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Abstract The paper introduces a method for reconstructing one-dimensional iterated
maps that are driven by an external control input and subjected to an additive stochastic
perturbation, from sequences of probability density functions that are generated by
the stochastic dynamical systems and observed experimentally.
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1 Introduction

There is considerable interest in modeling and analyzing dynamical systems that gen-
erate densities of states. Examples of such systems include chaotic systems (Boyarsky
and Góra 1997; Lasota andMackey 1994) and stochastically perturbed dynamical sys-
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tems (Swishchuk and Islam 2013). Such systems are encountered routinely in physics,
biology, engineering and economics (Strogatz 2014; Skinner 1994).

In many practical situations, the system that generates the density of states is
unknown and only the densities of states generated by the system or the invari-
ant density associated with the system can be observed, while the individual point
trajectories are not measurable. Conventional solutions (Maguire et al. 1998; Han
et al. 2004; Príncipe and Kuo 1995; Lai et al. 1999; Lai and Tél 2011; Bollt et al.
2001) rely on time series observations, but for such situations they become unsuit-
able. The problem of inferring the unknown dynamical system from the observed
densities is known as the inverse Frobenius–Perron problem (Boyarsky and Góra
1997; Ershov and Malinetskii 1988). The problem of reconstructing an unknown one-
dimensional autonomous chaotic map given only knowledge of the invariant density
function of the system has been considered by a number of authors (Ershov and
Malinetskii 1988; Góra and Boyarsky 1993; Diakonos and Schmelcher 1996; Pin-
gel et al. 1999), while there are special cases in which this problem has a unique
solution. Given the invariant symmetric beta density functions, methods were intro-
duced to construct a class of symmetric maps (Diakonos and Schmelcher 1996) and
a broader class of continuous unimodal maps whose each brand covers the com-
plete interval (Pingel et al. 1999). Given arbitrary invariant densities other similar
approaches were proposed for identifying the maps with specified forms: two types
of one-dimensional symmetric maps (Koga 1991), smooth chaotic map with closed
form (Huang 2006, 2009), multi-branches complete chaotic map (Huang 2009).
Problems of synthesizing one-dimensional maps with prescribed invariant density
function or autocorrelation function were tackled in Baranovsky and Daems (1995)
and Diakonos et al. (1999). Using positive matrix theory an approach to synthesiz-
ing chaotic maps with arbitrary piecewise constant invariant densities and arbitrary
mixing properties was developed in Rogers et al. (2004). This method was fur-
ther extended to synthesizing dynamical systems with desired statistical properties
(Rogers et al. 2008a), developing communication networks (Berman et al. 2004)
and designing randomly switched chaotic maps and two-dimensional chaotic maps
used for image generation (Rogers et al. 2008b). In Bollt (2000) and Bollt and
Santitissadeekorn (2013), a global and open-loop strategy of controlling chaos was
presented to solve the inverse problem. The problem was reduced to that of finding
a perturbation of the original Frobenius–Perron matrix to achieve the target invari-
ant density function. In general, given only invariant density function, the solution
to the inverse problem is not unique, as different maps exhibiting remarkably differ-
ent dynamics may possess a same invariant density function. Therefore, additional
assumptions or constraints are required to ensure the uniqueness of the identifica-
tion results. A more recent approach (Nie and Coca 2015) addresses the uniqueness
issue by considering sequences of density functions generated by the system rather
than just the invariant density function of the system. This method allows inferring
the map that exhibits the same transient and asymptotic dynamics as the underly-
ing system that generated the data. Although it is shown that the method is robust
to noise, the approach does not exploit any a priori knowledge of the noise distribu-
tion. In addition, to our knowledge, all existing methods consider only autonomous
maps.
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In this context, this paper introduces for the first time a method to infer a one-
dimensional map that is driven by an external control input while being subjected
to an additive stochastic perturbation from sequences of observed density functions
generated by the unknown system. We formulate the operator transferring the state
density function of the stochastic dynamical system in terms of the Frobenius–Perron
operator associated with the unperturbed underlying system that we aim to estimate,
and derive the matrix representation of the transfer operator in terms of the Frobe-
nius–Perron matrix. Based on this representation the new algorithm is developed to
estimate the Frobenius–Perronmatrix using temporal sequences of probability density
functions generated by the stochastic dynamical system given the density functions of
the control input and noise. The approach also determines the monotonicity of general
nonlinear transformations over each interval of the partition, which is a crucial step to
reconstruct the true dynamical system.

The paper is structured as follows. Section 2 introduces the inverse problem.
The stochastic Frobenius–Perron operator associated with stochastically perturbed
autonomous systems is derived in Sect. 3. A matrix approximation of the operator
is given in Sect. 4. Section 5 introduces the methodology of reconstructing general
nonlinear maps from sequences of density functions. Section 6 presents a numerical
simulation example to demonstrate the effectiveness of the developed algorithm for
the stochastically perturbed autonomous systems. Conclusions are given in Sect. 7.

