.g., Kuwahara and Marsh (1992) and Cao (1992). 

A Note on Multivariate Models 

As we have seen, approximately correct forecasts may be generated by misspecified 

ARCH models provided that (1) the first two conditional moments of all state variables, 

observable and unobservable, are correctly specified and (2) the data generating process 

is well approximated by a diffusion. (These are the most important conditions, though some 

other regularity conditions must also be satisfied.) Unfortunately, correctly specifying the 

first two conditional moments is highly nontrivial, especially in the multivariate case. 

Let h-"'t be nx 1. There are (n+ 1) ·n/2 distinct elements of the conditional covariance 

matrix of h-"'t, so suppose hut is mx1, where m=(n+1)·n/2. Even when n is large, 

consistent filtering of hUt can be achieved by a wide variety of (very simple) ARCH models. 

For example, let hUt= vech(hfll:n.I:n.t)• where "vech" is the operator which stacks the upper 

triangle of a symmetric matrix into a vector and hfll:n.I:n.t is the time t conditional 

covariance matrix of h-"'t under Ph. For some a > 0, define hOt by 

~ ~ 1/2 -112 ' 
h U(k+l)h = b Ukh(1 - h a) + h a ·vech((hX(k+I)h - hXkh)(hX(k+l)h - hXkh) ]. (44) 

This ARCH model has only one parameter (which can be arbitrarily fixed) yet it provides 

a consistent filter under quite mild regularity conditions (see Foster and Nelson (1991) and 

Nelson ( 1992, pp. 71-73) ). 

Consistent estimation of the forecast distribution, on the other hand, requires in 

addition correct specification of the conditional mean of {h-"'t} (n moments), the 

W~.t· For more detailed discussion see Nelson (1990, pp. 20-23). 
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conditional mean of {hUt} (m moments), the conditional covariance matrix of {hUt} 

([(m+ 1) ·m/2] moments), and the conditional covariances of {hUt} and {h~}. a grand total 

of n·(n3 + 6n2 + lln + 14)/8 moments. When n=1, as in the examples of this section, 4 

moments must be matched. When n=2, 17 moments must be matched, progressing to 215 

moments for n=5, 2155 moments for n= 10, and more than thirteen million moments for 

n= 100. By way of comparison, the Center for Research in Security Prices (CRSP) at the 

University of Chicago recorded daily returns during 1991 for 16,854 stocks, requiring the 

matching of more than 1016 moments. Clearly, consistent estimation of the forecast 

distribution is problematic unless either n is very small or a drastically simplified structure 

exists for the first two conditional moments, making m much less than (n+l)·n/2. 

For example, let h~ represent cumulative returns on n assets, and let h ·hDl:n,l:n.t 

be its conditional covariance matrix. In the Factor ARCH model of Engle, Ng, and 

Rothschild (1990), we have 

m 
n + '2:. f3; f3;' h,l.~. 

i=l 
(45) 

where m < n, Dis a (constant) nxn nonnegative definite symmetric matrix, and for i=1 

to m, {3i is an n x 1 vector of constants and 0~ is the conditional variance of a portfolio 

formed from the n assets in h~· Here hUt = [0~. 0~ .... , 0':']' is mx 1, with m less than n 

and much less than D'(n+ 1)/2. 

Although it is straightforward to find a consistent filter for the portfolio variances 

1l;. (45) implies that for si"t, hnl:n.l:n.s-hnl:n.l:n,t has a rank of at most m < n. If the model 

is misspecified, there is no reason to expect this to hold, so htll:n.l:n,t = D + Li=trrfii f3;'t, X~ 
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need not approach h[ll:n.l:n,t as h~O. This illustrates the danger in assuming m < 

n ·(n + 1 )/2: not only can consistent estimation of the forecast distribution break down if the 

model is misspecified, even consistent filtering can be lost. It would be useful to create 

classes of multivariate ARCH models which retain the parametric tightness and intuitive 

appeal of (45) while retaining the filtering robustness of (44). 

