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Abstract

We wmnsider the problem dfypestate verification for shallow programs; i.e., programs where
pointers from program variables to heap-allocated objects are allowed, but where heap-allocated
objects may not themselves contain pointers. We prove a number of results relating the complexity
of verification to the nature of the finite state machine used to specify the property. Some properties
are shown to be intractable, but others which appear to be quite similar admit polynomial-time
verificdion algorithms. Our results serve to provide insight into the inherent complexity of important
classes of verification problems. In addition, the program abstractions used for the polynomial-time
verificaion algorithms may be ohidependent interest.
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In solving a problem of this sort, the grand thing isto be able
to reason backward. ... In the everyday affairs of life

it ismore useful to reason forward.
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1. Introduction

The desire for more reliable software has led to increasing interest in extended static
checking: statically verifying whether a program satisfies certain desirable properties. A
technique that has received particular attention is that of finite stéypestate verification
(e.q., see7,26,21,6,8,3,9,1312,17,1]). In this model, objects of a given type exist in one
of finitely many states; the operations permitted on an object depend on the state of the
object, and the operations may potentially alter the state of the object. The goal of typestate
verification is to statically determine whether the execution of a given program may cause
an operation to be performed on an object in a state where the operation is not permitted.

Typestate verification can be used to check tibjects satisfy certain kinds of temporal
propeties; e.g., that an object is not used before it is initialized, or that a file is not used
after it is closed. In this paper, we will specify such properties using regular expressions
or finite state automata that define the sewaid sequences of operations that can be
performed on an object.

Our goal in this paper is to develop an initial understanding of how the difficulty
of performing typestate verification relates to theture of the property being verified.
Among other things, we will show that not all finite state properties are equally hard to
verify. For example, given ahallow program (where pointers from program variables to
heap-allocated objects are allowed, but véhieeap-allocated objects may not themselves
contain pointers), we show that verifying that a file is not read after it is closed can be done
in polynomial time, while verifying that a file is notead before it is opened RSPACE-
complete.

While there has &en much progress on many aspects of automated program
verification, we are not aware of any previous work relating the difficulty of typestate
verificaion to properties of the finite state autatan. This work is part of a broader effort
to develop efficient program verification tatiques that are tailored to the property being
verified [24].

Typestate verification and shallow programs

In order to meaningfully compare the complexity of verification algorithms, we need
to make some baseline assumptions about the precision of the analysis. In this paper,
we will use the termverification to mean verification that iprecise modulo the widely
used assumption that all paths in the prograenfaasible. Specifically, given a finite state
property, a path in a program is said to beearor path, if execution along that path would
cause an invalid sequence of operations to be performed on at leadijecteand the goal
of typestate verification is to determd if a given program has any error path.

Typestate verification can be done in polynomial time if the program to be verified
allows no inter-variable aliasing. Conversely, it is a straightforward consequence of
previous results19,20] that if a program hagwo or more levels of pointers, typestate
verification is PSPACE-hartlin this paper, we therefore concentrate on understanding the
class ofshallow programs occupying a point in between these extremes.

2In the presence of recursive data strucsutgpestate erification is undecidablelB,23].
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Assume we wish to perform typestaterification for objects of a typ&. A T-shallow
programis a well-typed procedure-free program where all variables are pointetgped
objects, and whose statements are allocations (creation of a new object af)t{ypapy
assignments (copying the value of a variable to another), or invocations of an operation on
a variable. Note that shallow programs may contain multiple pointers to objects oTtype
but dlocated objects may not themselves contaipointers. In other words, pointers in
shallow programs argngle-level [20]. Our results also apply to programs that manipulate
complex or recursive types wheriogated objects coatn pointersprovided that those
pointers cannot refer to objectsof type T. Programs that are shallowith respect to a given
type, e.gFile, arenot uncommon in practice.

Example: Verifying file operations

Consider the pblem of checking that a closed file mever ead or closed again, which
we will refer to asread™; close. In gereral, we will use regular expressions to designate
sgjuences ofalid operations on an object of a given type, where a sequence is valid iff
it is a prefix of a string in the language defined by the regular expression. For example,
read; read is a prefix ofread; read; close and thus a valid sequence.

The principal difficulty in doing precise verification arises from determining how
aliasing interacts with operations oobjects. Some prior work on typestate verification
(e.q. [7]) has employed a two-step approach to the problem, in which an initial phase
performs a conservative heap analysis of the program, and a subsequent phase uses
the information from lhe heap analysis to do typestate analysis. However, we can see
from the program fragments ifrig. 1 that such an approach can sometimes lead to
imprecise results. One can easily verify that in beidy. 1(a) and (b), all sequences of file
operations on a given object are prefixese4d*; close; i.e., that noread ever fdlows a
close.

However, consider aso-phase analysis in which the heap analysis is separate from
the typestate analysis. Fig. 1(a), a precise (and correct) heap analysis will determine
that program variable at program point2 may point to the object created ab or
the object created atl. Furthermore, grecise typestate analysis will determine that the
object created at1 could be in aclosed state ats2. A two-phase analysis must therefore
erroneously conclude that the read could be performed on a closed file. Similarly, in
Fig. 1(b), any conservative heap analysis wibdetrmine that objects created at program
pointss3 ands5 could reach the read statementsat In addtion, a typestate analysis
would also determine that the @ujts created at program poirg8 ands5 could be in
a closed ste ats4. The amalysis would, however, not be able to discover tlhiatan
never point to a closed object a&, and would incorrectly indicate a possible error.

In this paper we show that for a certain class of problems (includingi®; close),
it is possible to formulate a precise polynomial-time verification algorithm for shallow
programs.

Main results

The main complexity results establishedliistpaper are as follows (in all cases except
the last one, we assume thpbgrams are shallow):
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s0:x = new (); s3:f := new ();
sl:y = new (); while (?) {
z =y s4 : f.read();
if (9 { if (?) {

y.close(); f.close();

z = X sb: f := new ();
} }
s2: z.read(); }

(@ (b)

Fig. 1. Program fragments illustrating the effect of aliasing on typestate verification.

o Verification is in P for omssion-cbsed properties: a property is said to be omission-
closed if every subsequence of a valid sequence is also a valid sequence. (Example:
read®; close.)

o Verification is NP-complete for acyclic programs (i.e., programs without loops) and
PSPACE-complete for arbitrary programs for properties with a repeatable enabling
sgjuence: a property is said to have aegagmble enabling sequence if there is an
automaton state where a particular sequeno&operations is invalid, but sequences of
the formp Ty are valid for some8. Example.open™; read.

e An integer-valued functiorf is sad to be a bound on the shortest error path length
for a typestate property if every erroneous program of sieguaranteed to have an
error path 6 length f (n) or less. If PSPACE is not equal to NP, then no polynomial
bound exists for the shortest error path length for properties with a repeatable enabling
sgquence. (In other words, it may not be possible to find short, i.e., polynomial-size
error paths in the worst case.)

o Verification is in P for acyclic pograms for almost-omission-closed properties: a
property is said to be almost-omission-closed if there is an integerch that every
subsequence of a valid sequence of length greater k@ also valid. Example:
open; read. Note hat any property with only finitelynany valid sequeges is trivially
almost-omission-closed.

o Verification is in P for almost-omission-closed properties that have a polynomial bound
on the shortest error path length.

e A program is sal to have a maximum aliasing width &fif there is no path in the
program that will produce an object pointed to by more thadifferent variables.
Arbitrary finite state propsies for programs of siza with a maximum aliasing width
of k may be verified in timeO(nkt1) for programs of size.

e Alias analysis and typestate verificatiare NRhard for programs with maximum
aliasing width of three and aliasing depth of two. (A program is said to have aliasing
depth of two if the program contains pointers to pointers.)