2 Inverse Problem Formulation

Let (R � [0,b], B, μ) be a normalized measure space, where μ is a measure on (R,
B) and B is a Borel σ -algebra of subsets in R. Consider the following discrete-time
stochastic dynamical system

xn+1 � S(xn) + un + ξn (mod b), (1)

where S: R → R is ameasurable andnonsingular transformation [i.e.,μ(S−1(A)) � B
for any A ∈ B and ifμ(S−1(A)) � 0 for all A ∈ B, thenμ(A) � 0], xn ∈ R is the state
variable having the probability density function fn ∈ D(R, B, μ), D � { f ∈ L1(R,
B, μ): f ≥ 0, ‖ f ‖1 � 1}, un ∈ R is the control input of the system with a probability
density function fu ∈ L1(R) that can be assigned, and ξn is an independent random
variable with a known probability density function g that has compact support on [− ε,
ε], that is, ξn is bounded in [− ε, ε], ε ≤ b.

Let X0, i � {xi0, j }θj�1 and X1, i � {xi1, j }θj�1, i =1, …, K be random vectors of
initial and final state observations, respectively, such that

xi1, j � S(xi0, j ) + u0, j + ξ0, j (mod b), (2)

where i � 1, . . . , K . Assuming that for practical reasons it is not possible to track
individual point trajectories during the experiment, that is to associate an initial state
xi0, j with its image xi1, j under the transformation, the inverse problem considered in
this paper is to infer the point transformation S in (1) from the probability density

123



1470 J Nonlinear Sci (2018) 28:1467–1487

functions f0, j and f1, j of the initial and final states X0, i � {x0, j }θj�1 and X1, i �
{x1, j }θj�1, i =1, …, K .

3 The Stochastic Frobenius–Perron Operator Associated with the
Stochastically Perturbed Transformation

In this section the transfer of density function at n to n +1 is derived given the input and
noise density functions fu and g. For a dynamical system with a constantly applied
random perturbation written in the following general form (Lasota and Mackey 1994)

xn+1 � S̄(xn , ξn) � S(xn) + ξn , (3)

where S: R → R is a given transformation and ξn is an independent random vari-
able having a density function g. The operator transferring state density functions of
the perturbed dynamical system are called the stochastic Frobenius–Perron operator,
denoted by P̄ ,

P̄ f (x) �
∫
R

τ (x , y) f (y)dy, (4)

where τ (x , y) � g(x − S(y)) is a stochastic kernel, satisfying τ (x , y) > 0, and∫
R τ (x , y) � 1. For a nonsingular unperturbed transformationS, the Frobenius–Perron

operator (Boyarsky and Góra 1997) corresponding to S exists, denoted by PS , and (4)
is further written as

P̄ f (x) �
∫
R
g(y)PS f (x − y)dy. (5)

Let G: R × R → R be defined by

G(xn , un) � S(xn) + un (mod b), (6)

such that (1) can be written as

xn+1 � G(xn , un) + ξn (mod b). (7)

Let x̄n+1 � G(xn , un) ∈ R. From (5) it follows that the probability density function
of x̄n+1 is given by

f̄n+1(x̄) �
∫
R
fu [x̄ − y + bχR(y − x̄)] PS fn(y)dy. (8)

where χΔ(x) is the indicator function defined by

χΔ(x) �
{
1 if x ∈ Δ;
0 if x /∈ Δ.

(9)
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Equation (7) becomes

xn+1 � x̄n+1 + ξn (mod b), (10)

where the probability density function of xn+1 is given by

fn+1(x) �
∫
R
f̄n+1(x̄)g

[
x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)

]
dx̄ , (11)

Substituting (8) into (11) leads to the following formulation of the stochastic Frobe-
nius–Perron operator, denoted by P̄ , associated with stochastic dynamical system (1)

P̄ fn(x) � fn+1(x) �
∫
R

∫
R
fu[x̄ − y + bχR(y − x̄)]

· g [x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)
]
PS fn(y)dydx̄ . (12)

Equation (12) relates the operator P̄ , corresponding to the stochastic system, to the
Frobenius–Perron operator PS associated with the map S. This equation forms the
basis for the new approach to reconstruct the map S based on sequences of density
functions.

Remark 1 The additive noise ξn is an i.i.d. random variable that normally satisfies
that max(|ξn|) < b in general practical measurements. For the unusual case ε > b,
(10) can be rewritten as

xn+1 � x̄n+1 + ξn − k1bχ(b,+∞)(x̄n+1 + ξn) + k2χ(−∞,0)(x̄n+1 + ξn), (13)

where k1 �
⌊
x̄n+1+ξn

b

⌋
, k2 �

∣∣∣
⌊
x̄n+1+ξn

b

⌋∣∣∣. Since k1 and k2 have infinite results given

only x and x̄ , fn+1 cannot be uniquely generated from f̄n+1 in (11). Hence, ξn is treated
as a variable bounded in [− ε, ε], ε ≤ b.