4. Conclusion 

Researchers using ARCH models have focused their energies on modelling the first 

two conditional moments of time series. If the true data generating processes are near-

diffusions, this emphasis is appropriate, since the first two conditional moments largely 

determine the behavior of the process. Near-diffusions and ARCH models therefore seem 

natural companions. 11 This paper has shown that corresponding to many diffusion and 

near-diffusion models, there is a sequence of ARCH models that produce forecasts that are 

"close" to the forecasts generated by the true model. An ARCH model can produce 

reasonable forecasts in many cases, even when misspecified, if the ARCH model correct~\! 

specifies the first two conditional moments, including the first two conditional moments of the 

{rrX't, hUt} process and if the data are generated by a near-diffusion. This may be part of the 

reason for the broad empirical success of ARCH. 

An important limitation of our results is our assumption that the sequence of ARCH 

11) Of course. this is untrue if the near-diffusion assumption is invalid. See the discussion 
in Nelson (1992. Section 4). Even if the near-diffusion assumption is valid, the entire 
instantaneous conditional distribution (i.e., not just the first two conditional moments) is 
important for the efficiency of an ARCH model in estimating conditional variances and 
covariances--see Nelson and Foster (1992). 
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models is selected a priori (and hence nonrandomly) rather than by an estimation 

procedure. Establishing consistency and asymptotic normality of maximum likelihood 

parameter estimates has proven notoriously difficult even for well-specified ARCH 

models, 12 and is not likely to be any easier for misspecified ARCH models. Monte Carlo 

evidence reported in Schwartz, Nelson, and Foster (1992) suggests that in large samples the 

filtering properties of misspecified ARCH models are affected little by parameter 

estimation. To our knowledge, no Monte Carlo studies of the forecasting properties of 

misspecified ARCH models with estimated parameters have been done. 

Another important limitation of our results is that we have been concerned only with 

consistency, not with efficiency--i.e., we have had nothing to say about the rates at which 

the convergence in forecast distributions and moments takes place, or about the relative 

efficiency of different ARCH models in approximating forecast distributions. By analogy 

with the results of Section 2, this question appears to have two parts: first, at what rate 

does hOChUt converge to zero? Second, at what rate does the weak convergence of {h~, 

hUt} to{~ ,Ut} take place? Nelson and Foster (1992) consider the first question for the 

scalar case. They find a close connection between the efficiency of an ARCH model as a 

filter and its forecasting properties: apart from a few pathological cases, "optimal" filters 

also consistently estimate forecast distributions. Unfortunately, no results appear available 

on the second question except in very special cases, so results on the rate of convergence 

of forecast distributions must be left for future work. 

12) Though there has been some recent progress in the GARCH(l,l) case--see Lumsdaine 
(1991 ). 
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Appendix 

Additional Assumptions Required for Lemma 2.2 

To keep the notation in line with Nelson (1992), it is useful to define the 

following assumptions are adapted from assumptions 5-7 in Nelson (1992): 

Assumption 6. For every h > 0 and li > 0 and every (x,u, u)ER"+2m, the following are 

well-defined and finite: 

ch_~(x,u., u) = h'8 E,,[,,Y{k+I)h- hykh I,,Xkh=x, hu/d,=u, hu/d,=u], and 

dh_s(.x,u, u):; h-s E,,{(,,Yik+lih- /lykh)(hYik+I)h- hYkh)'J I,Xkh=x, I,Ukh=u, hUkh=uj. 

Further, there exists a function c(x,u, u) with c(.x,u, u) = 0 whenever u = u, such that for some 

li, 0 < 8 < 1, and for every R > 0, 

lim sup § ch.s(x,u, u) - c(x,u, u) # 
hiO JMS.R, IMS.R, §u gs.R 

0, and 

lim sup # dh.s(x,u, u) d 0. 
hiO JMS.R, /P-tiiS.R, ;D §s.R 

Assumption 7. For each (x,u, u) E R"+2m, defme the ordinary differential equation 

dY(t,.x,u, u)ldt = c(x,u,[Y(t,x,u, u)+uj), 

with initial condition Y (O,x, u, u) = u -u. Then Omxl (an m X 1 vector of zeros) is a global(v 

asymptotically stable solution for bounded values of (x,u, u)--i.e., for every R ~ 0, 

lim sup II Y(t,x,u, u) II = 0,"'1. 