The results above are summarizedFig. 2in terms of the poperties of regular expressions
which define the properties to be verified (the notation used there will be defined in
Section 2.

The polynomial-time verification results summarized above use program abstractions
that may be ofndependent interest—in particular, they may prove useful as the starting
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Omission- Almost-Omission- Repeatable Other
Closed Closed Enabling Seq
E.g. read*; close open; read open*; read | (lock;unlock)*
Defn. YaBy. IkVaBy.(laBy| = k A JaBy.
Valid(eBy) Valid(eBy)) Valid(@Bty)A
= Valid(ay) = Valid(ay) =Valid(ay)
Acyclic Pgms P P NP-complete ?
(Shdlow)
Cyclic Pgms P Poly. Error Path= P PSPACE ?
(Shdlow) General: ? complete
Bounded Aliasing P
Width (Shallow)
Bounded Aliasing NP-hard
Width (Non-shallow)

Fig. 2. An overview of oucomplexity results.

point for developing more general abstractiforaon-shallow programs (e.g., in a manner
similar to that of R4]). The bulk of the abstractions we use @redicate abstractions[15];
however we show in the following that the choice of predicates used in a predicate
abstraction can have a dramatic impact on the efficiency of the resulting analysis. Our
predicate vocabularies are carefully designed to yield efficient analyses without sacrificing
precision. In addition, irBection 5we develop a novehteger abstraction, which is based

on counting thenumber of program paths along which a simple property holds true; this in
turn allows inferring whether emore complex property holds.

Related work

There has been significant recent interestiargety of property verification techniques,
many of them focusing on typestate verification. While significant progress has been made
in improving the precigin and efficiency of verification, developing verification techniques
that are sufficiently precise and scalable to handle industrial-size applications for a wide
variety of problems is still a challenge, and motivates our work here.

One of theopen challenges in typestate verification is an adequate treatment of aliasing.
Some approaches adoihe ssue:e.g., the original work on typestate verificatidi2v[26]

did not allow any aliasing; more recent work on typestate verification based on linear
types B] also regricts aliasing severely. Other approaches (€7h.derform alias analysis

and typestate verification separately: an initial phase performs a conservative alias analysis
for the program, and a subsequent phase uses the information from the alias analysis to
do typestate verification. However, this can lead to imprecise results, as illustrated by the
exampeés inFig. 1

A semnd challenge to practical verificatios deding with infeasible program paths.

Das et al. 7] address this issue using efficient path-sensitive algorithms (which eliminate
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certain infeasible paths from consideration during analysis), but do not track certain
additional information, e.g., aliasing, precisely. Our algorithms do not address the question
of path sensitivity, but there could be meirit combining aspects of our approach with
those that eliminate infeasible paths.

One of theprimary intuitions behind the algorithms presented in this paper (for
shallow programs) is that maintaining just the right correlation required between “analysis
facts” can be the key to efficient and precise verification: maintaining no correlations
(independent attribute analysis) can lead tpiietision, whilemaintaining all correlations
(relational analysis) can lead to inefficiency. The recent worl28f, ffollowing this paper,
shows one way to exploit this intuition for veiitation of arbitrary (i.e. non-shallow)
programs as well.

Several recent verification approaches1f] combine predicate abstractiorly,
counterexample-guided refinement of the predicate vocabufrarid exploration of the
resulting abstract state space using model-checking. These techniques use symbolic and
theorem-provig techniques to identify a seP of predicates relevant to the problem of
interest, then model-check the resulting finite state system over a state space constructed
from the powerset lattice 8—{truefalse) This praess iterates with increasingly larger
sets of predicates until a satistory result is obtained. In principle, these algorithms have
the potential to avoid imprecision due to both aliasing and path infeasibility. However,
the worst-caseamplexity of asingle iteration is exponential in the number of predicates.

By contrast, while most of the algorithms we present are based on abstractions by a set
of predicateqQ, our analysis is based on the function-space latt@ce> {false, maybe},

and runs in time linear in the size Q. This approach yields polynomial-time algorithms,
while none of the techniques based on model-checking have a polynomial-time worst-
case complexity for the same problems (even though they may utilize a smaller number
of predicates than our algorithm). Our sdlen of predicates enses that the use of

the smaller function space lattice results in no loss of precision, i.e., we ensure that our
abstraction iscomplete (e.g., see 14]). Finally, the predicate abstractions we use are
dependent solely on the nature of the typestate problem being verified, and do not require
expensive predicate discovery at verification time.

Finally, we note that our lower bound results follow the tradition set by earlier
complexity results due to Landi and Rydé&#€] and Muth anl Debray PQ].

2. Terminology and notation

In this section, weprovide some basic definitions that we will use in the rest of the
paper.

Definition 1 (Shallow Program). A shallow program is a <Stmt> defined by the
following context-free grammar, where thedenotes a nondeterministic branch (i.e., an
uninterpreted conditional). All variable¥ar> in the language are references to objects of
type T. All operations0p> in the language are methods supported by type T.

<Stmt> ::= <Var> := <Var> | <Var> := new() | <Var>.<0p>Q)
| <Stmt>;<Stmt> | if (?) <Stmt> [ else <Stmt> ]
| Label: <Stmt> | goto Label
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{read,close}

read
init open ) close closed\ ({read,close} q
e _—
a1 Q2

Fig. 3. A finite state automaton for the propetigzad™; close.

We will make the simplifying assumptiorhat when a program begins execution all
program variables point to separate objects. (initialized to non-aliased values), and
all objects reside in their initial state. In other respects, the semantics of shallow programs
is completely standard, and we will not formalize it here. We will, however, appeal to
the intuitive notion of apath p through a progranP (or P-path): a valid sequence of
staements starting d®’s entry.

In this paper, we will study safety properties of shallow programs. Although safety
properties could be specified via temporal logics (e.g., 9]}, ve will use finite automata
or regular expressions to simplify the presentation. Formally:

Definition 2 (Prefix-Closed Safety Automaton). A prefix-closed safety propertyF is
represented by a finite state automaton (FFA)x= (X, O, §,init, Q \ {err}) where X

is the automatn alphabet consisting of observable operati@ss the set of automaton
staks,§ is the transition function mapping a state and an operation to a successor state,
init € Q is a dstinguishednitial state, err € Q is a dstinguishederror state for which for
everyo € X, é(err,o) = err, and all $ates inQ \ {err} are accepting states. We say that

g’ is the successor of a stajeon operatiorop whens(q, op) = q'. Givena se&uence of
operationgt = opq; ops; . . . ; opy, We write Validz(«) oro € Validr whena is accepted

by F, and wewrite Invalid = (o) whena is not accepted byF.

