1,113 research outputs found

    Rheumatology Patients' Knowledge About Clinical Research

    Get PDF

    Volume 18. Article 3. Studies on two skates: Raja erinacea Mitchill, Raja eglanteria Bosc.

    Get PDF
    https://elischolar.library.yale.edu/bulletin_yale_bingham_oceanographic_collection/1164/thumbnail.jp

    Clinical trials perception in rheumatology patients: experience from a single rheumatology tertiary center

    Get PDF
    Objective. To investigate the perception and willingness of rheumatology patients to participate in clinical trials. No previous similar studies are available. / Methods. We conducted a cross-sectional survey of rheumatology patients using a questionnaire, which comprised 2 demographic questions, two 5-point Likert opinion questions, 19 true/false/unsure knowledge questions, and 1 open question addressing what would help the participant to gain a better understanding about clinical trials. / Results. Eighty-five patients returned the questionnaires (response rate 84.1%). The mean number of correct answers to the 19 knowledge questions was 10.5 ± 2.87. Patients with higher versus lower levels of education had significantly higher knowledge scores (mean correct answers 59.4 ± 13.1 vs 39.8 ± 20.4, p = 0.013). They also expressed greater willingness to take part in research (87.5% vs 48.2%, p < 0.001). The patients who agreed to participate in research provided significantly more correct answers (59.4 ± 15.3% vs 47.7 ± 27.2%, p = 0.032). Poor disease control as the main reason to join a clinical trial correlated well with patients’ previous participation in research (r = 0.71; p < 0.05) and the lack of understanding of research principles (defined as less than 50% correct answers to the knowledge questions) correlated with the lack of willingness to participate in clinical trials (r = 0.72; p < 0.05). / Conclusion. The results of our study revealed that patients lack information about clinical trials (the correct response rate was only slightly above 50%), and that they had a moderate willingness to take part in clinical trials. The need for educational programs about clinical research was highlighted by the participants to the survey

    An Imaging System for Automated Characteristic Length Measurement of Debrisat Fragments

    Get PDF
    The debris fragments generated by DebriSat's hypervelocity impact test are currently being processed and characterized through an effort of NASA and USAF. The debris characteristics will be used to update satellite breakup models. In particular, the physical dimensions of the debris fragments must be measured to provide characteristic lengths for use in these models. Calipers and commercial 3D scanners were considered as measurement options, but an automated imaging system was ultimately developed to measure debris fragments. By automating the entire process, the measurement results are made repeatable and the human factor associated with calipers and 3D scanning is eliminated. Unlike using calipers to measure, the imaging system obtains non-contact measurements to avoid damaging delicate fragments. Furthermore, this fully automated measurement system minimizes fragment handling, which reduces the potential for fragment damage during the characterization process. In addition, the imaging system reduces the time required to determine the characteristic length of the debris fragment. In this way, the imaging system can measure the tens of thousands of DebriSat fragments at a rate of about six minutes per fragment, compared to hours per fragment in NASA's current 3D scanning measurement approach. The imaging system utilizes a space carving algorithm to generate a 3D point cloud of the article being measured and a custom developed algorithm then extracts the characteristic length from the point cloud. This paper describes the measurement process, results, challenges, and future work of the imaging system used for automated characteristic length measurement of DebriSat fragments

    How unique is the Asymptotic Normalisation Coefficient (ANC) method?

    Full text link
    The asymptotic normalisation coefficients (ANC) for the vertex 10^{10}B \to 9^9Be + p is deduced from a set of different proton transfer reactions at different energies. This set should ensure the peripheral character of the reaction and availability of data for the elastic channels. The problems associated with the characteristics of the data and the analysis are discussed. For a subgroup of the set of available data, the uniqueness property of the extracted ANC is fulfilled. However, more measurements are needed before a definite conclusion can be drawn.Comment: 19 pages, 11 figures, to be published in Phys Rev

    Characterization of Debris from the DebriSat Hypervelocity Test

    Get PDF
    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information

    Epigenetic changes mediated by polycomb repressive complex 2 and E2a are associated with drug resistance in a mouse model of lymphoma

    Get PDF
    Background: The genetic origins of chemotherapy resistance are well established; however the role of epigenetics in drug resistance is less well understood To investigate mechanisms of drug resistance we performed systematic genetic epigenetic and transcriptomic analyses of an alkylating agent-sensitive murine lymphoma cell line and a series of resistant lines derived by drug dose escalation &nbsp;&nbsp;Methods: Dose escalation of the alkylating agent mafosfamide was used to create a series of increasingly drugresistant mouse Burkitt's lymphoma cell lines Whole genome sequencing DNA microarrays reduced representation bisulfite sequencing and chromatin immunoprecipitation sequencing were used to identify alterations in DNA sequence mRNA expression CpG methylation and H3K27me3 occupancy respectively that were associated with increased resistance &nbsp;&nbsp;Results: Our data suggest that acquired resistance cannot be explained by genetic alterations Based on integration of transcriptional profiles with transcription factor binding data we hypothesize that resistance is driven by epigenetic plasticity We observed that the resistant cells had H3K27me3 and DNA methylation profiles distinct from those of the parental lines Moreover we observed DNA methylation changes in the promoters of genes regulated by E2a and members of the polycomb repressor complex 2 (PRC2) and differentially expressed genes were enriched for targets of E2a The integrative analysis considering H3K27me3 further supported a role for PRC2 in mediating resistance By integrating our results with data from the Immunological Genome Project (Immgenorg) we showed that these transcriptional changes track the B-cell maturation axis &nbsp;&nbsp;Conclusions: Our data suggest a novel mechanism of drug resistance in which E2a and PRC2 drive changes in the B-cell epigenome; these alterations attenuate alkylating agent treatment-induced apoptosi

    Characterizing DebriSat Fragments: So Many Fragments, So Much Data, and So Little Time

    Get PDF
    To improve prediction accuracy, the DebriSat project was conceived by NASA and DoD to update existing standard break-up models. Updating standard break-up models require detailed fragment characteristics such as physical size, material properties, bulk density, and ballistic coefficient. For the DebriSat project, a representative modern LEO spacecraft was developed and subjected to a laboratory hypervelocity impact test and all generated fragments with at least one dimension greater than 2 mm are collected, characterized and archived. Since the beginning of the characterization phase of the DebriSat project, over 130,000 fragments have been collected and approximately 250,000 fragments are expected to be collected in total, a three-fold increase over the 85,000 fragments predicted by the current break-up model. The challenge throughout the project has been to ensure the integrity and accuracy of the characteristics of each fragment. To this end, the post hypervelocity-impact test activities, which include fragment collection, extraction, and characterization, have been designed to minimize handling of the fragments. The procedures for fragment collection, extraction, and characterization were painstakingly designed and implemented to maintain the post-impact state of the fragments, thus ensuring the integrity and accuracy of the characterization data. Each process is designed to expedite the accumulation of data, however, the need for speed is restrained by the need to protect the fragments. Methods to expedite the process such as parallel processing have been explored and implemented while continuing to maintain the highest integrity and value of the data. To minimize fragment handling, automated systems have been developed and implemented. Errors due to human inputs are also minimized by the use of these automated systems. This paper discusses the processes and challenges involved in the collection, extraction, and characterization of the fragments as well as the time required to complete the processes. The objective is to provide the orbital debris community an understanding of the scale of the effort required to generate and archive high quality data and metadata for each debris fragment 2 mm or larger generated by the DebriSat project
    corecore