t_,.oo lft,u, u IIS.R 
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Assumption 8. There exists a non-negative, twice differentiable function p(x,y,h) and a 

positive function }._(R,h) such that 

lim lim inf inf p(x,y,h) = "'· 
R-+oo h~O !f[x' y'] //?:.R 

lim sup 
R-+oo 

lim sup }._(R,h) < "'· and 
h~O 

and for every R > 0 and h > 0, 

-}.,(R,h)p(x, u-u,h) :5 0. 

Lemmas needed in the proof of Theorem 2.3 

Lemma A. I. For any 7'?:. 0, define f.J.Jt,T to be the probability measure for (1l<r• hUT) 

generated by P,. For any 7' < oo, there exists an h• > 0 such that {f.J.h,T}Oshsh• is unifonnly 

tight--i.e., for anv 8 > 0, there exists a compact 1\.(8) C R"+2m such that for all h, 0 < h :5 

Proof of Lemma A.l. Follows directly from Lemma 2.1 and Dudley (1989, 

Proposition 9.3.4). • 

Lemma A.2. Let Assumptions 1-4 be satisfied. Let (x, ,u1,) -+ (x,u) as h ~ 0. Then 

P o - ""' P o PrJ ""' P(o . P o ! ""' Pro -'· p ' - ""' P o as h' 0. ( .X;,-lifr ,) ( ,X,U.'r)' 1,X11,uh,"f) ,X,U,1')1 ( ,Xh'Uh,T' ,X,U, •r ·( 1,.'!1rllh, •) ( ,X,ll,T) t 

If Assumption 5 is also satisfied, then ?1,,x .. u,r) ""' P(O.x,u,T) as h~O. In each case, this 
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convergence is uniform on bounded subsets of R''+m (i.e., for bounded (x,u) sets). 

Proof of Lemma A.2. See the proof of Stroock and Varadhan (1979, Theorem 

11.2.3). Their requirement that "the martingale problem ... has exactly one solution ... 

. " is implied by our Assumption 4--see Ethier and Kurtz (1986, Chapter 5, Corollary 3.4) . 

• 
Proof of Theorem 2.3. The Theorem is equivalent to the following: for every A E 

c:'"lr , every 8 > 0, and every E > 0, there exists an h' > 0 such that for every h, 0 < h ~ 

Ph[ I Fh(A, hxr, h Ur ;r)-I\(A, hxr, h(Jr ;r) I><] ~ 8, 

Ph[ I Fh(A, hXr, hUr ,r)-F0(A, hXr, hUr ,r) I><] ~ 8, and 

Ph[IFh(A,hXr•hUr,r)-F0(A,hXr'hUr,r)l><] ~ 8. 

(A.l) 

(A.2) 

(A.3) 

We prove (A.l) first. By Lemma A.1 there exists a compact /\(8) and an h"(8) > 0 such 

probability under P11 as h ~ 0. Therefore for every 1) > 0 and 8 > 0, there exists an 

h"'(7J,8) > 0 such that Ph[ llhUr-hUrll > 1)] < 812 for h < h"'(7J,8). We then have for all 

h ~ min{h"(8),h'''(7J,8)}, 

Ph[IFh(A,hXr•hUr,r)- I\(A,hXr•hUr,r)l><] < 812 + 812 + 

sup )[I Fh(A,x,u,r)-Fh(A,x, u,r) I><]. 
(A.4) 

(x,u)E/\(8), llu- u 11~7) 

By lemma A.2, there exists an 11(8) > 0 and an h""(8,<) > 0 such that IFh(A,x,u,r)