For brevty, we will refer to safety properties usj a regular expression representing the
language accepted by an automaton, rather #panifying the automaton itself. When
specifying a safety property using a regular expression, we will adopt the convention that a
regular expressiom denotes therefix closure of the set of sequences of operations defined
by «. For exanple, whenwe writeread*; close we also consider (the empty sequence)
andread to be valid sguences.

Example 3. Consider tle property read®; close stating that a fé may beread an
arbitrary number of times before it is closed (and should never be read after it was closed
and never be closed twice). The alphabet for this problem consists of two operations
Y = {read, close}. TheFSA for this poperty is shown irFig. 3

When verfying a safety property represented by an automaninit, err, X, §) for
a shdlow programP, we will assume that each method name use®iis mgped to an
element ofY. Given this convention, we will us nanes of operations i’ and methods
in P interchangeably, i.e., we will say that a statement of the farmp () invokes an
operatiorop € Y. We can then relate method invocations to sequences of operatidns in
as follows:
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Definition 4 (Operation Sequencesfor Objects). Given aP-pathp, U (p) denotes the set
of objectinstances created during this execution, and for any abgeét(p), p[0] denotes
the sguence of operations performed oduring execution ofp.

Given thedefinitions above, we can now formally describe the class of verification
problems we wish to solve:

Definition 5 (SV ). Given a safety propert§, the shallow verification problem for F,
SV, dekermines for any shallow prograf whether here exits a pathP-path p such
thatp[o] € Invalid for someo € U(p).

3. Omission-closed propertiesin polynomial time

In this section, we show thaimission-closed properties can be verified in polynomial
time.

Omission-closed properties

Informally, a property is omission-closed if the set of all valid sequences of operations
is closed with respect to omissions: any sequence obtained by omitting one or more
operations from a valid sequence of operations is also valid.

Definition 6. A property represented by an automaténis said to beomission-closed
when for all sequences 8, y € X*, Validr(aBy) = Validr(ay).

The following theorem presents alternative characterizations of omission-closed
properties.

Theorem 7. Given an automaton F, the following are all equivalent, where all sequences
are elements of X*:

(a) For all sequencesa, 8, y, Validr(aBy) = Validr(ay).

(b) If w1 isasubsequence of wy, then Valid £ (w2) = Validr(w1).

(c) There exists a finite set of forbidden subsequenceés &, . . ., & such that a sequence
a isinInvalidr iff o contains some & as a subsequence.

Proof. The equivalence ofj and ) is straghtforward. As for €), consider the forbidden
subsequence§ corresponding to thacyclic paths in theautomatonF from the initial

state to the error state.nd sequence containing sont is invalid (from (b)), and it is

clear that any invalid sequence must contain an acyclic path from the initial state to the
error state as a subsequence. (For example, the forbidden subsequences for the automaton
in Fig. 3are&; = close; read andéz = close; close.) The result follows.

Example 3.1. Consider te aubmatonF3 of Fig. 3 For ths automatonthe sguence
read; read; close is in Validr,, and so isthe sguence read; close obtained
by dropping the intermediateead operation. Moreover, for any valid sequence
read®; close, dropping any subsequencexdads, or dropping theclose yields a valid
sejuence.
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For F3, it is sufficient to consider the forbidden subsequenges- close; read and
& = close; close. Each sequence containingg or &2 as a subsequence islmvalidz,
and each sequencelinvalidz, containst; or &; as a subsequence.

Background: Distributive predicate abstractions

The analysis we present will utilizepaedicate abstraction that tracks the values of a set
of predicates P defined on the concrete program-state. (We will use thpriagram-state
to denote the state of the whole program in the concrete semantics, to distinguish it from a
statein a FSA specifying a property.) For efficiency reasons, we will utilize andependent
attributesanalysis[22], an analysis that doest mairtain the correlation between different
predicate values. Specifically, the set of concrete program-states arising at a program point
will be abstracted by a value iR — {false, maybe}. We now sunmarize the conditions
under which arindependent attributes analysis can be used for a predicate abstraction
without losing precision. Given a predicatand a statemeistt, we danote by WRSt, ¢)
the weakest precondition gfwith respect tst [10].

Definition 8. Given a finite set of predicatd®ase, we say that a finite set of predicates
P = {P1,..., P} is adistributive WP-closure of Base whenBase € P and for each
predicateP; € P, and for each statemerstt, WP(st, B) = Pj, v ...V Pj,, where
Pi., ..., Pj, € P. We also ay that the set of predicatésis distributively WP-closed.

Theorem 9. Given a distributively WP-closed set of predicates P for a program Pgm
precise analysis (i.e.,, determining for every program point and every predicate in P
whether there exists a path to the program point causing the predicateto betrue) ispossible
intime O(|P||Pgn).

Proof. Straightforward. For example, the problem can be reduced to a reachability problem
over a graph of siz&®(|P||Pgm|), as in the IFDSframework of P5]. We note that the
analysis can also identify paths that will Geua given pedicate to become true at a given
point when such a path existsJ

A polynomial algorithm

We use adesignated predicaterror that istrue in a program-state if and only if the
program-state contains an object in the error satee will now show that for omission-
closed properties, a distributive WP closure of polynomial size can be constructed for
{Error}. In gereral, a distributive WP closure fdError} needs to include predicates that
refer to aliasing relationships among variatdesvell asthe state of thebjects pointed to
by the variables. This motivates the following definition of a family of predicates.

Definition 10. We wiite In, (x) to denote the fact that the object pointed to by the variable
x is in statec € Q. Givenany S C Q, we use the shorthands(x) £ VyesINo (x) to
denote that the object pointed to by the variabls in one of the states i8.

Definition 11. Let A be a non-empty set of variables (in a given prograg}f, Q a set
of states inF. We use the medicate(A, S) to mean that all variables iA have the same
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V? =0 E? =@; workSet = {{err}};
while workSet # ¢ {
select and remove S from workSet;
for each operation op e X {
P=75(S op;
if P gZfo { V<_7? = V<_7? U {P}; workSet = workSet U {P}; }
E%:E?U{Pe S}
1

Fig. 4. Backwards exploratioof theproperty automaton.

value (ae diases), and the object referred to by variablegiis in one of the states i8.
Formadly,

(A, S £ /\XeA,yeA(y =3x)A /\XeA Ins(x).

The number of predicates of the forfA, S) is exponential in the number of program
variables. Havever, not all predicates of this form arelevant, i.e. need to be in a
distributive WP closure fofError}. The key to obtaining a polynomial-size distributive
WP cloaure for{Error} is to bound the size of the sé, for any elevant predicatéA, S),
by a constant. We will do thig two steps. First, we will show that a predicdt®, S) is
relevant only for certairs C Q. Then, we will show that for each such stthepredicate
(A, S is relevanffor only A of cardinality less than a specific constant.