Remark 2 An alternative compact way of formulating the stochastic Frobenius–Per-
ron operator is to apply the joint density function denoted by fα ∈ L1(R) for the
control input and noise to (4). Let αn � un + ξn (mod b). Thus, fα can be given in
terms of fu and g by

fα(α) �
∫
R
g
[
α − u + bχ(−b,ε−b](α − u) − bχ[b−ε,b)(α − u)

]
fu(u)du. (14)

It follows that xn+1 � S(xn) + αn (mod b), and from (5) we have that

fn+1(x) �
∫
R
fα(z)PS fn(x − z + bχR(z − x))dz. (15)
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Substituting (14) into (15) gives that

fn+1(x) �
∫
R

∫
R
g[z − u + bχ(−b,ε−b](z − u) − bχ[b−ε,b)(z − u)] fu(u)

PS fn(x − z + bχR(z − x))dzdu

�
∫
R

∫
R
g[x − y + bχR(y − x) − u + bχ(−b,ε−b](x − y + bχR(y − x) − u)

− bχ[b−ε,b)(x − y + bχR(y − x) − u)] fu(u)PS fn(y)dydu (16)

Let x − x̄ � x − y + bχR(y − x) − u, then u � x̄ − y + bχR(y − x̄). It follows that
(12) is obtained from (16).

In the first instance, we assume that S belongs to a special class of nonlinear
transformations called piecewise linear semi-Markov transformations and develop
the algorithm to reconstruct it. We then show how the reconstruction approach can be
applied to approximate more general one-dimensional maps.

4 A Matrix Representation of the Transfer Operator P̄

Let S be a piecewise linear and expanding semi-Markov transformation over the N-
interval partition, 	 � {R1, R2, . . . , RN }.
Definition 1 A transformation S: R → R is said to be semi-Markov with respect
to the partition 	 (or 	-semi-Markov) if there exist disjoint intervals Q(i)

j so that

Ri � ∪p(i)
k�1Q

(i)
k , i � 1, . . . , N , the restriction of S to Q(i)

k , denoted S|
Q(i)
k
, ismonotonic

and S(Q(i)
k ) ∈ 	. (Góra and Boyarsky 1993)

The restriction S|Ri is a homeomorphism from Ri to a union of intervals of 	
p(i)⋃
k�1

Rr (i ,k) �
p(i)⋃
k�1

S(Q(i)
k ), (17)

where Rr (i , k) � S(Q(i)
k ) ∈ 	, Q(i)

k � [q(i)k−1, q
(i)
k ], i � 1, . . . , N , k � 1, . . . , p(i)

and p(i) denotes the number of disjoint subintervals Q(i)
k corresponding to Ri .

Let fn be a piecewise constant function over the partition 	 such that fn(x) �∑N
i�1 wn

i χRi (x). According to the property of semi-Markov map (Boyarsky and Góra
1997), its image under transformation PS fn is also a piecewise constant function over
	 such that PS fn(x) � ∑N

i�1 ϕn
i χRi (x). In this case, the Frobenius–Perron operator

can be represented by a finite-dimensional matrix such that

PS fn(x) �
N∑
j�1

(
N∑
i�1

(wn
i mi , j )

)
χR j (x), (18)
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where M � (mi , j )1≤i , j≤N is the Frobenius–Perron matrix induced by S with entries
given by

mi , j �
⎧⎨
⎩
∣∣∣∣ (S|

Q(i)
j
)′
∣∣∣∣
−1

, if S(Q(i)
k ) � R j ;

0, otherwise.
(19)

From (18) it follows that

ϕn
j �

N∑
i�1

wn
i mi , j , (20)

for j � 1, . . . , N . Let w f Nn � [wn
1 , wn

2 , . . . , wn
N ], ϕPS f Nn � [ϕn

1 , ϕn
2 , . . . , ϕn

N ] be
the coefficient vectors of the piecewise constant density functions fn and PS fn over
the partition 	, respectively. We have ϕPS f Nn � w f Nn M .

By integrating both sides of (12) over Ri ∈ 	, it follows that

∫
Ri

P̄ fn(x)dx �
∫
Ri

∫
R

∫
R
fu[x̄ − y + bχR(y − x̄)]

· g[x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)]PS fn(y)dydx̄dx .
(21)

For fn ∈ L1 we define

f Nn+1 � P̄N fn(x) �
N∑
i�1

wn+1
i χRi (x), (22)

where

wn+1
i � 1

λ(Ri )

∫
Ri

∫
R

∫
R
fu[x̄ − y + bχR(y − x̄)]

· g [x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)
]
PS fn(y)dyd x̄dx , (23)

λ denotes the Lebesgue measure and f Nn+1 denotes the piecewise constant approxima-
tion of fn+1 over the partition 	. We have the following result (Li 1976).

