1,525 research outputs found

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    An improved accurate monotonicity-preserving scheme for the Euler equations

    Get PDF
    The accurate monotonicity-preserving (MP) scheme of Suresh and Huynh (1997) [5] is a high-order and high-resolution method for hyperbolic conservation laws. However, the robustness of the MP scheme is not very high. In this paper, a detailed analysis on this scheme is performed, and two potential causes which may account for the weak robustness are revealed. Furthermore, in order to enhance the robustness of the MP scheme, an improved version of the MP scheme is presented, in which a strict continuous total-variation-diminishing (TVD) numerical flux is used at a disturbed discontinuity so that oscillations cannot grow indefinitely without violating the TVD condition. Without destroying the very high resolution property, numerical tests show that the improved scheme shares a strong robustness in simulating extreme numerical tests. (C) 2016 Elsevier Ltd. All rights reserved

    A theoretical model for template-free synthesis of long DNA sequence

    Get PDF
    This theoretical scheme is intended to formulate a potential method for high fidelity synthesis of Nucleic Acid molecules towards a few thousand bases using an enzyme system. Terminal Deoxyribonucleotidyl Transferase, which adds a nucleotide to the 3′OH end of a Nucleic Acid molecule, may be used in combination with a controlled method for nucleotide addition and degradation, to synthesize a predefined Nucleic Acid sequence. A pH control system is suggested to regulate the sequential activity switching of different enzymes in the synthetic scheme. Current practice of synthetic biology is cumbersome, expensive and often error prone owing to the dependence on the ligation of short oligonucleotides to fabricate functional genetic parts. The projected scheme is likely to render synthetic genomics appreciably convenient and economic by providing longer DNA molecules to start with

    Phenotypic Variation and Bistable Switching in Bacteria

    Get PDF
    Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.

    Cardiac-Specific Expression of the Tetracycline Transactivator Confers Increased Heart Function and Survival Following Ischemia Reperfusion Injury

    Get PDF
    Mice expressing the tetracycline transactivator (tTA) transcription factor driven by the rat α-myosin heavy chain promoter (α-MHC-tTA) are widely used to dissect the molecular mechanisms involved in cardiac development and disease. However, these α-MHC-tTA mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury in both in vitro and in vivo models in the absence of associated cardiac hypertrophy or remodeling. Cardiac function, as assessed by echocardiography, did not differ between α-MHC-tTA and control animals, and there were no noticeable differences observed between the two groups in HW/TL ratio or LV end-diastolic and end-systolic dimensions. Protection against ischemia/reperfusion injury was assessed using isolated perfused hearts where α-MHC-tTA mice had robust protection against ischemia/reperfusion injury which was not blocked by pharmacological inhibition of PI3Ks with LY294002. Furthermore, α-MHC-tTA mice subjected to coronary artery ligation exhibited significantly reduced infarct size compared to control animals. Our findings reveal that α-MHC-tTA transgenic mice exhibit a gain-of-function phenotype consisting of robust protection against ischemia/reperfusion injury similar to cardiac pre- and post-conditioning effects. However, in contrast to classical pre- and post-conditioning, the α-MHC-tTA phenotype is not inhibited by the classic preconditioning inhibitor LY294002 suggesting involvement of a non-PI3K-AKT signaling pathway in this phenotype. Thus, further study of the α-MHC-tTA model may reveal novel molecular targets for therapeutic intervention during ischemic injury

    Epidemiology characteristics, methodological assessment and reporting of statistical analysis of network meta-analyses in the field of cancer