We first pregnt an algorithm for determining whichC Q are relevant for verification.
The algorithm shown inFig. 4 is based on a backward traversal of the finite state

automaton. The algorithm constructs a gra%h: (V%, E%), where each vertex is a
subset ofQ, and anedgeP — S denotes thaP is a preimage ofS for the transition
functions (see below).

Definition 12. Let 3 denote theeverse transition relation of F,i.e., given a statq € Q,
<—
an operatiora € X, and a sebf statesS € Q, § (g,a) £ {q € Q|s(q’,a) = q},
< <~
and § (S,a) £ qus 3 (q,a). Fors,S € 9, & is said to be gre-image of S if
Jae .3 (SLa) =S
Fig. 5illustrates the graph constructed by backward exploration ot#a@*; close
e
automaton shown ifig. 3. We now establish a result about the gragh
Theorem 13. If F represents an omission-closed property, then for any S € V<f, and any
operationa € X, <<S_(S, a) D S. Further, the graph 3? isacyclic except for self-loops.

Proof. For anyS € V% there exist a sguence of operations suchthat Sis the set of
all states in whiclt is invalid (by construction). Nowf(S_(S, a) is the set of all states in
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=@ @)

Fig. 5. The graph constructed by backward exploration of the automateig.c3.

Stmt WP(Stmt, (A, S))
X 1=y (Alx — y1, S)
x :=new () [(AS if xg A
false ifxe ANA#{x}
true if A={x} Ainite S
false if A={x} Ainitg S
x.0p0) (A,S) if 3(S.op)=5
<~ Lo
(AU{x}, 8§ (Sop)) v (A,S) if §(Sop)DS
At program | true if |[Al=1Ainite S
entry false if |Al#£1vinitg S

Fig. 6. WP equations for predicates of the fofi, S). We denote by A[x — Y] the set obtained by replacing
any occurrence af in Abyy.

which a¢ is invalid. SinceF is omission—cbsed,<8_(s, a) DO S. Sinceany predecessd?

of Smust be a superset & it follows immediately thaty cycle in he graph(f must be
a =lf-loop. O

Figs. 6and7 present weakest precondition equations for predicates of the farr8)
and the special predicakror. From these guations, we can determine which predicates
are relevant for verification. The equations reveal two things. First, they show that it is
sufficient if we restrict our attention to predicates of the famy S) whereS € V<. Sec-
ond, they show that a predicata, P) is relevanbnly if there is a relevant predicatB, S)
whereSis a pioper successor @? in the graph? andB hascardinality at leastA|— 1. In
other words, we need to only consider predicates of the fgknP) where the cardinality

of Ais lessthan or equal to the length of the longest acyclic path fi®no {err} in 3?

Definition 14. For anyS € V<f, definedist(S) to be the number of edges in the longest

acyclic path fromSto {err} in <7? Given a pogram with a set of variablégrs, we define
a set ofpredicates®? = {(A, S)|Se V<, A C Vars, |A| < dist(S)} U {Error}.

Theorem 15. The set P U {true, false} is a distributively WP-closed set of predicates for
{Error}.

Proof. Falows from the albve disaission. [
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Stmt WP(Stmt, Error) |

X 1=y Error

x := new () Error

x.opQ) Error if (8_({err}, op) = {err}

<~ I
({x}, § ({err},op)) Vv Error if § ({err}, op) D {err}

At program entr;{ false

Fig. 7. WP equations for the predicdteror.

Theorem 16. If F isomission-closed, then SV£ isin P.

Proof. Immediate fromiTheorems 1%nd9. Note tha the cardinality of P is O(|Vars|¥),
whereVars is the set of all variables in the program akds the length of the longest

acyclic path in<]?. (Note from Theorem 13thatk is also bounded by the number of states
inF) O
Example 3.2. Consider tle popertyread*close represented by the automatonFag. 3.
The graph? for this automaton is shown iRig. 5. Thederivation for this property is as
follows?:

WP(x.read (), Error) = ({x}, {err, qz}) v Error

WP(x.close(), Error) = ({x}, {err, gz2}) Vv Error

WP(y.close (), ({x}, {err, g2})) = ({x, y}, {err, gz, a1}) Vv ({x}, {err, g2})

WP(w.read (), ({X, ¥}, {err, gz, qi})) = ({x, y}, {err, 2, o1 }).

Thus,read*; close verification can be done in timé(|Vars|?|Pgm)).
Discussion

A logical formula can usually be simplified into a number of equivalent forms. Hence,
a weakest precondition can often be expressed in many ways. The form we chose to
use in expressing weakest preconditions above is critical to deriving a polynomial-time
verificetion algorithm. As an example, consider thead*; close exampé. The following
is an alternative, correct, weakest precondition equation, which says that an object in the
err state is possible after. close () iff either x points to an object in stat® or an object
exigs in theerr state lefore the statement:

WP(x.close (), Error) = ({x}, {q2}) V Error. (1)
The actual formulation we used

WP(x.close (), Error) = ({x}, {err, qz}) Vv Error (2)

3 Note that the variables, y, andw used in the derivation process are free variables and not variables of a
specific program.
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open {open,read}

init open f@ read /" {openread) q
01 a2 a3 err

read

Fig. 8. An automaton for the properdpen; read.

actually contains some redundancy. In particul&g}, {err, gq2}) is equivalent to
({x}, {err}) v ({x}, {g2}). But the dsjunct ({x}, {err}) is redundant because it implies
Error, another disjunct in our formula.

However, Eq. ?) is prderable to Eq. {). In particular, we have seen that we can
determine in polynomial time if{x}, {err, gz}) is possble at any program point. However,
one can show that detaining whether({x}, {q2}) is possble at a program point is
PSPACE-hardadating the proof we present iSection 4 Thus, unless PSPACE P, a
distributively WP-closed set containirifik}, {g2}) of polynomial sizedoes not exist! Note
that the sefqy} has a pre-image (namel§ ({gz2}, close) = {q1}) that isnot a superset of
{92}, thus not satisfying the requirementsTieorem 13This is why the proof used for
omission-closed properties cannot be used for this predicate.

4. Repeatable enabling sequence properties

In this section we show that verification of repalale enabling sequence properties (see
Definition 17 is NP-complée for acyclic programs and PSPACE-complete in general.

Definition 17 (Repeatable Enabling Sequence Properties). We say that a property repre-
sentedby an automatoif is a repeatable enabling sequence property if there exist se-
guences of operations g andy such that the sets of sequenceg™y are all valid but the
sgjuencexy is invalid. (The sequence may be thought of as a repeatable sequence that
enables .)

For example, e propertyopen™; read (seeFig. 8 which requires that aread be
preceded by one or morgpen operations is a repeatable enabling sequence property.
(The more natural properpen™; read* is also a repeatable enabling sequence property,
but we useopent;read as the running example to contrast it with the omission-
closed propertyead®; close.) We show that verification ofpeatable enabling sequence
properties is PSPACE-complete by reduction from #multaneously false problem
(see R0O,11)).

