87 research outputs found

    Solving the enigma of granivory rates in Patagonia and throughout other deserts of the world is thermal range the explanation?

    Get PDF
    In order to gain insight about why Patagonia has low levels of granivory activity, percentages of world-wide granivory rates were compared for rodents, ants, and birds in seven desertic areas of the world. Using a series of multivariate analyses, we classified and ordinated these areas according to percentages of granivory rates, environmental features of the sites, and granivore biodiversity. Granivory activity was clearly separated into two groups, one representing the Northern Hemisphere which comprised Sonora, Great Basin, and Israel, and another, representing the Southern Hemisphere with Monte, Patagonia, South Africa, and Australia. The ordination analyses did not discrimínate any clear groups using the combined environmental variables. Separate correlations between the ordination axes of granivory and each environmental variable, and granivore richness, showed that only thermal range (the difference between the extreme annual mean temperatures) successfully correlated with the differences ín overall granivory between deserts and hemispheres. Our results show that all sites from the Northern Hemisphere, which had a very high continentality (high land/ocean ratio), and therefore high thermal range, were the ones with greater levels of granivory. A linear regression analysis showed that 72 % of the variation in overall granivory, mainly driven by rodent activity, was explained by thermal range. We propose that the only strategy that can evolve in environments with high thermal range ís granivory, as seeds are the only high quality food that can be stored. We propose that the combination of strong selective pressures with the chance that a certain taxa has for being at a certain place and time determines the relative importance of different taxa as granivores. Murid rodents had arrived earlier in the Northern Hemisphere than ín the Southern, and therefore, had greater opportunity to develop the granivore syndrome. Ants -which are as old as rodents at some of the studied sites but are poikilotherms- cannot deal as efficiently as rodents with very harsh environments. Birds, finally, avoid bad situations by migrating to more favourable habitats, and therefore circumvent those selective pressures with their great vagility. The more beningn the environment (lower thermal range due to low land/ocean ratios, as in the Southern Hemisphere), the less selective pressure for granivory, a reason that can also account for the high number of omnivores in South America and Australia, and the low granivory rates in Patagonia

    RETRACTION of the paper: About some issues concerning shape memory alloys application s in neuro-rehabilitation, METABK 59(1) (2020), 137-140.

    Get PDF
    RETRACTION NOTICE for the paper: About some issues concerning shape memory alloys application s in neuro-rehabilitation, METABK 59(1) (2020), 137-140

    Cytogenetic analysis of three species of Pseudacteon (Diptera, Phoridae) parasitoids of the fire ants using standard and molecular techniques

    Get PDF
    Pseudacteon flies, parasitoids of worker ants, are being intensively studied as potentially effective agents in the biological control of the invasive pest fire ant genus Solenopsis (Hymenoptera: Formicidae). This is the first attempt to describe the karyotype of P. curvatus Borgmeier, P. nocens Borgmeier and P. tricuspis Borgmeier. The three species possess 2n = 6; chromosomes I and II were metacentric in the three species, but chromosome pair III was subtelocentric in P. curvatus and P. tricuspis, and telocentric in P. nocens. All three species possess a C positive band in chromosome II, lack C positive heterochromatin on chromosome I, and are mostly differentiated with respect to chromosome III. P. curvatus and P. tricuspis possess a C positive band, but at different locations, whereas this band is absent in P. nocens. Heterochromatic bands are neither AT nor GC rich as revealed by fluorescent banding. In situ hybridization with an 18S rDNA probe revealed a signal on chromosome II in a similar location to the C positive band in the three species. The apparent lack of morphologically distinct sex chromosomes is consistent with proposals of environmental sex determination in the genus. Small differences detected in chromosome length and morphology suggests that chromosomes have been highly conserved during the evolutionary radiation of Pseudacteon. Possible mechanisms of karyotype evolution in the three species are suggested

    RETRACTED: About some issues concerning shape memory alloys applications in neuro-rehabilitation

    Get PDF
    Shape memory alloys (SMAs) are a very promising class of metallic materials showing promising nonlinear properties, such as pseudo-elasticity behavior, shape memory effect and damping capacity, due to high mechanical hysteresis and internal friction. SMA have been recently applied in the field of neuromuscular rehabilitation, designing some new devices based on the above properties. The paper discusses possible uses of these materials in the treatment of movement disorders, such as dystonia or hyperkinesia, where their dynamic characteristics can be the key issue

    Ground state of N=Z doubly closed shell nuclei in CBF theory

    Full text link
    The ground state properties of N=Z doubly closed shell nuclei are studied within correlated basis function theory. A truncated version of the Urbana v14 realistic potential, with spin, isospin and tensor components, is adopted, together with state dependent correlations. Fermi hypernetted chain integral equation and single operator chain approximation are used to evaluate density, distribution function and ground state energy of 16O and 40Ca. The results favourably compare with the available, variational MonteCarlo estimates and provide a first substantial check of the accuracy of the cluster summation method for state dependent correlations. We achieve in finite nuclei at least the same level of accuracy in the treatment of non central interactions and correlations as in nuclear matter. This opens the way for a microscopic study of medium heavy nuclei ground state using present days realistic hamiltonians.Comment: 35 pages (LateX) + 3 figures. Phys.Rev.C, in pres

    Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism

    Get PDF
    In mutualisms, each interacting species obtains resources from its partner that it would obtain less efficiently if alone, and so derives a net fitness benefit. In exchange for shelter (domatia) and food, mutualistic plant-ants protect their host myrmecophytes from herbivores, encroaching vines and fungal pathogens. Although selective filters enable myrmecophytes to host those ant species most favorable to their fitness, some insects can by-pass these filters, exploiting the rewards supplied whilst providing nothing in return. This is the case in French Guiana for Cecropia obtusa (Cecropiaceae) as Pseudocabima guianalis caterpillars (Lepidoptera, Pyralidae) can colonize saplings before the installation of their mutualistic Azteca ants. The caterpillars shelter in the domatia and feed on food bodies (FBs) whose production increases as a result. They delay colonization by ants by weaving a silk shield above the youngest trichilium, where the FBs are produced, blocking access to them. This probable temporal priority effect also allows female moths to lay new eggs on trees that already shelter caterpillars, and so to occupy the niche longer and exploit Cecropia resources before colonization by ants. However, once incipient ant colonies are able to develop, they prevent further colonization by the caterpillars. Although no higher herbivory rates were noted, these caterpillars are ineffective in protecting their host trees from a pathogenic fungus, Fusarium moniliforme (Deuteromycetes), that develops on the trichilium in the absence of mutualistic ants. Therefore, the Cecropia treelets can be parasitized by two often overlooked species: the caterpillars that shelter in the domatia and feed on FBs, delaying colonization by mutualistic ants, and the fungal pathogen that develops on old trichilia. The cost of greater FB production plus the presence of the pathogenic fungus likely affect tree growth

    Detection of Mitochondrial COII DNA Sequences in Ant Guts as a Method for Assessing Termite Predation by Ants

    Get PDF
    Termites and ants contribute more to animal biomass in tropical rain forests than any other single group and perform vital ecosystem functions. Although ants prey on termites, at the community level the linkage between these groups is poorly understood. Thus, assessing the distribution and specificity of ant termitophagy is of considerable interest.We describe an approach for quantifying ant-termite food webs by sequencing termite DNA (cytochrome c oxidase subunit II, COII) from ant guts and apply this to a soil-dwelling ant community from tropical rain forest in Gabon. We extracted DNA from 215 ants from 15 species. Of these, 17.2% of individuals had termite DNA in their guts, with BLAST analysis confirming the identity of 34.1% of these termites to family level or better. Although ant species varied in detection of termite DNA, ranging from 63% (5/7; Camponotus sp. 1) to 0% (0/7; Ponera sp. 1), there was no evidence (with small sample sizes) for heterogeneity in termite consumption across ant taxa, and no evidence for species-specific ant-termite predation. In all three ant species with identifiable termite DNA in multiple individuals, multiple termite species were represented. Furthermore, the two termite species that were detected on multiple occasions in ant guts were in both cases found in multiple ant species, suggesting that anttermite food webs are not strongly compartmentalised. However, two ant species were found to consume only Anoplotermes-group termites, indicating possible predatory specialisation at a higher taxonomic level. Using a laboratory feeding test, we were able to detect termite COII sequences in ant guts up to 2 h after feeding, indicating that our method only detects recent feeding events. Our data provide tentative support for the hypothesis that unspecialised termite predation by ants is widespread and highlight the use of molecular approaches for future studies of ant-termite food webs

    Disruption of Ant-Aphid Mutualism in Canopy Enhances the Abundance of Beetles on the Forest Floor

    Get PDF
    Ant-aphid mutualism is known to play a key role in the structure of the arthropod community in the tree canopy, but its possible ecological effects for the forest floor are unknown. We hypothesized that aphids in the canopy can increase the abundance of ants on the forest floor, thus intensifying the impacts of ants on other arthropods on the forest floor. We tested this hypothesis in a deciduous temperate forest in Beijing, China. We excluded the aphid-tending ants Lasius fuliginosus from the canopy using plots of varying sizes, and monitored the change in the abundance of ants and other arthropods on the forest floor in the treated and control plots. We also surveyed the abundance of ants and other arthropods on the forest floor to explore the relationships between ants and other arthropods in the field. Through a three-year experimental study, we found that the exclusion of ants from the canopy significantly decreased the abundance of ants on the forest floor, but increased the abundance of beetles, although the effect was only significant in the large ant-exclusion plot (80*60 m). The field survey showed that the abundance of both beetles and spiders was negatively related to the abundance of ants. These results suggest that aphids located in the tree canopy have indirect negative effects on beetles by enhancing the ant abundance on the forest floor. Considering that most of the beetles in our study are important predators, the ant-aphid mutualism can have further trophic cascading effects on the forest floor food web

    Biodiversity on Broadway - Enigmatic Diversity of the Societies of Ants (Formicidae) on the Streets of New York City

    Get PDF
    Each year, a larger proportion of the Earth's surface is urbanized, and a larger proportion of the people on Earth lives in those urban areas. The everyday nature, however, that humans encounter in cities remains poorly understood. Here, we consider perhaps the most urban green habitat, street medians. We sampled ants from forty-four medians along three boulevards in New York City and examined how median properties affect the abundance and species richness of native and introduced ants found on them. Ant species richness varied among streets and increased with area but was independent of the other median attributes measured. Ant assemblages were highly nested, with three numerically dominant species present at all medians and additional species present at a subset of medians. The most common ant species were the introduced Pavement ant (Tetramorium caespitum) and the native Thief ant (Solenopsis molesta) and Cornfield ant (Lasius neoniger). The common introduced species on the medians responded differently to natural and disturbed elements of medians. Tetramorium caespitum was most abundant in small medians, with the greatest edge/area ratio, particularly if those medians had few trees, whereas Nylanderia flavipes was most abundant in the largest medians, particularly if they had more trees. Many of the species encountered in Manhattan were similar to those found in other large North American cities, such that a relatively small subset of ant species probably represent most of the encounters humans have with ants in North America
    corecore