Fh(A,x, u ,r) I ~ E whenever (x,u) E /\(8), llu- u II ~ 7)(8), and h ~ h .... (cS,<). The bound 

in (A.4) is therefore achieved whenever h ~ h'(8) = min{h"(8),h'"(7J(8),8), h""(o,<)}. 
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Next we prove (A.2). Define i\(S) and h .. (S) as above. For h s h .. (S), 

Ph[IFh(A, hxr, hu. ,r)- F0(A, hxr, hu. ,r) I >E] < S/2 + 
(A.5) 

sup I[ I Fh(A,x,u,r) - F0(A,x,u,r) I >E]. 
(x,u)Ei\(S) 

By Lemma A.2, the convergence of P(h.x.u,r) => P(o.x.u.r) is uniform on compacts. Therefore 

the second term in (A.5), which restricts (x,u) to lie in i\(S) for all h s h' ( S), vanishes 

uniformly in h, proving (A.2). Under Assumption 5 and Lemma 2.2, P(O.x.u,r) and P (O.x.u.r) 

are identical, so (A.3) follows from (A.l) and (A.2), proving the theorem. • 

Proof of Theorem 2.4. The proof is nearly identical to the proof of Theorem 2.3. Tite 

details are left to the reader. • 

Lemmas needed in £he Proof of Theorem 2.5 

Lemma A.J. Lei g be as in Theorem 2.5, but require in addition !hal g is bounded. 

Then lhe conclusion of Theorem 2.5 holds. 

Proof of Lemma A.J. Let {Zn}n_., be a sequence of random variables on some 

probability space, with {Zn}n_., => Z, and let f be a bounded functional mapping the space 

into R 1. Let f be the set of discontinuity points of f. Weak convergence implies (see, e.g., 

Billingsley (1986, Theorem 25.8)) that if P[ZEf] = 0, then E[f(Zn)l-+ E[f(z)] as n-+ co. 

The proof of Lemma A.3 is essentially identical to the proof of Theorem 2.3, substituting 

G11 (g,x,u,r) for Fh(A,x,u,r), G0(g,x,u,r) for F0(A,x,u,r), Gh(g,x,u,r) for i\(A,x,u,r), and 

G0(g,x,u,r) for F 0(A,x,u,r). 1l1e details are left to the reader. • 

36 



Lemma A.4. Let the conditions of Lemma 2.1 hold. Define gas in Theorem 2.5. Then 

(22) implies that for every bounded A C R!'+m, 

lim sup Ero.x.u.T;flg({Xt,Ut}{T,=)JI-!(Ig({Xt,Ut}[T,=)JI>K)J = 0. (A.6) 
K-+co (x,u)EA 

Proof of Lemma A.4. Let c4 be a metric space and let f be a mapping from c4xR1 

into R 1. Then clearly 

lim sup sup f(x,h) <-: sup lim sup f(x,h). 
h~O xEdf xEdf h~O 

Now by (22) and (A.7), we have 

0 = lim lim sup sup E(h.x.ll.T)[ I g( {h~ , h Ut}[T,=)) I ·I( I g( {h~, h UJ[T,=)) I> K)] 
K-+oo h~O (x,u)E/1. 

<-: lim sup lim sup E(h.x,u.T)(Ig({h~, hUt}[T.=))I·I(Ig({h~, hUt}[T,"'))I >K)]. 
K-+oo (x,u)E/1. h~O 

By Fatou's Lemma (Billingsley (1986, Theorem 25.11)) 

<-: lim sup E(o.x.u.T)(Ig({~ ,Ut}[T,oo))I·I(jg({~ ,Ut}[T.=))I>K)J 
K-+oo (x,u)E/1. 

;?: 0 .• 

(A.7) 

(AS) 

(A.9) 

Proof of Theorem 2.5. The theorem is equivalent to the following: under (21)-(22) 

and Assumptions 1-4 and 6-8, there exists, for every 8 > 0 and E > 0, an h' > 0 such that 

for all h, 0 < h < h', 

Ph(IGh(g,hXT'hOT,T)-Go(g,hXT,hUT;r)j > E] :58 

Ph[IGh(g,hXT'hu~,T)-Go(g,hXT,huT,T)I > €]:55 

and if assumption 5 is a[so satisfied, 
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First consider (29'). For any K > 0 we can rewrite g as 

g = (g+K)·I(g<-K) + (g-K)·I(g>K) + max(-K, min{g,K}). 