Definition 18 (Smultaneously False Problem). Given a program P with an initial
assignment of values (0 or 1) to a sef, x2,..., Xy of boolean variables, where
the piogram P contains only assignments (of constants or variables), conditionals or
unconditional jumps, & multaneously false problem for P is a pioblem of the form:

Is there an execution path from the entry point®fto a poogram pointp suchthat

X1 =0,%x2=0,..., X = 0when control reacheg?
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Lemma 19. (1) The simultaneously false problem for acyclic programs is NP-complete.
(2) The simultaneously false problem for arbitrary programs is PSPACE-compl ete.

Proof. The binary simultaneous value problem can be easily reduced to the simultaneously
false poblem by following the construction used in the proof of Theorem 3.6 in Muth and
Debray RQ]. The idea is to transform a prograh into a programP’ such that every
variablex; in P corresponds to two variable$j and X;, every asignment; = 0 is
converted toXj = 0; X; = 1, every assignmen§ = 1 is converted toXj = 1; X; = 0,

and every assignmen§ = Xj is converted intoXj = Xj; Xi = X_J Considerthe
simultaneus value problem; = c1, X2 = Cp, ..., Xk = Ck for P. It can be easily shown
that the simultaneously false problem f@f obtained by replacing every conjungt= 0

with Xj = 0 andx; = 1 with X; = 0 is equivalent. Thus, the simultaneously false
problem is also NP-complete and PSPACE-ctetgpfor acyclic and arbitrary programs
respectively. O

Let F be an automaton represamy a repeatable ebling sequence property. We show
that SVr is PSPACE-hardy reduction from the simultaneously false problemu Jf8,
y are such that sequence8*y are valid and sequence is invalid, theng andy must
be non-empty (althouglh may be empty). Given an instance of the simultaneously false
problemx; = 0,x2 = 0, ..., Xx = 0 at pogram pointp in a programP, we construct a
programP’ as follows. First, we create two obje@sro andOne which support methods
corresponding to the sequeneess, andy. Next, we c@y programP into P’ replacing
every asignment btheformx; = 0 by x; = Zero andx; = 1 by x; = One respectively.
Then, at program poinp, we inset the statmentif (?) goto p;. Let the £quencer be
a,a,...,a,letg bebs, by, ..., by, andlety becy, ¢y, ..., ch. We insert he following
saquence of statements at the end:

goto exit;
pPi: Zero.ai(); Zero.as(); ...; Zero.a1();
One.ai(); One.as(); ...; One.a1();

x1.b10); x1.b20; ... X1.bn();
x2.b1(); x2.b2(); .. .5 x2.by();

xk.b10); Xx.b20); .. .3 Xx.bn();
One.c1(); One.ca(); ...; One.cy();
exit :

Note that control can reach program pgntonly through the conditional branch statement
if (?) goto p1 (because of the statemegitto exit; just bdorepy).

Lemma 20. Assuming that the sequences of operations 8 and y are non-empty, the
simultaneoudly false problemx; = 0, x2 =0, ..., Xk = O at program point p in P returns
trueif and only if program P’ violates the property represented by F.
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Proof. ProgramP’ creates only two objecf&ero andOne. Note hat the only sequence of
operations performed afero is aﬁ‘ wherei is the number of variables ixy, Xo, ..., Xk
that are aliased tdero at program poinp. Thus noillegal operation is ever performed on
Zero. Theonly sequence of operations performed@me is ¢3!y wherej is thenumber
of variables inxy, X2, ..., Xk that are aliased t@ne at program pointp. This seuence
is invalid iff j can be 0. In other word$?’ violates the property represented Byiff the
simultaneusly false problenx; = 0, x2 =0, ..., Xk = 0 at pogram pointp in P returns
true. O

The above lemma shows the hardness of typestate verification for repeatable enabling
sgjuence properties. We now establish a straightforward completeness result.

Lemma4.1. For any automaton F, SV£ isin NP for acyclic programs and in PSPACE
for arbitrary programs.

Proof. SV~ is in NP for acyclic programs since we can non-deterministically choose a
path through the program and check to seetiwieany object reaches the error state during
execution along that path. To show that $\or an arbitrary progran® is in PSPACE,
we construct a hon-deterministic multipa polynomial-space-bounded Turing machine
M to solve thegproblem.M simulates input prograr®, non-deterministically choosing the
branch to take at branch points. Let usareto objects pointed to by the variablesRras
live objects.M keeps track of which variables pointwhich (live) objects, and tracks the
finite state of each live object. The space neeieghaintain this infomation is trivially
bounded by a polynomial in the size of progr&mlf any of the elevant objects goes into
the error state during simulatiol hdts and signals the possibility of an error. Conversely,
if there is a path that causes one of tigects to go into the error state, thBhcan guess
this path and will halt signalling the error.[]

Theorem 21. Consider a repeatable enabling sequence property represented by an
automaton F. SV is NP-complete for acyclic programs and PSPACE-complete for
arbitrary (cyclic) programs.

Proof. The proofs of NP-hardness and PSPACE-hardness of acyclic and arbitrary
programs respectively follow frolnemmas 1@nd20 respectivelyLemma 4.1shows that

the problem of shallow verification for all sgtfy properties represented by an automaton
are in NP for acyclic programs and in PSPACE for arbitrary programs.

Theorem 21shows that verification forepeatable enabling sequence properties is
difficult even for shallow programs. In fache stuation is worse. We now show that even
the shortest error paths may be of exponential size in the worst case.

Definition 22 (Error Path). Let 7 be an automaton regsenting a property to be verified.
We say that gath (possibly cyclic) in the control flow graph &f from the entry vertex

to some vertex is anerror path if symbolic execution oflie program along this path
(ignoring the conditionals) exhibits a \aion of the property associated with. The
programP is said to beerroneous if there exists an error path iR. An integervalued
function f is sdd to be a bound on the shortest error path length if every erroneous program
for sizen is guaranteed to have an error path of lenfjith) or less.
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Definition 23 (Loop Unrolling). Consider the control-flow-grap@p = (Vp, Ep) of
programP. Let G}, = (Vp, E) denote the acyclic graph obtained fr@m by removing
all back-edges. We defindgnroll(Gp, n) to be the acyclic grapobtained by making + 1
copies ofG}, (caled G (1), GL(2), ..., G (n+1) respectively), and for every back-edge
(u, v) in Gp, adding an edge from vertaxin G, (i) to vertexv in G} (i +1) for alli from

1 tov. More formdly Unroll(Gp, n) = (V*, E*) where

V*= {(v,i)|] veVp, 1<i<n+1}
E*= {[(ui),w,D]| [uv]€eEL 1<i<n+1}U
{{(u, i), w,i +D]|[u,v]e Ep—Ep,1<i<n}.

It is easy to verify thatnroll(Gp, v) is acyclic and contains every path of lengtlor
less inGp.

Theorem 24. If NP # PSPACE, then there does not exist a polynomial bound on the
shortest error path length for repeatable enabling sequence properties.

Proof. Let F be the finite state automaton assded with the repatable enabling
sajuence property. Froffiheorem 21t follows that verification ofF for acyclic programs
is in NP and for arbitrary (cyclic) programs is PSPACE-hard. We pifiveorem 24by
showing that if there is a polynomial bound on the shortest error path, then the verification
problem for cyclic programs can be polynomial-time reduced to the verification problem
for acyclic programs, wich would imply that NP= PSPACE.