Lemma 1 For f ∈ L1, the sequence P̄N f (x) � ∑N
i�1 wiχRi (x) converges in L1 to

P̄ f as N → +∞.
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Substituting (17) in (21) gives

wn+1
i � 1

λ(Ri )

∫
Ri

N∑
j�1

∫
R j

∫
R
fu[x̄ − y + bχR(y − x̄)]

· g[x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)]ϕn
j dydx̄dx

� 1

λ(Ri )

N∑
j�1

{∫
Ri

∫
R j

∫
R
fu[x̄ − y + bχR(y − x̄)]

·g[x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)]dydx̄dx · ϕn
j

}
. (24)

Let H � (hi , j )1≤i , j≤N be a matrix with entries given by

hi , j � 1

λ(Ri )

N∑
j�1

{∫
Ri

∫
R j

∫
R
fu[x̄ − y + bχR(y − x̄)]

·g[x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)]dyd x̄dx
}
. (25)

It follows from (20) and (24) that

w f Nn+1 � ϕPS f Nn · H ′ � w f Nn · M · H ′. (26)

Let Q � MH ′. The evolution of density functions is formulated asw f Nn+1 � w f Nn Q.
Q is the matrix representation of the transfer operator P̄ . Formula (26) yields the final
density function estimated over the N-interval partition 	, mapping from the initial
piecewise constant density function over the N-interval partition 	. This establishes
the basis of the new algorithm of reconstructing the unknown transformation S from
sequences of probability density functions.

Remark 3 Given the nonsingular transformation S: R → R that induces the Frobe-
nius–Perron matrixM with respect to the partition 	, input density function fu ∈ L1

and noise density function g ∈ L1, from (26) the estimated state density function
over 	 of stochastic dynamical system (1) can be predicted from a piecewise constant
initial density function f N0 as w f Nn � w f N0 Qn .

Remark 4 Let Q � (qi , j )1≤i , j≤N , where from (26) qi , j is given by

qi , j �
N∑

k�1

(mi ,kh j ,k). (27)
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Then we have

N∑
j�1

qi , j �
N∑
j�1

([
mi ,1 . . . mi ,k . . . mi ,N

] [
h j ,1 . . . h j ,k . . . h j ,N

]′)

� [
mi ,1 . . . mi ,k . . . mi ,N

] [
N∑
j�1

h j ,1 . . .
N∑
j�1

h j ,k . . .
N∑
j�1

h j ,N

]′
. (28)

It is obtained from (25) that

N∑
j�1

h j ,k �
N∑
j�1

(
1

λ(R j )

N∑
k�1

{∫
R j

∫
Rk

∫
R
fu[x̄ − y + bχR(y − x̄)]

·g[x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)]dyd x̄dx
})

� N

b

∫
R

∫
Rk

∫
R

{ fu[x̄ − y + bχR(y − x̄)]

· g[x − x̄ + bχ(−b,ε−b](x − x̄) − bχ[b−ε,b)(x − x̄)]dydx̄dx

� 1. (29)

It follows that

N∑
j�1

qi , j �
N∑

k�1

mi ,k � 1. (30)

This implies that matrix Q is a stochastic matrix that has 1 as the eigenvalue of
maximum modulus, of which the algebraic and geometric multiplicities are 1. Since
Q and Q′ have the same eigenvalues, we then have Q′(w f N∗ )′ � (w f N∗ )′, thereby
w f N∗ Q � w f N∗ , where w f N∗ � [w∗

1 , w∗
2 , . . . , w∗

N ] represents the equilibrium density
vector of Q.

Remark 5 Remark 4 suggests that there exists a stationary density function f N∗ (x) �∑N
i�1 w∗

i χRi (x) for the transfer operator P̄N . It follows from Lemma 1 that f N∗ (x)
converges to f∗(x) of the stochastic dynamical system as N → +∞.

5 Solving the Stochastic Inverse Frobenius–Perron Problem for
Continuous Nonlinear Transformations

This section introduces a method to reconstruct the underlying map S in Eq. (1) based
on a sequence of probability density functions estimated from data, under the general
assumption that S is a continuous nonlinear map. Specifically, the method infers a
piecewise linear semi-Markov map Ŝ with respect to a uniform partition 	 � {R1,
R2, . . . , RN } � {[0, a1], (a1, a2], . . . , (aN−1, aN ]}, aN � b, given K random
vectors of initial states X0, i � {x0, ij }θj�1, from K initial state densities f0, i , i =1,
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…, K , the corresponding final state vectors X1, i � {x1, ij }θj�1, i =1, …, K under
transformation (1) and the density of the noise and of the control input, g and fu ,
respectively. The matrix M associated with PS can be approximated arbitrarily well,
and thus, Ŝ approximates S to an arbitrary accuracy as N → +∞. While g is fixed, fu
can be defined by the user when the experiment is conducted. It is assumed that the
correspondence between an initial state measurement x0, j and its image x1, j under
the transformation is not known and hence the point transformation S in (1) has to be
inferred based on the probability density functions

{
f0, j

}K
j�1 ,

{
f1, j

}K
j�1, g and fu .

The proposed reconstruction algorithm for general nonlinear and continuous maps
is summarized below. However, it is worth emphasizing that this method can also be
used in cases when S is piecewise semi-Markov.