Define i\(S), 7], h .. , and h ... as in the proof of Theorem 2.3. Then 

Ph[IGh(g, hx,, ho, ,7')-Gh(g, hxT, huT ,7')1 > EJ < s;2 + S/2 + 

sup ~ I(IGh(g,x,u,T)-Gh(g,x,u,T)I>E] 
(x,u)Ei\(S), llu-u lls;1J 

s; o/2 + o/2 

+ sup ~I[ I Gh((g+ K)'I(g<-K),x,u,T)-Gh((g+ K) · I(g<-K),x, u ,T) I >E/3] 
(x,u)Ei\(S),IIu-u IIS7J 

+ sup I[ I Gh((g-K) · I(g>K),x,u,T)-<\((g-K) · I(g> K),x, u ,T) I >E/3] 
(x,u)EA(S),IIu-u 11s;77 

(A.lO) 

(All) 

(A.l2) 

+ sup I[IGh(max(-K,min{g,K}),x,u,T)-C\(max(-K,min{g,K}),x, U,T) I >E/3]. 
(x,u)EA(S),IIu-u IIS7J 

By (21) and (22), for any S > 0 and E > 0, K(<'i,E) can be selected to make 

I Gh((g+ K( o,E)) · I(g <-K( S,E)),x,u,T)-(\((g+ K(o,E)) · I(g<-K(B,E)),x, u ,T) I s E/3 for 

(x,u)Ei\(S), llu-u IIS7J, and all sufficiently small h. The same is true of the 

I Gh((g- K(S,E))'I(g> K(S,E)),x,u,T)-G11 ((g-K(S,E))'I(g> K(S,E)),x, u,T) I term. For a given 

K(8,E), max(-K(S,E),min{g,K(8,E)}) is bounded and almost surely continuous for all 

(x,u, u ), so by Lemma A.3, the last term in (A.l2) vanishes for sufficiently small h. This 

bounds (A.12) above by S, proving (29'). 

Next consider (28'). For h < h··, we have 

Ph[ I Gh(g, hxT. huT ,7')-Go(g, hx. 'huT ,7') I >E) < o/2 + sup I[! Gh(g,x,u,T)-Go(g,x,u,T) I >E) 
(x,u)EA(S) 
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~ sup I[ I G11 ((g+K) · I(g<-K),x;u;r) I+ I G0((g+K) · I(g<-K),x,u,r) I >.:/3] 
(x,u)Ei\(8) 

+ sup I[ I G11 ((g-K) · I(g> K),x,u;r) I+ I G0((g-K) · I(g> K),x,u,r) I >.:/3] 
(x,u)Ei\(8) 

(A.13) 

+ 8/2 + sup I[ I G11 (max(-K,min{g,K} ),x,u,r)-G0(max(-K,min{g,K} ),x,u,r) I >.:/3]. 
(x,u)Ei\(8) 

By (22) and Lemma A.4, for any 8 > 0 and any .: > 0, there is a K(8,e) such that 

I G11 ((g+ K(8,e)) · I(g<-K(8,e)),x,u,r) I+ I G0((g+ K(8,e)) · I(g<-K(8,.:)),x,u,r) I ~e/3 whenever 

(x,u)Ei\(8) and h is sufficiently small. The same is true of the 

I G11 ((g-K(8,e)) · I(g> K(8,e)),x,u,r) I+ I G0((g-K(8,e)) · I(g> K(8,e)),x,u,r) I term. By Lemma 

A.3 and the boundedness and almost sure continuity of max(- K(8,.:),min{g,K(8,e)} ), the 

last term on the right side of (A.l3) also vanishes for sufficiently small h, completing the 

proof of (28'). 