Let p(n) denote a polynomial bound on the size of the shortest error path where
denotes the size of the program. Given an arbitrary progtamth contrd flow graphGp,
we aonstruct the acyclic progratinroll (Gp, p(n)) which is acyclic and contains all paths
of lengthp(n) or less inGp. The ske ofUnroll(Gp, p(n)) and the time taken to construct
it are both polynomial im. Thus, the problem of verification d&p is polynomially
reduced to the problem of verifyirignroll(Gp, p(n)), which isa contradiction. [

Theorem 24suggests that it may not be possible to find short counterexample paths
exhibiting the violation of properties likepen™; read. This is important to know because
many approaches to verification (e.@])[are inherently associedl with the generation of
a wmunterexample path that exhibits the violation of the property of inteféstorem 24
suggests the possibility that even the shoressor path in the program may be of size
exponential in the size of the program.

5. Verification by counting

We havenow seen that verification is intractabfor repeatable ebling sequence
properties and polynomial for omission-closed properties. Unfortunately, there are
properties that fall into neitherlass. A simple example is theen; read property. Note
that open; read is similar to open™; read in that it requires thiaan object be opened
before it can be read, but it differs from it in that an object cannot be opened multiple
times. Does this make verification any easier?



J. Field et al. / Science of Computer Programming 58 (2005) 57-82 73

5.1. Theintuition

The requirement that an object cannotdgened multiple times is a forbidden sub-
sajuence problem (wherepen; open is the forbdden subsequence; s€heorem Tc)).
It follows that we can verify whether the given program cannot open an object multiple
times in polynomial time. Thusypen; read verification is polynomial-time equivalent to
open™; read verificaion of aprogramguaranteed not to open any object more than once.
We will now show that, at least for acyclic programs, this added restriction (that an object
cannot be opened multiple times) does mp&ynomial-time verification possible.

Let us begin by considering whyead*; close verificaion is easy whilepen™; read
verification is not. Consider theoflowing code fragment:

.; pr-open(); ...; pr-open(); ...; gq.read();

Theopen™; read property will be violated if there is an execution path such that the value
of q at theread staement is different from the values ehch p; at the corresponding
open Sstaements (assuming there are ¢éwen staements in the program other than those
shown above). Determining whether certain relationshipsstamtaneously exist anong
apotentially unbounded number of program variables is difficult.

In contrast, consider the following code fragment:

.3 pp-close(); ...; pg.close(); ...; g.read();

Theread*; close property will be violated here if there is an execution path such that the
value ofq at theread staement is equal to the value sdmep; at the correspondinglose
staement. In other words, this requireglependent answers tk different questions, each
about the value of onlywo program variables. This turns out to be easy.

Let us now turn back to the earlier example above:

.3 pr-open(); ...; pr-open(); ...; q.read();

If we now know that no object is opened twice, how can we exploit thisfen™; read
(i.e., open; read) verification? For any giveri, we know that it is easy to determine
whethe the q.read() staement may read the same object that is opened by the
p; -open () staement. Imagine that we caount thenumber of execution paths;, along
which this can happen, for eadh Adding up all then; would tell us how many times
(i.e., along how many execution paths) theread () staement is avalid operatior* If
this nunber does not equal the number of execution paths tq tlkead () staement, then
there must be an execution path along which q.read () will read an unopened object!
Such indirect reasong based on counting is the basis for the algorithm presented in this
section.

Obviously, counting the number of paths is not feasible in the presence of cycles. In
the rest of this section we will restrict our attention to acyclic, or loop-free, programs, and
show how he above approach can be used for a class of verification problems.

4 Thisis where we exploit the fact that no objésiopened twice. Otherwise, adding mpwill end up counting
samepaths multiple times.
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5.2. Definitions

We start by formally defining the quantities we want to compute. Given some program
P, consider aP-path p. Recall thatl/(p) denotes the set of object instances created in
and for anyi € U(p), p[i] denotes the sequence of operations performeid et p[p]
denote the value of variabeat the end of. If s is a statement in the program, we will
usesp andsyy: to denote the program points just before and just after the statesnent

Definition 25. Let « denote a sequence of operatioms,a program path, andll,
the set of all paths fromrdry to a program pointu. Then, define ct(e, 7) £
{i eU(m) | xli]=a }| andct(e, u) = 3" ;7 Ctla, 7).

We now define auxiliary counts of the forgi((X, ), u), which wewill subsequently
use to computet(e, u), whereX is a set ofprogram variables. Informally, the sEtwill
constrain the counting to the object instance pointed to by all variables iBecond,
while ct(a, u) countsexact matches fok, Ct((X, ), u) will countsubsequence matches
for .

Definition 26. Given twosegquencesy and g, let ct(«, 8) denote the number of times
occurs as a (not necessarily contiguous) subsequerge of

ct@ - --ae, b1 -bm) 2 [ {(1,...,ik) [1<iz<---<ix<m

In the special case wheaeis the empty sequencei(«, B) is definedo bel.

Definition 27. Given a set of variableX, we definel/(w, X) £ { i € U(T) | Vp €
X.w[p] =i }. Essentially, ifX is empty, therif (7, X) ist (). If X is non-empty and all
variables inX point to the same objecttheni/ (s, X) is{i }. If all variables inX do not
point to the same object, théf(r, X) is empty.

Definition 28. Let o denote a sequence of operationsa program path, andl, the set
of all paths from the entry vertex to a program pointThen, definect((X, ), 7) =

> iettn.x G, m[i]) andet((X, @), u) £ 3" G(X, ), 7).
Example 29. Consider the fthowing program:

x =new (O; y = new ;
x.open();
it (7 |
y.open();
}
x.read(); y.read();

Let u denote the program point after the last statengeead (). Let p1 denote the path
to u where the false branch of the if-statement is taken, angbldenote the other path to
u. Thetable below shows the values of the various quantities defined above. The fact that
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Staementu Equations |

Ci((X, a), entry;,) = if (|X| > 1 or|e| > 0) then O else 1
(X, &), Uin) = 2 vepredu) Ct((X, &), vout)
x =y (X, @), Uout) = (X — {x} U {y }, @), Uin) (if x € X)
G((X, @), Uout) = C(X, @), Ujn) (if x & X)
x := new O |CG(({x},€), Uout) = Ct({{ x }, €), Uin)
a(X, a), uout) =0 (ifx € X and (X| > 1 or|a| > 0))
(X, @), Uout) = C((X, @), Ujn) (if x ¢ X and X # ¢)
x.0op() CH((X, ), Uogut) = CE({X, a), Uin) (whena is not of the formgop )
(X, &), Uout) = CH((X, BOp), Uin)+ (wherea = gop)
SE(X U {x }, B). Uin)

Fig. 9. Equations for computing the number of supgmce matches. Note that, in general, theXsehay be
empty, or the sequeneemay be theempty sequence, but the guations assume that bo¥and« cannot be
simutaneously empty. (We are not interested in the valug@b, €), u).)

ct(read, u) is non-zero indicates that the program contains a violation obflea; read
property.