Step 1: For K initial, piecewise constant densities f0, i generate X0, i � {x0, ij }θj�1

and Xt , i � {xt , ij }θj�1, i =1, …, K, t =1, …, T .

Step 2: Estimate the coefficient vectors w
f Nt , i � [wt , i

1 , w
t , i
2 , . . . , w

t , i
N ] correspond-

ing to the piecewise constant density functions f Nt , i (x) that approximate the new
state density functions ft , i (x) over the regular partition 	. Compute the matrix H;
Step 3: Identify a trial Frobenius–Perron matrix M̂ firstly to determine the indices of
consecutive positive entries of the matrix M that represents the Frobenius–Perron
operator PS associated with the optimal approximate map Ŝ and subsequently a
refined matrixM;
Step 4: Construct the approximate piecewise linear semi-Markov transformation on
	, and smooth it to obtain the continuous nonlinear map.

These steps are described below in more detail.

5.1 Step 1: Observe Sets of States to Assemble Sequences of Densities

Let f0, i be a set of different initial density functions that is piecewise constant on the
partition 	

f0,i (x) �
N∑
j�1

w
0,i
j χR j (x), (31)

where the coefficients satisfy
∑N

j�1 w
0, i
j � N

b , i =1, …, K .

Let X0, i � {x0, ij }θj�1 be the set of initial conditions obtained by sampling f0, i (x),

and Xt , i � {xt , ij }θj�1 be the set of states obtained by applying t times Eq. (1) such that

xt , ij � St (x0, ij ) + ui + ξi (mod b) for some x0, ij , whereU � {ui }θi�1, Ξ � {ξi }θi�1 are
generated by sampling fu and g, respectively.

FromRemark 4, given the input and noise density functions, the generated densities
converge to a stationary density function regardless of the initial conditions. Therefore,
finite densities characterizing the transient dynamics and evolving from an initial
density function can be observed. For K sequences of densities, the most dynamical
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behavior exhibited by the perturbed underlying system can be observed from Tm
iterations given by Tm � min{tm}, representing the minimum steps taken to approach
the stationary density, where tm is an integral set given by

tm � arg min
t≥1

J (t)

� arg min
t≥1

(
K∑

k�1

√∫
R
( ft ,k(x) − ft−1,k(x))2dx

)
. (32)

Thus, 1 ≤ T ≤ Tm . Typically, the interval number of 	 is set by 1 < N ≤ KT .

5.2 Step 2: Estimate the Coefficients w and Compute the Matrix H

The piecewise constant density function f N1, i (x) on the partition 	 is given by

f N1,i (x) �
N∑
j�1

w
1,i
j χRi (x), w

1,i
j � N

θb

θ∑
k�1

χR j (x1,k) (33)

These following matrices are then derived.

(34)

and

(35)
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Given the input and noise density functions fu and g, the matrix H is computed
from (25).

5.3 Step 3: Identify the Frobenius–Perron Matrix M

For a continuous nonlinear map, the corresponding Frobenius–Perron matrixM must
satisfy that the positive entries in each row are contiguous.Without enough constraints
to optimize the matrix, it is generally difficult to identify a very fine matrix straight-
forwardly. Therefore, initially, a trail Frobenius–Perron matrix is derived to determine
the indices of contiguous positive entries in each row, which are then used to refine the
matrix. This is carried out in two stages. In the first instance, given (21) the coordinate
vectors ϕPS fn , n � 0, . . . , T − 1, are obtained by solving the following constrained
optimization problem

min
0≤{ϕn

j }n�0,...,T−1
j�1,...,N ≤N / b

∥∥∥W 1 − Φ · H ′
∥∥∥
F
, (36)

subject to
∑N

j�1 ϕn
j � N

b , for n � 0, . . . , T − 1, where

(37)

and ||·||F denotes the Frobenius norm.
Subsequently, the trial matrix denoted by M̂ � (m̂i , j )1≤i , j≤N is obtained as a

solution to the following constrained optimization problem

min
0≤{m̂i , j }Ni , j�1≤1

∥∥∥Φ − W 0M̂
∥∥∥
F
, (38)

subject to
∑N

j�1 m̂i , j � 1, for i � 1, . . . , N .

Let Pi � {r̂ is , r̂ is + 1, . . . , r̂ ie} be the set of column indices of consecutive positive
entries in the ith row of M̂ and r̂ im ∈ Pi given by m̂i , r̂ im

� max{m̂i , j }Nj�1. Let

∪ p̂(i)
k�1 Rr̂ (i , k) be a connected union of intervals of 	, which are the images of some

connected subintervals Q̂(i)
k , k � 1, . . . , p̂(i), that is, Rr̂ (i , k) � S(Q̂(i)

k ) ∈ 	, i � 1,
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. . . , N , p̂(i) � r̂ ie − r̂ is + 1 and r̂ (i , k) ∈ Bi are the column indices of the positive
entries in the ith row of M satisfying

r̂ (i , k + 1) � r̂ (i , k) + 1, (39)

for i � 1, . . . , N , k � 1, . . . , p̂(i) − 1.
The approximation to the continuous map may have an infinite number of pieces

of monotonicity, and each piece S|Ri can be linearly approximated. Thus, for a

piecewise linear semi-Markov approximation Ŝ, the maximum and minimum col-
umn indices of positive entries on two contiguous rows ofM are further refined by r (i ,
p(i)) � ⌊

