379 research outputs found

    A Marketplace-based Approach to Cloud Network Slice Composition Across Multiple Domains

    Get PDF
    Cloud network slicing can be defined as the process that enables isolated end-to-end and on-demand networking abstractions, which: (a) contain both cloud and network resources, and (b) are independently controlled, managed and orchestrated. This paper contributes to the vision of the NECOS project and relevant platform, that aim to address the limitations of current cloud computing infrastructures to accomplish the challenging requirements of the slicing approach. The NECOS platform implements the Slice-as-a-Service model, enabling the dynamic creation of end-to-end (E2E) slices from a set of constituent slice parts contributed from multiple domains. A challenging issue is to define the facility that implements dynamic slice resource discovery, aligned to the requirements of the slice owner or tenant, over different infrastructure providers. Here, we propose a Marketplace-based approach implementing relevant federated interactions for the resource discovery and we detail its architecture, workflows, and information model. We also present its initial implementation details and provide both quantitative and qualitative experimental results validating its main operation

    Teresa militante

    Get PDF
    Copia digital : Junta de Castilla y León. Consejería de Cultura y Turismo, 2014Sig.: []7, A-Z8, 2A-2C8, 2D6.Port. con grab. cal. de escudo cardenalicio.Hojas impresas por ambas caras

    Interdependent network reciprocity in evolutionary games

    Get PDF
    Besides the structure of interactions within networks, also the interactions between networks are of the outmost importance. We therefore study the outcome of the public goods game on two interdependent networks that are connected by means of a utility function, which determines how payoffs on both networks jointly influence the success of players in each individual network. We show that an unbiased coupling allows the spontaneous emergence of interdependent network reciprocity, which is capable to maintain healthy levels of public cooperation even in extremely adverse conditions. The mechanism, however, requires simultaneous formation of correlated cooperator clusters on both networks. If this does not emerge or if the coordination process is disturbed, network reciprocity fails, resulting in the total collapse of cooperation. Network interdependence can thus be exploited effectively to promote cooperation past the limits imposed by isolated networks, but only if the coordination between the interdependent networks is not disturbe

    Cost-effective external interference for promoting the evolution of cooperation.

    Get PDF
    The problem of promoting the evolution of cooperative behaviour within populations of self-regarding individuals has been intensively investigated across diverse fields of behavioural, social and computational sciences. In most studies, cooperation is assumed to emerge from the combined actions of participating individuals within the populations, without taking into account the possibility of external interference and how it can be performed in a cost-efficient way. Here, we bridge this gap by studying a cost-efficient interference model based on evolutionary game theory, where an exogenous decision-maker aims to ensure high levels of cooperation from a population of individuals playing the one-shot Prisoner's Dilemma, at a minimal cost. We derive analytical conditions for which an interference scheme or strategy can guarantee a given level of cooperation while at the same time minimising the total cost of investment (for rewarding cooperative behaviours), and show that the results are highly sensitive to the intensity of selection by interference. Interestingly, we show that a simple class of interference that makes investment decisions based on the population composition can lead to significantly more cost-efficient outcomes than standard institutional incentive strategies, especially in the case of weak selection.</p

    Social norms of cooperation in small-scale societies

    Get PDF
    Indirect reciprocity, besides providing a convenient framework to address the evolution of moral systems, offers a simple and plausible explanation for the prevalence of cooperation among unrelated individuals. By helping someone, an individual may increase her/his reputation, which may change the pre-disposition of others to help her/him in the future. This, however, depends on what is reckoned as a good or a bad action, i.e., on the adopted social norm responsible for raising or damaging a reputation. In particular, it remains an open question which social norms are able to foster cooperation in small-scale societies, while enduring the wide plethora of stochastic affects inherent to finite populations. Here we address this problem by studying the stochastic dynamics of cooperation under distinct social norms, showing that the leading norms capable of promoting cooperation depend on the community size. However, only a single norm systematically leads to the highest cooperative standards in small communities. That simple norm dictates that only whoever cooperates with good individuals, and defects against bad ones, deserves a good reputation, a pattern that proves robust to errors, mutations and variations in the intensity of selection.This research was supported by Fundacao para a Ciencia e Tecnologia (FCT) through grants SFRH/BD/94736/2013, PTDC/EEI-SII/5081/2014, PTDC/MAT/STA/3358/2014 and by multi-annual funding of CBMA and INESC-ID (under the projects UID/BIA/04050/2013 and UID/CEC/50021/2013 provided by FCT). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    The use of Open Reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome

    Get PDF
    BACKGROUND: The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES) strategy to generate profiles for the life cycle of Apis mellifera workers. RESULTS: Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41%) represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria), and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52%) did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22%) should represent Apis-specific genes. CONCLUSIONS: The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes

    Evolution of cooperation in stochastic games

    Get PDF
    Social dilemmas occur when incentives for individuals are misaligned with group interests 1-7 . According to the 'tragedy of the commons', these misalignments can lead to overexploitation and collapse of public resources. The resulting behaviours can be analysed with the tools of game theory 8 . The theory of direct reciprocity 9-15 suggests that repeated interactions can alleviate such dilemmas, but previous work has assumed that the public resource remains constant over time. Here we introduce the idea that the public resource is instead changeable and depends on the strategic choices of individuals. An intuitive scenario is that cooperation increases the public resource, whereas defection decreases it. Thus, cooperation allows the possibility of playing a more valuable game with higher payoffs, whereas defection leads to a less valuable game. We analyse this idea using the theory of stochastic games 16-19 and evolutionary game theory. We find that the dependence of the public resource on previous interactions can greatly enhance the propensity for cooperation. For these results, the interaction between reciprocity and payoff feedback is crucial: neither repeated interactions in a constant environment nor single interactions in a changing environment yield similar cooperation rates. Our framework shows which feedbacks between exploitation and environment - either naturally occurring or designed - help to overcome social dilemmas
    corecore