X o (X, @), p1) | (X, @), p2) | CH((X, @), ) | ct(e, u)
{x} read 1 1 2 _
{x}| open; read 1 1 2 _
{y} read 1 1 2 _
{y}| open; read 0 1 1 _
1) read 2 2 4 1
¢ |open; read 1 2 3 3

5.3. Counting subsequences

We now show how the quantities defined above can be compufkégl. 9 expresses the
relationships that must hold between thealuesat different program points.

Lemma 30. For any sequence « and any acyclic program Pgm over a set of program
variables Vars Ct((¢, ), u) can be computed for all program points u in polynomial time.

Proof. We conpute the values oft((¢, o), u) using the equations presentedFiy. 9.
Note that computingt((¢, «), u) at a program point may trangively require computing
the valie of Ct((X, B), v) at some vertex, wherep is a prefix ofa, and X is a set of
variables of cardinality at mostr| — |8|. Herce, the number of values (or equations) we
need to compute at any program poin@s|Vars|/*!), whereVarsis the set of all variables
in the program. The result follows.[
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5.4. Counting exact matches

Earlier we argued how we could compute the number of exact matchesdarfrom
thenumber of subsequence matchesfesd and the number of subsequence matches for
open; read. We now presnt a generalization of this idea.

Lemma 31. Let u denote any program point. We will use 8 > « to denote that g is a
proper supersequence of « (i.e., that « is a proper subsegquence of 8). Then,

Cl(er, u) = Ct({gp. &), u) — Y Ch(er, B)CL(B, U).

B>a

Proof. We will now show thatct(a, 7) = G((¢, a), ) — Y pra cl(a, B)ct(B, m) for any
execution pathr, from which the lemma followsmmediately. Note thatt(«, ) counts
exact matches fow in 7, while Ct((¢, «), ) counts occurrences of as a subsequence
in 7. Now, consider any supersequeng®f «. Everyexact match forg in = will give us
ct(a, B) subsequence matches forHence, the above equality follows[]

A sequencex has infinitely many supersequengesSo,how can we make use of the
above equation?

Definition 32. A property represented by an automatbns said to bealmost-omission-
closed if there exists an integés such that for all sequences, 8,y € X*, if |aBy| > k
thenValidz (eBy) = Validr(ay).

Let us refer ta(ay, aBy) as an omission-violation 8y is a valid sguence buty is
not. An omission-closed property is one with no omission-violations. An almost-omission-
closed property is one with only finitely many omission-violations. Note ¢ipah; read
is an example of a verification problem whehete is only one omission-violation, namely
read is invalid butopen; read is valid. We will now establish the following.

Theorem 33. If F represents an almost-omission-closed property, then SV« for acyclic
programsisin P.

Proof. Consider any that is invalid. Thenany supersequengeof « of lengthk +1 must

be a forbidden subsequence. Hence, we can check a program in polynomial time to see if it
contains any such. If it does, we can stop since the program does not satisfy the required
property. Otherwise, we count the number of subsequence matches in the progsam for
and every supersequengeof o of sizek or less. We can then compute the exact match
countusingemma 31 O

5.5. Verification of programs with loops

How can we adapt the ideas described above to verify programs with loops? Given
an almost-omission-closed property, if we can come up with a polynomial bpgmd
on the length of the shortest error path, then we can “unroll” loops in a given program
P suficiently to generate a corresponding loop-free progRnthat includes all paths
of length p(n) or less in P, and apply the preceding verification algorithm #'.
(Definition 23shows how such unrolling can be done.) This gives us the following theorem.
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Theorem 34. If F represents an almost-omission-closed property with a polynomial
bound on the shortest error path length, then SV isin P.

Unfortunately, we have not been able to identify polynomial bounds on the shortest error
path length for almost-omission-closed properties. We conjecture that such polynomial
bounds exist, at least for thgen; read property.

6. Programswith width-limited aliasing

In Section 4we saw thg unless P= NP, verification of repeable enabling sequence
properties will require exponential timi& the worst case. Is it, however,possible to
design verification algorithms that are effici@mpractice, e.g., by exploiting properties of
programs that arise in practice? For example, one seldom sees programs in which a very
largenumber of variables point to the same object at a program point. Let us say that a
program has a maximumldiasing width of k if there is no execution path in the program
that will produce an object pointed to by more tHadifferent variables. In this section, we
look at the complexity of typestate verification for programs where the maximum aliasing
width is bounded by a constant.

6.1. Polynomial time verification for shallow programs with width-limited aliasing

In this section we present a verification algorithm motivated by the observation that
the aliasing widts of programs tend to be small in practice. The algorithm runs in time
O(|Pgm¥*1), where|Pgm| is the size of he program and is the maximum aliasing
width of the program. Unlike the polynomial solutions of previous sections, the algorithm
presented here works for any typestate property.

We note that naive verification algorithms damt achievethe above complexity, i.e.
they may take exponential time even for programs with a maximum aliasing width of 2.
In particular, consider the obus abstraction where the program-state is represented by a
patition of the program variables into equivalence classes (of variables that are aliased to
each other), with a finite state associated with each equivalence class. The nhumber of such
program-states that can arise at a program point is exponential in the number of program
variables evendr programs with a maximum aliasing width of 2.

Our algorithm uses pticates of the formiA, S] defined below.

Definition 35. Let A C Varsbe a hon-empty set of program variables, &d O a set of
staes of F.

(Asl= A y=0r N\ @#0 A lInse).

xeA,yeA xeA,zeVars\ A XeA
WhenS contains a single state € Q, we write [A, o], rathe than[ A, {o}].

Intuitively, a predicatd A, S] means that all variables iA have the same value (are
aliases), every variable not iA has a different value from the variables & and the
object referred to by variables iA is in one of the states db. The difference between
[A, S]and(A, S) (Definition 11) is noteworthy. The non-aliasing conditions are implicitly
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Statement |flow(Statement)([A, o)) |

X =y {[AU{x}, 0]} ifyeA
{{A\ {x}, 01} ifyéA
x := new() | {[{x},init], [A\ {x},0]} ifxe A
{[A o1} if x¢ A
x.opQ) {[A, 3(o, 0p)]} if xe A
([A, o]} if x ¢ A

Fig. 10.flow equations for predicates of the folfrA, o].

workList = ¢
for each program point |
results(l) = ¢
for each program variable X
add (entry, [, {init}]) to workList
while workList # @ {
remove (I, ) from workList
for each V' e flow(stmt)(¥) {
for I’ € Succ(l) {
if ¥/ &results(l’) {
results(l’) = results(l") U {y'}
add (I’, ') to workList
Frid

Fig. 11. An iterative algorithm using predicates of the fgr SJ.

represented ifiA, S] by assuming that every variable notAnhas a different value from
the variables inA, wheleas in(A, S) the variables not iltA may or may not be aliased to
the variables inA.