[r̂(i , p̂(i)) + r̂ (i + 1, 1)]
/
2
⌋
, r (i + 1, 1) � ⌈

[r̂ (i , p̂(i)) + r̂ (i + 1, 1)]
/
2
⌉
,

and S′∣∣
Q(i)

p(i)
� S′∣∣

Q(i+1)
1

if 1
p̂(i+1)

∑ p̂(i+1)
k�1 r̂ (i + 1, k) > 1

p̂(i)

∑ p̂(i)
k�1 r̂ (i , k) and∣∣r̂ (i + 1, 1) − r̂ (i , p̂(i))

∣∣ > 1; r (i , 1) � ⌈
[r̂ (i , 1) + r̂ (i + 1, p̂(i + 1))]

/
2
⌉
, r (i +

1, p(i + 1)) � ⌊
[r̂ (i , 1) + r̂ (i + 1, p̂(i + 1))]

/
2
⌋

and S′∣∣
Q(i)
1

� S′∣∣
Q(i+1)

p(i+1)
if

1
p̂(i)

∑ p̂(i)
k�1 r (i , k) > 1

p̂(i+1)

∑ p̂(i+1)
k�1 r (i + 1, k) and

∣∣r̂ (i , 1) − r̂ (i + 1, p̂(i + 1))
∣∣ > 1,

and that S′∣∣
Q(i)
2

� S′∣∣
Q(i)

j
for j � 3, . . . , p(i)−1 if p(i) ≥ 4, where Q(i)

k is the newly

formed subinterval, and {r (i , 1), . . . , r (i , p(i))} are the identified column indices of
positive entries in the ith row of the matrixM.

The refined Frobenius–Perron matrix M is then obtained by solving the following
optimization problem

min
0≤{mi , j }Ni , j�1≤1

∥∥∥Φ − W 0M
∥∥∥
F
, (40)

subject to
∑p(i)

k�1 mi , r (i , 1)+k−1 � 1 and mi , r (i , k) > 0, for i � 1, . . . , N and mi , j � 0,
if j � r (i , k), for k � 1, . . . , p(i).

5.4 Step 4: Construct the Nonlinear Map

This step involves reconstructing the semi-Markov map that corresponds to the iden-
tified Frobenius–Perron matrix M. For a continuous map, it started with determining
the monotonicity of each branch S|

Q(i)
k
. Let R′

i � [ar (i , 1)−1, ar (i , p(i))] be the image

of the interval Ri under the semi-Markov transformation Ŝ associated with the iden-
tified Frobenius–Perron matrix M. Denote ar (i , 1)−1 as the starting point of Rr (i , 1)

mapped from the subinterval Q(i)
1 , and ar (i , p(i)) as the end point of Rr (i , p(i)), the

image of the subinterval Q(i)
p(i). Let ci be the midpoint of the image R′

i . The sign γ (i)

of { Ŝ′(x)
∣∣∣
Q(i)
k

}p(i)k�1 is given by

γ (i) �
⎧⎨
⎩

−1, if c̄i − c̄i−1 < 0;
1, if c̄i − c̄i−1 ≥ 0;
γ (i − 1), if c̄i � c̄i−1,

(41)
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for i � 2, . . . , N and γ (1) � γ (2).
Given that the derivative of S|

Q(i)
k
is 1

/
mi , j , the end point q

(i)
k of subinterval Q(i)

k

within Ri is given by

q(i)k �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai−1 + b
N

k∑
j�1

mi ,r (i , j), if γ (i) � +1;

ai−1 + b
N

k∑
j�1

mi ,r (i ,p(i)−k+1), if γ (i) � −1.
(42)

where k � 1, . . . , p(i)−1 and q(i)p(i) � ai , a0 � 0. The piecewise linear semi-Markov

transformation Ŝ on each subinterval Q(i)
j is given by

Ŝ
∣∣∣
Q(i)

j

(x) �
{

1
mi , j

(x − q(i)k−1) + a j−1, if γ (i) � +1;

− 1
mi , j

(x − q(i)k−1) + a j , if γ (i) � −1.
(43)

for mi , j � 0, i � 1, . . . , N , j � 1, . . . , N , k � 1, . . . , p(i) − 1. A smooth
nonlinear map is then obtained by fitting a polynomial smoothing spline.

