20 research outputs found

    Membranes by the Numbers

    Get PDF
    Many of the most important processes in cells take place on and across membranes. With the rise of an impressive array of powerful quantitative methods for characterizing these membranes, it is an opportune time to reflect on the structure and function of membranes from the point of view of biological numeracy. To that end, in this article, I review the quantitative parameters that characterize the mechanical, electrical and transport properties of membranes and carry out a number of corresponding order of magnitude estimates that help us understand the values of those parameters.Comment: 27 pages, 12 figure

    Importance of the difference in surface pressures of the cell membrane in doxorubicin resistant cells that do not express Pgp and ABCG2

    Get PDF
    P-glycoprotein (Pgp) represents the archetypal mechanism of drug resistance. But Pgp alone cannot expel drugs. A small but growing body of works has demonstrated that the membrane biophysical properties are central to Pgp-mediated drug resistance. For example, a change in the membrane surface pressure is expected to support drug–Pgp interaction. An interesting aspect from these models is that under specific conditions, the membrane is predicted to take over Pgp concerning the mechanism of drug resistance especially when the surface pressure is high enough, at which point drugs remain physically blocked at the membrane level. However it remains to be determined experimentally whether the membrane itself could, on its own, affect drug entry into cells that have been selected by a low concentration of drug and that do not express transporters. We demonstrate here that in the case of the drug doxorubicin, alteration of the surface pressure of membrane leaflets drive drug resistance

    On the Role of the Difference in Surface Tensions Involved in the Allosteric Regulation of NHE-1 Induced by Low to Mild Osmotic Pressure, Membrane Tension and Lipid Asymmetry

    Get PDF
    The sodium-proton exchanger 1 (NHE-1) is a membrane transporter that exchanges Na+ for H+ ion across the membrane of eukaryotic cells. It is cooperatively activated by intracellular protons, and this allosteric regulation is modulated by the biophysical properties of the plasma membrane and related lipid environment. Consequently, NHE-1 is a mechanosensitive transporter that responds to osmotic pressure, and changes in membrane composition. The purpose of this study was to develop the relationship between membrane surface tension, and the allosteric balance of a mechanosensitive transporter such as NHE-1. In eukaryotes, the asymmetric composition of membrane leaflets results in a difference in surface tensions that is involved in the creation of a reservoir of intracellular vesicles and membrane buds contributing to buffer mechanical constraints. Therefore, we took this phenomenon into account in this study and developed a set of relations between the mean surface tension, membrane asymmetry, fluid phase endocytosis and the allosteric equilibrium constant of the transporter. We then used the experimental data published on the effects of osmotic pressure and membrane modification on the NHE-1 allosteric constant to fit these equations. We show here that NHE-1 mechanosensitivity is more based on its high sensitivity towards the asymmetry between the bilayer leaflets compared to mean global membrane tension. This compliance to membrane asymmetry is physiologically relevant as with their slower transport rates than ion channels, transporters cannot respond as high pressure-high conductance fast-gating emergency valves

    Cell motility: the integrating role of the plasma membrane

    Get PDF
    The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process

    On a biophysical and mathematical model of pgp-mediated multidrug resistance: understanding the “space–time” dimension of MDR

    No full text
    Multidrug resistance (MDR) is explained by drug transporters with a drug-handling activity. Despite much work, MDR remains multifaceted, and several conditions are required to generate drug resistance. The drug pumping was conceptually described using a kinetic, i.e., temporal, approach. The re-emergence of physical biology has allowed us to take into account new parameters focusing on the notion of space. This, in turn, has given us important clues regarding the process whereby drug and transporter interact. We will demonstrate that the likelihood of drug-transporter meeting (i.e., the affinity) and thus interaction are also driven by the mechanical interaction between drug molecular weight (MW) and the membrane mechanical properties. This should allow us to mechanically control drug delivery

    Quantifying CD95/cl-CD95L Implications in Cell Mechanics and Membrane Tension by Atomic Force Microscopy Based Force Measurements

    No full text
    International audienceAtomic Force Microscopy (AFM) is an invaluable tool to investigate the structure of biological material surfaces by imaging them at nanometer scale in physiological conditions. It can also be used to measure the forces and mechanics from single molecule interaction to cell / cell adhesion. Here, we present a methodology that allows to quantify cell elastic properties (using the Young modulus) and cell membrane tension modulated by CD95/cl-CD95L interactions by coupling nanoindentation and membrane tube pulling using suitably decorated AFM levers

    Dissection of mechanical force in living cells by super-resolved traction force microscopy

    No full text
    Cells continuously exert or respond to mechanical force. Measurement of these nanoscale forces is a major challenge in cell biology; yet such measurement is essential to the understanding of cell regulation and function. Current methods for examining mechanical force generation either necessitate dedicated equipment or limit themselves to coarse-grained force measurements on the micron scale. In this protocol, we describe stimulated emission depletion traction force microscopy-STED-TFM (STFM), which allows higher sampling of the forces generated by the cell than conventional TFM, leading to a twofold increase in spatial resolution (of up to 500 nm). The procedure involves the preparation of functionalized polyacrylamide gels loaded with fluorescent beads, as well as the acquisition of STED images and their analysis. We illustrate the approach using the example of HeLa cells expressing paxillin-EGFP to visualize focal adhesions. Our protocol uses widely available laser-scanning confocal microscopes equipped with a conventional STED laser, open-source software and common molecular biology techniques. The entire STFM experiment preparation, data acquisition and analysis require 2-3 d and could be completed by someone with minimal experience in molecular biology or biophysics

    A cost–benefit analysis of the physical mechanisms of membrane curvature

    No full text
    Many cellular membrane-bound structures exhibit distinct curvature that is driven by the physical properties of their lipid and protein constituents. Here we review how cells manipulate and control this curvature in the context of dynamic events such as vesicle-mediated membrane traffic. Lipids and cargo proteins each contribute energetic barriers that must be overcome during vesicle formation. In contrast, protein coats and their associated accessory proteins drive membrane bending using a variety of interdependent physical mechanisms. We survey the energetic costs and drivers involved in membrane curvature, drawing a contrast between the stochastic contributions of molecular crowding and the deterministic assembly of protein coats. These basic principles also apply to other cellular examples of membrane bending events, including important disease-related problems like viral egress
    corecore