    Get PDF
    Because of the methodological complexity of network meta-analyses (NMAs), NMAs may be more vulnerable to methodological risks than conventional pair-wise meta-analysis. Our study aims to investigate epidemiology characteristics, conduction of literature search, methodological quality and reporting of statistical analysis process in the field of cancer based on PRISMA extension statement and modified AMSTAR checklist. We identified and included 102 NMAs in the field of cancer. 61 NMAs were conducted using a Bayesian framework. Of them, more than half of NMAs did not report assessment of convergence (60.66%). Inconsistency was assessed in 27.87% of NMAs. Assessment of heterogeneity in traditional meta-analyses was more common (42.62%) than in NMAs (6.56%). Most of NMAs did not report assessment of similarity (86.89%) and did not used GRADE tool to assess quality of evidence (95.08%). 43 NMAs were adjusted indirect comparisons, the methods used were described in 53.49% NMAs. Only 4.65% NMAs described the details of handling of multi group trials and 6.98% described the methods of similarity assessment. The median total AMSTAR-score was 8.00 (IQR: 6.00-8.25). Methodological quality and reporting of statistical analysis did not substantially differ by selected general characteristics. Overall, the quality of NMAs in the field of cancer was generally acceptable

    The C:N:P:S stoichiometry of soil organic matter

    Get PDF
    The formation and turnover of soil organic matter (SOM) includes the biogeochemical processing of the macronutrient elements nitrogen (N), phosphorus (P) and sulphur (S), which alters their stoichiometric relationships to carbon (C) and to each other. We sought patterns among soil organic C, N, P and S in data for c. 2000 globally distributed soil samples, covering all soil horizons. For non-peat soils, strong negative correlations (p < 0.001) were found between N:C, P:C and S:C ratios and % organic carbon (OC), showing that SOM of soils with low OC concentrations (high in mineral matter) is rich in N, P and S. The results can be described approximately with a simple mixing model in which nutrient-poor SOM (NPSOM) has N:C, P:C and S:C ratios of 0.039, 0.0011 and 0.0054, while nutrient-rich SOM (NRSOM) has corresponding ratios of 0.12, 0.016 and 0.016, so that P is especially enriched in NRSOM compared to NPSOM. The trends hold across a range of ecosystems, for topsoils, including O horizons, and subsoils, and across different soil classes. The major exception is that tropical soils tend to have low P:C ratios especially at low N:C. We suggest that NRSOM comprises compounds selected by their strong adsorption to mineral matter. The stoichiometric patterns established here offer a new quantitative framework for SOM classification and characterisation, and provide important constraints to dynamic soil and ecosystem models of carbon turnover and nutrient dynamics

    Rectal Carriage of Extended-Spectrum Beta-Lactamase-Producing Gram-Negative Bacilli in Community Settings in Madagascar

    Get PDF
    BACKGROUND: Extended-spectrum ß-lactamase-producing Enterobacteria (ESBL-PE) emerged at the end of the 1980s, causing nosocomial outbreaks and/or hyperendemic situations in hospitals and long-term care facilities. In recent years, community-acquired infections due to ESBL-PE have spread worldwide, especially across developing countries including Madagascar. OBJECTIVES: This study aimed to determine the prevalence and risk factors of intestinal carriage of ESBL-PE in the community of Antananarivo. METHODS: Non-hospitalized patients were recruited in three health centers in different socio economic settings. Fresh stool collected were immediately plated on Drigalski agar containing 3 mg/liter of ceftriaxone. Gram-negative bacilli species were identified and ESBL production was tested by a double disk diffusion (cefotaxime and ceftazidime +/- clavulanate) assay. Characterization of ESBLs were perfomed by PCR and direct sequencing . Molecular epidemiology was analysed by Rep-PCR and ERIC-PCR. RESULTS: 484 patients were screened (sex ratio  = 1.03, median age 28 years). 53 ESBL-PE were isolated from 49 patients (carrier rate 10.1%). The isolates included Escherichia coli (31), Klebsiella pneumoniae (14), Enterobacter cloacae (3), Citrobacter freundii (3), Kluyvera spp. (1) and Pantoae sp.(1). In multivariate analysis, only the socioeconomic status of the head of household was independently associated with ESBL-PE carriage, poverty being the predominant risk factor. CONCLUSIONS: The prevalence of carriage of ESBL in the community of Antananarivo is one of the highest reported worldwide. This alarming spread of resistance genes should be stopped urgently by improving hygiene and streamlining the distribution and consumption of antibiotics
    corecore