6 Numerical Simulation Example

Theproposed algorithm is demonstrated using simulated data generated by the stochas-
tic dynamical system

xn+1 � S(xn) + un + ξn (mod 1), (44)

where S(xn) � 4xn(1 − xn), S: [0, 1] → [0, 1], u ∈ [0, 1] is the input variable
having the following density function that is truncated to the range of [0,1]

fu(u) � 1

2

⎛
⎝ 1

σ1
√
2π

e
− (u−μ1)

2

2σ21 +
1

σ2
√
2π

e
− (u−μ2)

2

2σ22

⎞
⎠ , (45)

μ1 � 0.30, σ1 � 0.70, μ2 � 0.60, σ2 � 0.10. The noise variable is assumed to
have a non-Gaussian density function with compact support [−0.2, 0.2] given by

g(ξ ) �

⎧⎪⎪⎨
⎪⎪⎩

4, − 0.20 ≤ ξ ≤ −0.10;
4
/
3, − 0.10 < ξ ≤ 0.05;

20
/
7, 0.05 < ξ ≤ 0.12;

2.5, 0.12 < ξ ≤ 0.20.

(46)

In practice, there are no restrictions on the shape of this density function. The density
functions of the input and noise, fu and g, are shown in Fig. 1.

For the purpose of inferring the piecewise linear semi-Markov transformation that
approximates the original logistic map S, we define a uniform partition	 of [0, 1] with
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Fig. 1 Probability density functions of the input u (a) and the noise ξ (b)

Fig. 2 Results of the
performance function J(t) in
(32) for 1≤ t ≤23

1 3 5 7 9 11 13 15 17 19 21 23
t

0

50

100

150

200

250

J(
t)

N � 40 intervals. To generate the data used in the reconstruction, K � 40 piecewise
constant initial density functions f0, i � χRi (x), i � 1, . . . , 40 were sampled to
generate the initial states X0, i � {x0, ij }θ1j�1, θ1 � 5× 103, i � 1, . . . , 40. The input

and noise densities were sampled to generate the input and noise data setsU � {ui }θ1i�1

andΞ � {ξi }θ1i�1. In total, 40 sequences of new states Xt , i � {xt , ij }θ1j�1, i � 1, . . . , 40
were then observed by iterating t times system (44) and these were subsequently used
to estimate the corresponding piecewise constant densities f Nt , i , i � 1, . . . , 40, t ≥ 1,
over the uniform partition 	. Figure 2 shows the calculated results of the performance
function J(t) in (32), 1 ≤ t ≤ 23, which represents the summing differences of each
two successive densities of theK sequences of densities. As can be seen, the minimum
can be found at t ≥ 4, which suggests that densities in all the sequences approach the
equilibrium distribution. It follows that 1 ≤ T ≤ 4.
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(a) 

(b) 

Fig. 3 a Examples of initial densities and b the corresponding generated new densities at T =1 represented
by the black thick lines, densities at T =2 represented by the black thin lines, densities at T =3 represented
by the dark gray lines and stationary densities generated after 1×104 iterations that are represented by the
light gray lines

Here we choose T =1. Figure 3 shows the initial densities f0, k and their image
densities f N1, k , which are used to reconstruct the approximate map, and also f N2, k , f

N
3, k

and the equilibrium observed after 1×104 iterations. It can be seen that compared
with f N1, k , f N2, k and f N3, k are more close to the stationary density, and densities in each
sequence rapidly converge to the same stationary density. This is also demonstrated in
Fig. 2 that the derivative of fi , k at i =3 is apparently lower than that of f1, k and f2, k .
Using the lsqlin function in the optimization toolboxofMATLABto solve optimization
problems (36), (38) and (40) in the proposed algorithm, the Frobenius–Perron matrix
M is obtained.

The piecewise linear semi-Markov map Ŝ associated with the identified matrix
M is shown in Fig. 4a. Finally, the continuous nonlinear map S̃ was estimated by
fitting a cubic smoothing spline with the smoothing parameter 0.999, to a set of 103

data points obtained by uniformly sampling the piecewise linear map Ŝ over [0, 1].
The reconstructed continuous nonlinear map is shown in Fig. 4b. The performance of
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(a) (b)
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Fig. 4 a The estimated piecewise linear semi-Markov transformation Ŝ and b the reconstructed continuous
nonlinear map S̃

Fig. 5 RPE between the original
map S and the estimated
piecewise linear semi-Markov
transformation Ŝ, and also the
reconstructed continuous
nonlinear map S̃
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the reconstruction algorithm is evaluated by computing the relative percentage error
(RPE)

δ S(x |Ŝ(x)) � 100

∣∣∣∣∣
S(x) − Ŝ(x)

S(x)

∣∣∣∣∣ (%),

δ S(x |S̃(x)) � 100

∣∣∣∣∣
S(x) − S̃(x)

S(x)

∣∣∣∣∣ (%), (47)

between the original and estimated maps Ŝ and between the original and the smoothed
map S̃, respectively, which is illustrated in Fig. 5. As can be seen, the full error for
Ŝ and 95% of the error for S̃ is lower than 5%. With the increase of N , the estimated
map Ŝ is more close to S.
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Fig. 6 The mean, 10% and 90%
quantiles of the 100 RMSE
between f 40n, k and f̂ 40n, k for k =1,
…, 100 at n =1, …, 60

