20,988 research outputs found

    Promulgating Requirements for Admission to Prosecute Patent Applications

    Get PDF
    Among federal agencies, the U. S. Patent and Trademark Office is unique in its ability to require attorneys to submit to special requirements, such as passing a six hour examination, before being permitted to practice before it in patent cases. Indeed, the Supreme Court has held that an individual so admitted to practice before the PTO need not comply with state requirements otherwise applicable to those practicing law. The first part of this article discusses how this requirement came to be. It then discusses how the PTO determines whether an individual is fit to sit for the patent examination, focusing particularly on provisions contained in a bulletin mailed by its Office of Enrollment and Discipline (OED) to all would-be patent practitioners. It also briefly discusses rule-making requirements (and exceptions) generally applicable to federal agencies and examines the nature of the aforesaid provisions intended to affect admission to prosecute patent applications. This article concludes that the detailed provisions sent to applicants, fitting none of the rule-making exceptions, should be promulgated in accordance with the Administrative Procedure Act. It also concludes that, in the meantime, those provisions should not be regarded as binding on applicants to practice before the PTO in patent cases. Finally, the article contains an appendix that should be of particular interest to persons involved with software patents

    The Experimental Status of the Standard Electroweak Model at the End of the LEP-SLC Era

    Full text link
    A method is proposed to calculate the confidence level for agreement of data with the Standard Model (SM) by combining information from direct and indirect Higgs Boson searches. Good agreement with the SM is found for mH≃120m_H \simeq 120 GeV using the observables most sensitive to mHm_H: AlA_l and mWm_W. In particular, quantum corrections, as predicted by the SM, are observed with a statistical significance of forty-four standard deviations. However, apparent deviations from the SM of 3.7σ\sigma and 2.8σ\sigma are found for the Zννˉ\nu \bar{\nu} and right-handed Zbbˉ\bar{{\rm b}} couplings respectively. The maximum confidence level for agreement with the SM of the entire data set considered is ≃0.006\simeq 0.006 for mH≃180m_H \simeq 180 GeV. The reason why confidence levels about an order of magnitude higher than this have been claimed for global fits to similar data sets is explained.Comment: 47 pages, 8 figures, 24 tables. An in-depth study of statistical issues related to the comparison of precision EW data to the S

    The Indirect Limit on the Standard Model Higgs Boson Mass from the Precision FERMILAB, LEP and SLD Data

    Get PDF
    Standard Model fits are performed on the most recent leptonic and b quark Z decay data from LEP and SLD, and FERMILAB data on top quark production, to obtain mtm_t and mHm_H. Poor fits are obtained, with confidence levels ≃\simeq 2%. Removing the b quark data improves markedly the quality of the fits and reduces the 95% CL upper limit on mHm_H by ≃\simeq 50 GeV.Comment: 6 pages 3 tables i figur

    On the symmetry breaking phenomenon

    Get PDF
    We investigate the problem of symmetry breaking in the framework of dynamical systems with symmetry on a smooth manifold. Two cases will be analyzed: general and Hamiltonian dynamical systems. We give sufficient conditions for symmetry breaking in both cases

    Cross-Correlation Studies between CMB Temperature Anisotropies and 21 cm Fluctuations

    Get PDF
    During the transition from a neutral to a fully reionized universe, scattering of cosmic microwave background (CMB) photons via free-electrons leads to a new anisotropy contribution to the temperature distribution. If the reionization process is inhomogeneous and patchy, the era of reionization is also visible via brightness temperature fluctuations in the redshifted 21 cm line emission from neutral Hydrogen. Since regions containing electrons and neutral Hydrogen are expected to trace the same underlying density field, the two are (anti) correlated and this is expected to be reflected in the anisotropy maps via a correlation between arcminute-scale CMB temperature and the 21 cm background. In terms of the angular cross-power spectrum, unfortunately, this correlation is insignificant due to a geometric cancellation associated with second order CMB anisotropies. The same cross-correlation between ionized and neutral regions, however, can be studied using a bispectrum involving large scale velocity field of ionized regions from the Doppler effect, arcminute scale CMB anisotropies during reionization, and the 21 cm background. While the geometric cancellation is partly avoided, the signal-to-noise ratio related to this bispectrum is reduced due to the large cosmic variance related to velocity fluctuations traced by the Doppler effect. Unless the velocity field during reionization can be independently established, it is unlikely that the correlation information related to the relative distribution of ionized electrons and regions containing neutral Hydrogen can be obtained with a combined study involving CMB and 21 cm fluctuations.Comment: 10 pages, 3 figure

    Reionization and the large-scale 21 cm-cosmic microwave background cross correlation

    Full text link
    Of the many probes of reionization, the 21 cm line and the cosmic microwave background (CMB) are among the most effective. We examine how the cross-correlation of the 21 cm brightness and the CMB Doppler fluctuations on large angular scales can be used to study this epoch. We employ a new model of the growth of large scale fluctuations of the ionized fraction as reionization proceeds. We take into account the peculiar velocity field of baryons and show that its effect on the cross correlation can be interpreted as a mixing of Fourier modes. We find that the cross-correlation signal is strongly peaked toward the end of reionization and that the sign of the correlation should be positive because of the inhomogeneity inherent to reionization. The signal peaks at degree scales (l~100) and comes almost entirely from large physical scales (k~0.01 Mpc). Since many of the foregrounds and noise that plague low frequency radio observations will not correlate with CMB measurements, the cross correlation might appear to provide a robust diagnostic of the cosmological origin of the 21 cm radiation around the epoch of reionization. Unfortunately, we show that these signals are actually only weakly correlated and that cosmic variance dominates the error budget of any attempted detection. We conclude that the detection of a cross-correlation peak at degree-size angular scales is unlikely even with ideal experiments.Comment: 15 pages, 4 figures, submitted to MNRA

    Typestate verification: Abstraction techniques and complexity results

    Get PDF
    AbstractWe consider the problem of typestate verification for shallow programs; i.e., programs where pointers from program variables to heap-allocated objects are allowed, but where heap-allocated objects may not themselves contain pointers. We prove a number of results relating the complexity of verification to the nature of the finite state machine used to specify the property. Some properties are shown to be intractable, but others which appear to be quite similar admit polynomial-time verification algorithms. Our results serve to provide insight into the inherent complexity of important classes of verification problems. In addition, the program abstractions used for the polynomial-time verification algorithms may be of independent interest
    • …
    corecore