Fig. 11 presents our verification algorithm that computes, for all program points, the set
of predicates of the formA, o] that maybe-true at the program point. (It is said that a
predicatep may-be-true at a program poiniff there exists a path ta such ttat execution
along that path will causp to become true.) The algorithm is based on a standard iterative
collecting interpretation algorithm. The functifiow(St)(¢), defined inFig. 10, identifies
the set of predicates that mée-true after statemeist given a predicate that may-
be-true before statemest. For any pogram pointl, Succ(l) denotes the successors
of l.
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Theorem 36. Thealgorithmof Fig. 11 preciselycomputesthe set of predicates[ A, S] that
may hold at any program point in time O((X_1; < () * [Pgm) = O(nk % |Pgm) where
k is the maximum number of variables aliased to each other at any point in the program
Pgm and n = |Varg isthe number of program variables.

Proof. It can be shown that (a),cpflow(St)(¢) computes a precise abstract transfer
function for statemen$t with respect to the set of predicat®s and that (b this is a
distributive function. It directly follows from these facts that the algorithm computes the
precise solution.

We now estalish the complexity of the algorithm. Assume that the maximal size of
an alias-set occurring in the programkisThe aforithm may generate predicates of the
form [A, S] for all subsets of any size up toof program variable¥ars. The number of
predicates that may haverae value in a pogram point is therefor® (3 4 _; . (?)) where
n = |Varg| (we treat the number of FSM states as a constant). The complexity of the chaotic
iteration algorithm ofrig. 11is thereforeO((3_;; (?)) x|Pgm|). The &pression is also
bounded byO (n¥ x |Pgm)). The albve assumes th¢he stepf computingflow(stmt| ) (¥)
takes constant time.[d

Though the worst-case complexity of the algorithm is exponential, the exponential
factor k is expected to be a smatlonstant for typical programs, since the number
of pointers simultaneously pointing to the same object is expected to be small (and
significantly smaller thaivars).

Note that using the set of predicates defineBéfinition 35is not sufficient to achieve
the desired complexity. The style of “foakd propagation” used by our algorithm is also
essential, as it ensures that the cost of analysis is proportional to the number of predicates
that maybe-true (rather than the number of tota¢gicates, as is the case with alternative
analysis techniques).

6.2. Width-limited aliasing in non-shallow programs

We have now seen that typestate verification can be done efficiently for programs where
the diasing is bounded in certain ways. Specifically, the results of the previous section
show that for shallow programs, typestate verification can be done in polynomial time if
the diasing width is assumed to be bounded by a constant. A natural question is whether
any such result holds true for non-shallow programs.

Recall that shallow programs are programs where the aliaigptl is resticted to be
one: program variables may point to objects, but program contains no variables that point
to objects that contain pointers to objects.

Unfortunately, it turns out that typestate verification is hard for non-shallow programs
ewen if the aliasing width is bounded by a constant. It is knod® that dias analysis
is intractable for programs where the aliasing depth is two. We now show that the
intractability result holds even if in addition the aliasing width is also restricted to three.

Theorem 37. Aliasanalysisis NP-hard for programswith aliasing depth two and aliasing
width three.
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Proof. The proofis by reduction from 3-SAT. Consider a 3-SAT formQian C2 - - - ACp,
over logical vaiablesw; throughwm. We create a program with a typeand a second
typePT consisting of a field of type (pointer to)r. Corresponding to every clau§g, the
program consists of variablés, Y; true, andYi fa1se Of type (pointer toPT initialized
as follows:

Yi,true = new PT(); Y:'L,true-f = new TQ);
Yi false = Dnew PTQO); Yi false-f = new TO;
Xi =Yi false

BothY; true @ndY; £a15e are constants in the program.

After the initialization code, the program consists of one if-then-else statement for every
logical variablew; in the 3-SAT famula. The then-branch of this statement consists of an
assignment statemexi = Y; +rye fOr every claus€; that contains the literal; as one of
its disjuncts. The else-branch of this statement consists of a similar assignment statement
Xi = Y; true fOr every clause€; that contains the negated litefal as one of its disjuncts.

Thus, there exists a one-to-one correspondence between execution paths through the
if-then-else statements andgsible truth assignments to the logical variables, where
we associate the then-branch of theh if-statement with an assignment of true to logical
variablew;. It should be clear that after execution through any pathpoints to the same
object asy; +true iff the corresponding truth assignment makes cl&issvaluateo true.

We now gpend the following code fragment:

S = new TQ);
Yl,true-f = 8;
Yo true-f = X1.f; Y1 true.-f = new TO;
Y3 true-f = Xo.f; Yo true.f = new TO;

Yntrue-f = Xn—1.f; Yn_1 true.f = new TO;
R = Yn,true~f§

Now, consider any execution path through the whole program that corresponds to a
truth asgjnment that makes the entire formula true. Then, a pointer to the object created
by the gatementS = new T(); will be successively copied through evahy;re.f and
then finally toR, causingS andR to be aliased at the end did program. Conversely, it
can be verified that an execution path will cagsendR to be aliased to each other at the
end of the program only if the path corresponds to a truth assignment that makes the given
3-SAT formula true.

Hence,R andS may alias each other at the end of the program iff the given 3-SAT
formula is satisfiable.

Note that the programenerated above has an aliasing width of three (i.e., no more than
threepointers point to the same object at any point during program execution). In particular,
the assignments; true.f = new T(); guarantee that no more than three pointers could
pointtos at any given time. [J

The following theorem is a straightforward consequence of the above result.



J. Field et al. / Science of Computer Programming 58 (2005) 57-82 81

Theorem 38. Typestate verification is NP-hard for programs with aliasing depth two and
aliasing width three.

7. Conclusion

In this paper we have shown that verification of omission-closed properties is in P and
that verification of repeatable enabling sequence properties is NP-complete for acyclic
programs and PSPACE-complete in general. We have shown that verification of almost-
omission-closed properties is in P for acyclic programs. However, many questions still
remain open. For example, we do not know whether verification of almost-omission-
closed properties is in P for cyclic programs. Moreover there are properties which do
not lie in any of these classes. For example, consider the proppsty, read* which
generalizespen; read by allowing any number otead operations. We can adapt the
counting method ofSection 5to show that verification odpen; read* is in P for acyclic
programs. However, we have not been able to formulate such a result for a general class
of properties that includespen; read*. Findly, there are also other properties such as
(lock; unlock)* (any number of Bernatinglock andunlock operations) for which we
have neither been able to show a polynomial bound, nor been able to show an NP-hardness
resut.

On a more prgmatic note, we have presented a typestate verification algorithm,
for arbitrary typestate propies, that we expect will perform well on the basis of the
reasonable assumption that programs tend to have small aliasing width. However, this
algorithm is restricted to shallow programA natual question is how these ideas can
be generalized to do verification for arbitrary programs. One of the primary intuitions
behind our verification algorithm (for shallo programs) isthat maintaining just the
right correlation required between “analy§its” can be the key to efficient and precise
verification: mairtaining no correlations (independent attribute analysis) can lead to
imprecision, while maintaining all correlations (relational analysis) can lead to inefficiency.
The recent work 0f28] shows one way to exploit this intuition for verification of arbitrary
(i.e. non-shallow) programs as well.
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