2,357 research outputs found
Convergence of numerical schemes for short wave long wave interaction equations
We consider the numerical approximation of a system of partial differential
equations involving a nonlinear Schr\"odinger equation coupled with a
hyperbolic conservation law. This system arises in models for the interaction
of short and long waves. Using the compensated compactness method, we prove
convergence of approximate solutions generated by semi-discrete finite volume
type methods towards the unique entropy solution of the Cauchy problem. Some
numerical examples are presented.Comment: 31 pages, 7 figure
Line-profile variations in radial-velocity measurements: Two alternative indicators for planetary searches
Aims. We introduce two methods to identify false-positive planetary signals
in the context of radial-velocity exoplanet searches. The first is the
bi-Gaussian cross-correlation function fitting, and the second is the
measurement of asymmetry in radial-velocity spectral line information content,
Vasy.
Methods. We make a systematic analysis of the most used common line profile
diagnosis, Bisector Inverse Slope and Velocity Span, along with the two
proposed ones. We evaluate all these diagnosis methods following a set of
well-defined common criteria and using both simulated and real data. We apply
them to simulated cross-correlation functions created with the program SOAP and
which are affected by the presence of stellar spots, and to real
cross-correlation functions, calculated from HARPS spectra, for stars with a
signal originating both in activity and created by a planet.
Results. We demonstrate that the bi-Gaussian method allows a more precise
characterization of the deformation of line profiles than the standard bisector
inverse slope. The calculation of the deformation indicator is simpler and its
interpretation more straightforward. More importantly, its amplitude can be up
to 30% larger than that of the bisector span, allowing the detection of
smaller-amplitude correlations with radial-velocity variations. However, a
particular parametrization of the bisector inverse slope is shown to be more
efficient on high-signal-to-noise data than both the standard bisector and the
bi-Gaussian. The results of the Vasy method show that this indicator is more
effective than any of the previous ones, being correlated with the
radial-velocity with more significance for signals resulting from a line
deformation. Moreover, it provides a qualitative advantage over the bisector,
showing significant correlations with RV for active stars for which bisector
analysis is inconclusive. (abridged)Comment: 12 pages, 7 figures, accepted for publication in Astronomy and
Astrophysics, comments welcom
The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys
We investigate in this paper the astrophysical false-positive configuration
in exoplanet-transit surveys that involves eclipsing binaries and giant planets
which present only a secondary eclipse, as seen from the Earth. To test how an
eclipsing binary configuration can mimic a planetary transit, we generate
synthetic light curve of three examples of secondary-only eclipsing binary
systems that we fit with a circular planetary model. Then, to evaluate its
occurrence we model a population of binaries in double and triple system based
on binary statistics and occurrence. We find that 0.061% +/- 0.017% of
main-sequence binary stars are secondary-only eclipsing binaries mimicking a
planetary transit candidate down to the size of the Earth. We then evaluate the
occurrence that an occulting-only giant planet can mimic an Earth-like planet
or even smaller planet. We find that 0.009% +/- 0.002% of stars harbor a giant
planet that present only the secondary transit. Occulting-only giant planets
mimic planets smaller than the Earth that are in the scope of space missions
like Kepler and PLATO. We estimate that up to 43.1 +/- 5.6 Kepler Objects of
Interest can be mimicked by this new configuration of false positives,
re-evaluating the global false-positive rate of the Kepler mission from 9.4%
+/- 0.9% to 11.3% +/- 1.1%. We note however that this new false-positive
scenario occurs at relatively long orbital period compared with the median
period of Kepler candidates.Comment: 9 pages, 4 figures, accepted for publication in A&
Evaluating the stability of atmospheric lines with HARPS
Context: In the search for extrasolar systems by radial velocity technique, a
precise wavelength calibration is necessary for high-precision measurements.
The choice of the calibrator is a particularly important question in the
infra-red domain, where the precision and exploits still fall behind the
achievements of the optical.
Aims: We investigate the long-term stability of atmospheric lines as a
precise wavelength reference and analyze their sensitivity to different
atmospheric and observing conditions.
Methods: We use HARPS archive data on three bright stars, Tau Ceti, Mu Arae
and Epsilon Eri, spanning 6 years and containing high-cadence measurements over
several nights. We cross-correlate this data with an O2 mask and evaluate both
radial velocity and bisector variations down to a photon noise of 1 m/s.
Results: We find that the telluric lines in the three data-sets are stable
down to 10 m/s (r.m.s.) over the 6 years. We also show that the radial velocity
variations can be accounted for by simple atmospheric models, yielding a final
precision of 1-2 m/s.