The proof of (27') is similar to the proofs of (28')-(29'). (22') and (23') follow by 

Billingsley (1986, 25.18). • 

Proof of Theorem 2. 6. The theorem follows directly as a special case of Theorems 3 

and 6 in Chapter 6 of Kushner (1984 ): both Kushner's Liapunov function V(x,u) and his 

perturbed Liapunov function V'(x,u) are set equal to our ~(x,u) and to ~(x,u) in (19)-(21). 

This makes Kushner's li, = 0 in both cases. We set Kushner's 1/J' equal to the constant A. 

The moment boundedness conditions (23) and (24) imply, respectively, the tightness of 

{ 11~, hUt} under Ph and {h~, hOt} under i\ as t-+ oo and h ~ 0. (See the discussion on 

Kushner (1984, pp. 151 and 157).) The proof then follows by Theorem 6in Chapter 6 of 

Kushner. • 

39 



Proof of Theorem 3.1. (a) To apply Lemma 2.2, we must verify Assumptions 1-4 and 

6-8. It is convenient to do a change of variables in (36)-(37) by defining ~ = ln(S1) and 

U, = ln(a,2). We then have 

d~ (~- exp(U,)/2)dt + exp(U/2)·dWl.t• and 
(A.14) 

Assumption 1 is immediate, since hS0, ha0
2, and h;;0

2 are constant for all h. We next 

verify Assumption 2. (14) is immediate for any E > 0, since Ut+h is Gaussian with moments 

continuous in U, (Arnold (1973, Section 8.3). By (A.14 ), 

(~- Xo- ~·t- (1/2)!6 exp(U,)ds) = fb exp(UJ2)·dWLs· 

By Karatzas and Shreve (1988 p. 163, Exercise 3.25), 

h'1E(h.x,u.•)[ I ~+h-X,- ~ · h-(1/2)f~+h exp(U5) ·ds !6] 

:5 h·153 ·E(h.x.u.T) f~+h exp(3·U,)·ds. (A.15) 

Fubini's Theorem (e.g., Dudley (1989, Theorem 4.4.5), allows us to interchange the 

expectations and integral in the right hand side of (A.l5). exp(3·U5) is lognormal and has 

a bounded expectation on [t,t+h], bounding the expectation on the left. Since exp(U
5

) has 

arbitrary finite moments (which are continuous in U,), Assumption 2 follows. 

We next check Assumption 3: (16) is immediate from the definitions of ~ and fl in 

(36)-(37) and Assumption 2 (see, e.g., Arnold (1973, p. 40.). (12') follows as in the proof 

of Nelson (1990, Theorem 3.3), verifying Assumption 3. Assumption 4 also follows as in the 

proof of Nelson (1990, Theorem 3.3). 

Assumptions 6, 7, and 8 are verified in Nelson (1992, Theorem 3.2) under 

Assumptions 1-4 and the following additional conditions: 
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First, there is an s > 0 such that for every 1J > 0, 

(A.16) 

Second, there is a twice differentiable, non-negative function w(x,u) and a e > 0 

such that for every 1J > 0, 

lim inf w(x,u) = oo, 
llx,ull--+oo 

lim sup h- 1E(h.x.u.r)C[Iw(hX(k+l)h • hU(k+l)h)-w(x,u)ll+ 8
) < "'· 

h~O II X,U II S7] 

and there is a}. > 0 such that for all (x,u) E R2, 

( ~-eu /2)aw(x. u)-13[ u -a ]w(x. u) + i\ 2il?w (x
1
u)+ eua2w~u)+ pAeu12a2w(x.u) 

ax au 2au 2a axau 

s ,l.w(x,u). 

(A.17) 

(A. IS) 

(A.19) 

(A.16) is immediate, since U, is Gaussian and therefore has arbitrary finite 

conditional moments. To verify (A.l7)-(A.18), we set 

w(x,u) = 1 + (1- exp(-x2))·1xl + exp(u) + exp(-u). 