1 5 10 15 20 25 30 35 40 45 50 55 60
n
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0.05

0.1

0.2

0.3

To further evaluate the accuracy of the reconstruction, the constructed piecewise
linear semi-Markov approximation Ŝ and the estimated continuous map S̃ were used
to predict n-iteration ahead density functions, n � 1, . . . , 60, respectively, using a
Gaussian distribution function N (0.6, 0.42) truncated to [0, 1] as the initial state
density function f0, the input density given in (45) and the noise density given in (46).
With 100 sets of θ2 � 1 × 104 input data U � {uk, i }100, θ2k�1, i�1 generated by sampling

fu and 100 sets of the same number of noise data Ξ � {ξk, i }100, θ2k�1, i�1 from g, 100

sets of θ2 randomly distributed initial states X0, k � {x0, kj }θ2j�1, k =1, …, 100, were
separately iterated for 60 steps using stochastic model (1) with the original map S, the
identifiedpiecewise linear semi-Markovapproximation Ŝ and the estimated continuous
map S̃, respectively. In each step piecewise constant density functions f 40n, k(x) �∑40

j�1 w
n, k
j χR j (x), f̂ 40n, k(x) � ∑40

j�1 ŵ
n, k
j χR j (x), and f̃ 40n, k(x) � ∑40

j�1 w̃
n, k
j χR j (x),

k =1, …, 100, n =1, …, 60, are then estimated over 	 from the generated states. The
root-mean-square error (RMSE) between f 40n, k and f̂ 40n, k and between f 40n, k and f̃ 40n, k is
calculated by

RMSE(S, Ŝ)n,k �
√√√√ 1

40

40∑
i�1

(wn,k
i − ŵ

n,k
i )2,

RMSE(S, S̃)n,k �
√√√√ 1

40

40∑
i�1

(wn,k
i − w̃

n,k
i )2, (48)

where ŵ
n, k
i and w̃

n, k
i are the coefficients of predicted density function using Ŝ and S̃,

respectively. The mean, 10 and 90% quantiles of the 100 RMSEs for Ŝ and S̃ at each
iteration are shown in Figs. 6 and 7. As can be seen from them, 90% quantiles of the
error remain constantly less than 0.1 for both Ŝ and S̃, and their mean values stabilize
around 0.08 after 10 iterations.
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Fig. 7 The mean, 10% and 90%
quantiles of the 100 RMSE
between f 40n, k and f̂ 40n, k at n =1,
…, 60
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Fig. 8 RMSE between S and Ŝ
on 100 uniformly spaced points
in [0, 1] for T =1, …, 8
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Figure 8 shows the RMSE between S and Ŝ on 100 uniformly spaced points within
	 for T =1, …, 8. As can be seen, a small decrease of the error occurs from T =1 till
4, and then the error maintains almost constant for T ≥ 4. This implies that all the
sequences reach the equilibrium distribution after 4 iterations, which is in consistent
with Fig. 2. From Fig. 2, distance between f1, k and f∗ is remarkably larger than that
between fn, k and f∗ for n =2,3,4, and therefore the error is slightly diminished even
though more new densities are added for the identification.

7 Conclusions

This paper introduced a new algorithm for reconstructing the underlying one-
dimensional map for an autonomous dynamical system that is driven by an additive
control input and also subjected to an additive stochastic perturbation, given the
observed sequences of probability density functions generated by the unknown sys-
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tem, and the input and noise density functions. Evolution of densities was formulated
and described by a stochastic Frobenius–Perron operator that has a matrix represen-
tation. This forms the basis for the algorithm to identify the Frobenius–Perron matrix
associated with a piecewise linear semi-Markov approximation to the underlying non-
linear map. Based on the matrix representation of the stochastic Frobenius–Perron
operator the densities generated by the dynamical system and evolving from a given
initial condition can be predicted. Convergence of the evolving densities analyzed
from the matrix representation reveals a fact that only a limited number of densities
characterizing the transient dynamics is observable for arbitrary initial condition, and
thus, this requires different initial conditions so as to generate as many as possible
temporal sequences of densities to reconstruct the underlying map.

For the situations where only a limited number of initial conditions are avail-
able for generating the temporal sequences of densities that converges quickly to
the equilibrium distribution, a potential effective solution is to apply multiple linearly
independent input density functions to the stochastic dynamical systems so that the
densities would diverge to different equilibrium distributions, which will be further
explored. From a practical perspective, it is also worthwhile to extend the approach
to higher-dimensional systems based on sequences of mixture densities generated by
the more complex systems.

Furthermore, this paper provides a new insight into identification of stochastic
dynamical systems given the density functions of control inputs. It triggers a new
scheme to solve the control problem for such systems. Specifically, given the noise
density function, the problem aims to determine the optimal input density function so
that the dynamical system can have a desired equilibrium distribution that represents
the targeted asymptotic dynamics.
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