344 research outputs found

    A composite immune signature parallels disease progression across T1D subjects

    Get PDF
    At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting beta cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool to identify a composite panel associated with decline in insulin secretion over 2 years after diagnosis. The tool employs multiple filtering steps to reduce data dimensionality, incorporates error-estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D

    Food Anticipatory Activity Behavior of Mice across a Wide Range of Circadian and Non-Circadian Intervals

    Get PDF
    When rodents are fed in a limited amount during the daytime, they rapidly redistribute some of their nocturnal activity to the time preceding the delivery of food. In rats, anticipation of a daily meal has been interpreted as a circadian rhythm controlled by a food-entrained oscillator (FEO) with circadian limits to entrainment. Lesion experiments place this FEO outside of the light-entrainable circadian pacemaker in the suprachiasmatic nucleus. Mice also anticipate a fixed daily meal, but circadian limits to entrainment and anticipation of more than 2 daily meals, have not been assessed. We used a video-based behavior recognition system to quantify food anticipatory activity in mice receiving 2, 3, or 6 daily meals at intervals of 12, 8, or 4-hours (h). Individual mice were able to anticipate as many as 4 of 6 daily meals, and anticipation persisted during meal omission tests. On the 6 meal schedule, pre-prandial activity and body temperature were poorly correlated, suggesting independent regulation. Mice showed a limited ability to anticipate an 18 h feeding schedule. Finally, mice showed concurrent circadian and sub-hourly anticipation when provided with 6 small meals, at 30 minute intervals, at a fixed time of day. These results indicate that mice can anticipate feeding opportunities at a fixed time of day across a wide range of intervals not previously associated with anticipatory behavior in studies of rats. The methods described here can be exploited to determine the extent to which timing of different intervals in mice relies on common or distinct neural and molecular mechanisms

    Identification of Stochastically Perturbed Autonomous Systems from Temporal Sequences of Probability Density Functions

    Get PDF
    The paper introduces a method for reconstructing one-dimensional iterated maps that are driven by an external control input and subjected to an additive stochastic perturbation, from sequences of probability density functions that are generated by the stochastic dynamical systems and observed experimentally

    Rotating Stars in Relativity

    Get PDF
    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information one could obtain about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.Comment: 101 pages, 18 figures. The full online-readable version of this article, including several animations, will be published in Living Reviews in Relativity at http://www.livingreviews.org

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, 299, 2015)

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √s=8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at root s = 8 TeV with the ATLAS detector (vol 75, 299, 2015)

    Get PDF
    corecore