(A.17) is trivial. It is easy to verify that w(x,u) is arbitrarily differentiable on R2 (including 

when x = 0) and that -2 < aw;ax < 2 and -2 < a2w;a~ < 2 and a2w(x,u)/axau = 0 for all 

(x,u). This bounds the left hand side of (A.19) from above by 

21 ~I + 2 -exp(u) - f3 ·[exp(u) - exp( -u )]·(u -a) + i\ 2[ exp(u )+ exp(-u) ]/2, (A.20) 

which we require to be bounded above by the right-hand side of (A.l9), which equals ,l.(1 

+ lxl·(1- exp(-x2)) + exp(u) + exp(-u)). Since f3 2: 0, this holds for all (x,u) E R2 if we 

choose a sufficiently large ,l.. To verify (A.l8), we choose E> = 1. The finiteness of the 

expected increments in X,2 follows from Assumption 2. Further, since ±U, is normal 
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(conditionally and unconditionally), exp(:!:Ut) is lognormal and its increments have finite 

expectation. (A.18) follows. Assumptions 6, 7, and 8 now follow from Nelson (1992, 

Theorem 3.2), concluding the proof of (a). 

(b) Assumption 5 is verified in Nelson (1990, Section 3.3). Theorem 2.3 

immediately follows, implying Theorem 3.1 (b). 

(c) By (21')-(22') and the results of parts (a) and (b) of Theorem 2.5, it is 

sufficient that for every T > 0, every bounded II. C R2, and for all bounded nonnegative 

A, B, a, b, c, and d, 

lim sup sup E(h.s.u.7 )[ I G((ln(hSt),ln(hST), hat, haT)) 11+'1] < co, and (A.21) 
h~O (ln(s),ln(a))EII. 

lim sup sup E(h.s.u.d I G((ln(hSt),ln(hST), hat, haT)) 11+'] < co. (A.22) 
h~O (ln(s),ln(a))EII. 

We prove (A.22) first. This relation clearly holds when 

lim sup sup E(h.s.a,,)[lln(hSt) I a ·l!n(hST) I b,l hat I c,l haT I d)] < co. (A.23) 
h~O (ln(s),ln(a))EII. 

for arbitrary nonnegative T, t, T, a, b, c, d (we can ignore the 1 +E term since a, b, c, and 

d can be made arbitrarily large). Because of the Markov structure of (hSkh , hakh 2) and the 

arbitrariness of t and T, T is irrelevant, so we set it equal to zero. Applying Holder's 

inequality and the arbitrariness of a, b, c, and d, (A.22) holds if for arbitrary nonnegative 

a, b, and t ~ 0, 

lim sup sup E(h.s.a.O)[ lln(hSt) I a] < co, and (A.24) 
h~O (ln(s),ln(a))EII. 

lim sup sup E(h.s.u.O)[hatbl < cc. (A.25) 
h~O (ln(s),ln(a))E/1. 

The lognormality of a/ implies (A.25). Using Fubini's theorem and Karatzas and Shreve 
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(1988, p. 163, Exercise 3.25), (A.24) follows by the argument used to establish (A.15) above, 

proving (A.22). 

We now turn to (A.21). By the same argument as in (A.25)-(A.25), (A.21) follows 

if for arbitrary nonnegative a, b, and t 2: 0, 

lim sup sl!p E(h.s.C7.o)[iln(hSt)l"l < oo, and (A.26) 
h~O (s,ln( a))EJ\ 

(A.27) 

We consider (A.20) first. Using (25') and (27)-(31), we write the expectation in (A.27) as 

c;b( l-f3h)k+l ·f(ab,f3h,k) H=o.k Eh[exp(bh112(1-f3h)ig(hZ(k·i)h)/2) ], (A.28) 

where k = [t/h], and 

f(ab,f3h,k) = exp(ba(l - (1-f3hr1)/2]. 

By Nelson (1991, Theorem ALl), we have, for any real)., 

E[eg(z)).] = { <P(y.l.+!l).)i\O+d/2 +<P(y).-!l).)e).\y-llil2}-e-).y(2hr/12 

(A.29) 

(A.30) 

where <P( ·)is the cumulative distribution function of the standard normal, andy and 8 are 

as in (40)-(41). Considered as a function of ).y and ).8, it is easy to check that E[eg(z)).] ::5 

E[eY], where Y- N(0,}. 2(y + JIIJi). Substituting into (A.28) yields 

E(h.s.<1.oJ[hatbl ::5 ;b(l-f3h/+I.f(ab,/3h,k)-exp[b2h(y+ J0/)2 };i=o.k (1-f3h)2i/8]. 