Conclusions: The long-term stability of atmospheric lines was measured as
being of 10 m/s over six years, in spite of atmospheric phenomena. Atmospheric
lines can be used as a wavelength reference for short-time-scales programs,
yielding a precision of 5 m/s "out-of-the box". A higher precision, down to 2
m/s can be reached if the atmospheric phenomena are corrected for by the simple
atmospheric model described, making it a very competitive method even on long
time-scales.Comment: 7 pages, accepted for publication in A&
Tuning of heat and charge transport by Majorana fermions
We investigate theoretically thermal and electrical conductances for the
system consisting of a quantum dot (QD) connected both to a pair of Majorana
fermions residing the edges of a Kitaev wire and two metallic leads. We
demonstrate that both quantities reveal pronounced resonances, whose positions
can be controlled by tuning of an asymmetry of the couplings of the QD and a
pair of MFs. Similar behavior is revealed for the thermopower, Wiedemann-Franz
law and dimensionless thermoelectric figure of merit. The considered geometry
can thus be used as a tuner of heat and charge transport assisted by MFs
PASTIS: Bayesian extrasolar planet validation II. Constraining exoplanet blend scenarios using spectroscopic diagnoses
The statistical validation of transiting exoplanets proved to be an efficient
technique to secure the nature of small exoplanet signals which cannot be
established by purely spectroscopic means. However, the spectroscopic diagnoses
are providing us with useful constraints on the presence of blended stellar
contaminants. In this paper, we present how a contaminating star affects the
measurements of the various spectroscopic diagnoses as function of the
parameters of the target and contaminating stars using the model implemented
into the PASTIS planet-validation software. We find particular cases for which
a blend might produce a large radial velocity signal but no bisector variation.
It might also produce a bisector variation anti-correlated with the radial
velocity one, as in the case of stellar spots. In those cases, the full width
half maximum variation provides complementary constraints. These results can be
used to constrain blend scenarios for transiting planet candidates or radial
velocity planets. We review all the spectroscopic diagnoses reported in the
literature so far, especially the ones to monitor the line asymmetry. We
estimate their uncertainty and compare their sensitivity to blends. Based on
that, we recommend the use of BiGauss which is the most sensitive diagnosis to
monitor line-profile asymmetry. In this paper, we also investigate the
sensitivity of the radial velocities to constrain blend scenarios and develop a
formalism to estimate the level of dilution of a blended signal. Finally, we
apply our blend model to re-analyse the spectroscopic diagnoses of HD16702, an
unresolved face-on binary which exhibits bisector variations.Comment: Accepted for publication in MNRA
Efeito de genĂłtipos de sorgo sobre o predador Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) alimentado com Schizaphis graminum (Rondani) (Hemiptera: Aphididae).
O trabalho objetivou avaliar o efeito indireto da resistĂȘncia de genĂłtipos de soro sobre o predador Chrysoperla externa (Hagen) usando o pulgĂŁo Schizaphis graminum (Rondani) como presa. Os genĂłtipos usados no estudo foram: GR 11111 e TX 430 x GR 111 (resistentes), GB 3B (moderadamente resistente) e BR 007B (suscetĂvel). Larvas recĂ©m-eclodidas foram confinadas individualmente em recipientes de vidro e alimentadas com S. graminum, criados separadamente em cada um dos quatro genĂłtipos. apĂłs a emergĂȘncia, os adultos obtidos de cada tratamento foram sexados e agrupados aos casais, colocados em gaiolas contendo dieta Ă base de levedo de cerveja e mel. Os insetos foram observados diariamente da fase jovem atĂ© o perĂodo de 60 dias apĂłs a emergĂȘncia do adulto. GenĂłtipos com maior grau de resistĂȘncia proporcionaram maior consumo de pulgĂ”es pelo predador, porĂ©m menor peso a este. Quando os pulgĂ”es foram criados no genĂłtipo resistente GR 11111, o peso das larvas, sobrevivĂȘncia da prĂ©-pupa e longevidade da fĂȘmea do predador foram inferiores. As associaçÔes positivas observadas entre o predador, C. externa, e o genĂłtipo resistente, TX 430 x GR 111, e entre o predador e o genĂłtipo moderadamente resistente GB 3B, evidenciaram a possibilidade de integração entre os dois mĂ©todos de controle: resistĂȘncia de plantas e controle biolĂłgico
Binding dynamics of a monomeric SSB protein to DNA : a single-molecule multi-process approach
People Programme of the European Unionâs Seventh Framework Programme [REA 334496 to B.E.B.]; Leonardo da Vinci European Union Programme (to M.F.G.); Wellcome Trust [099149/Z/12/Z, 091825/Z/10/Z]. Funding for open access charge: Wellcome Trust; University of St Andrews.Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between highdensity binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.Publisher PDFPeer reviewe
- âŠ