Applying Taylor series and binomial expansions (e.g., Silverman (1972 p. 202)) to f(·,·,·) 

and (1-/3h)k and evaluating the sum };i=I.k(l-f3h)2i, we obtain 

~ ~ b ~ b · e -iJt -{3t 2 2 
E(h.s.u.o)[hat] ::5 (l+O(h))·a ·exp(-b/3(1-e )/2)·exp[(b (y+ JOJ) t/8]. (A.31) 

The bound (A.31) is uniform for bounded (s,{;,t) and holds for arbitrary nonnegative b. 

(A.27) follows. 
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Finally, we prove (A.26). Here, it helps to define the {h:i!kh} in (27) by hzkh = 
h- 112 ·[Wkh- W(k·l)hl• where Wt is a standard Brownian motion on [-h,oo). This allows us 

to write for each positive h and t 

(A.32) 

under 1\. Since h ~52 has arbitrary finite moments, the moments of ln(hSt) will be bounded 

if and only if the moments on the right hand side of (A.32) are. (A.26) will therefore be 

proved if we can show that for arbitrary positive a and t and arbitrary bounded A C R2, 

~ lh(tlh] ~ a 
lim sup sup E(h.s.u.O) [!Jij hat·dWs I < oo, 
h~O (ln(s),ln(a))E/1. 

By Karatzas and Shreve (1988 p. 163, Exercise 3.25), (A.33) is bounded above by 

lim sup 
h~O 

sup [a(a-1)12]"12 ·t<"12 - 1lE ~[tlhJ a "·ds (h.s.u.O) 0 h t 
(s,ln(a))E/1. 

Since 11 at is a step function, we can rewrite ( A.34) as 

(A.33) 

(A34) 

(A.35) 

But by (A.31), the terms in the summation in (A.35) are uniformly bounded for bounded 

(s,a,t), proving (A.26) and completing the proof of (c). 

(d) When lrl ~ llll, Theorem 2.6 can be employed to prove (d) (see the very 

similar application in the proof of Nelson (1990, Theorem 2.3)). To prove (d) in the general 

case, it is easier to employ the Lyapunov central limit theorem for triangular arrays (see 

e.g., Billingsley (1986, Theorem 27.3)). When {3 > 0, the stationary distribution of ln(at2
) 

is N[a,/1.2/2{3] (see Arnold (1973, Section 8.3)). When the AR(1) EGARCH model is the 

data generating process we have 
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ln(hak11
2

) =a + (1-h·j3)k·(ln(ha0
2)-a] + ~j=l.k(l-h·j3~-l·h 112 ·g(hZ(k-j)h)· 

If 11 - j3h I < 1, we let k -+ oo to obtain the stationary distribution of ln(hakh 2) as the 

distribution of 

where {Z) - i.i.d. N(O, 1 ). From the normality of Z; and the definition of g( ·), it is clear 

that g(Z;) possesses finite moments of arbitrary finite order. We also have 

Var[ln(ha,. 2)] = Var(g(Z;)]/[2j3 - j32 ·h], and 

E((l- h·j3)i·h112 ·g(Z;)t = h2E[g(ZlJ(l- h·j3)4i. 

The Lyapunov Condition is satisfied if 

0 = limhjO ~i=O.oo E[(l- h·j3)i·h 112 ·g(Z;)]4/[Var[ln(ha})]2
. 

But from (A.36)-(A.37), 

h · [ 4j32 + O(h) ]· E(g(ZlJ 
= limhiO 0. 

[Var(g(Z;))f-[4j3 + O(h)] 

Applying the Lyapunov central limit theorem for triangular arrays, we have 

We complete the proof by invoking (40). • 
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