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Abstract

We consider the problem oftypestate verification for shallow programs; i.e., programs where
pointers from program variables to heap-allocated objects are allowed, but where heap-allocated
objects may not themselves contain pointers. We prove a number of results relating the complexity
of verification to the nature of the finite state machine used to specify the property. Some properties
are shown to be intractable, but others which appear to be quite similar admit polynomial-time
verification algorithms. Our results serve to provide insight into the inherent complexity of important
classes of verification problems. In addition, the program abstractions used for the polynomial-time
verification algorithms may be of independent interest.
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In solving a problem of this sort, the grand thing is to be able
to reason backward. . . . In the everyday affairs of life

it is more useful to reason forward.
–Sir Arthur Conan Doyle,A Study in Scarlet.
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1. Introduction

The desire for more reliable software has led to increasing interest in extended static
checking: statically verifying whether a program satisfies certain desirable properties. A
technique that has received particular attention is that of finite state ortypestate verification
(e.g., see [27,26,21,6,8,3,9,13,12,17,1]). In this model, objects of a given type exist in one
of finitely manystates; the operations permitted on an object depend on the state of the
object, and the operations may potentially alter the state of the object. The goal of typestate
verification is to statically determine whether the execution of a given program may cause
an operation to be performed on an object in a state where the operation is not permitted.

Typestate verification can be used to check that objects satisfy certain kinds of temporal
properties; e.g., that an object is not used before it is initialized, or that a file is not used
after it is closed. In this paper, we will specify such properties using regular expressions
or finite state automata that define the set ofvalid sequences of operations that can be
performed on an object.

Our goal in this paper is to develop an initial understanding of how the difficulty
of performing typestate verification relates to thenature of the property being verified.
Among other things, we will show that not all finite state properties are equally hard to
verify. For example, given ashallow program (where pointers from program variables to
heap-allocated objects are allowed, but where heap-allocated objects may not themselves
contain pointers), we show that verifying that a file is not read after it is closed can be done
in polynomial time, while verifying that a file is notread before it is opened isPSPACE-
complete.

While there has been much progress on many aspects of automated program
verification, we are not aware of any previous work relating the difficulty of typestate
verification to properties of the finite state automaton. This work is part of a broader effort
to develop efficient program verification techniques that are tailored to the property being
verified [24].

Typestate verification and shallow programs

In order to meaningfully compare the complexity of verification algorithms, we need
to make some baseline assumptions about the precision of the analysis. In this paper,
we will use the termverification to mean verification that isprecise modulo the widely
used assumption that all paths in the program are feasible. Specifically, given a finite state
property, a path in a program is said to be anerror path, if execution along that path would
cause an invalid sequence of operations to be performed on at least oneobject and the goal
of typestate verification is to determine if a given program has any error path.

Typestate verification can be done in polynomial time if the program to be verified
allows no inter-variable aliasing. Conversely, it is a straightforward consequence of
previous results [19,20] that if a program hastwo or more levels of pointers, typestate
verification is PSPACE-hard.2 In this paper, we therefore concentrate on understanding the
class ofshallow programs occupying a point in between these extremes.

2 In the presence of recursive data structures, typestate verification is undecidable [18,23].
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Assume we wish to perform typestate verification for objects of a typeT . A T -shallow
program is a well-typed procedure-free program where all variables are pointers toT -typed
objects, and whose statements are allocations (creation of a new object of typeT ), copy
assignments (copying the value of a variable to another), or invocations of an operation on
a variable. Note that shallow programs may contain multiple pointers to objects of typeT ,
but allocated objects may not themselves containT -pointers. In other words, pointers in
shallow programs aresingle-level [20]. Our results also apply to programs that manipulate
complex or recursive types where allocated objects contain pointers,provided that those
pointers cannot refer to objects of type T . Programs that are shallow with respect to a given
type, e.g.File, arenot uncommon in practice.

Example: Verifying file operations

Consider the problem of checking that a closed file is never read or closed again, which
we will refer to asread∗; close. In general, we will use regular expressions to designate
sequences ofvalid operations on an object of a given type, where a sequence is valid iff
it is a prefix of a string in the language defined by the regular expression. For example,
read; read is a prefix ofread; read; close and thus a valid sequence.

The principal difficulty in doing precise verification arises from determining how
aliasing interacts with operations onobjects. Some prior work on typestate verification
(e.g. [7]) has employed a two-step approach to the problem, in which an initial phase
performs a conservative heap analysis of the program, and a subsequent phase uses
the information from the heap analysis to do typestate analysis. However, we can see
from the program fragments inFig. 1 that such an approach can sometimes lead to
imprecise results. One can easily verify that in bothFig. 1(a) and (b), all sequences of file
operations on a given object are prefixes ofread∗; close; i.e., that noread ever follows a
close.

However, consider a two-phase analysis in which the heap analysis is separate from
the typestate analysis. InFig. 1(a), a precise (and correct) heap analysis will determine
that program variablez at program points2 may point to the object created ats0 or
the object created ats1. Furthermore, aprecise typestate analysis will determine that the
object created ats1 could be in aclosed state ats2. A two-phase analysis must therefore
erroneously conclude that the read could be performed on a closed file. Similarly, in
Fig. 1(b), any conservative heap analysis would determine that objects created at program
pointss3 ands5 could reach the read statement ats4. In addition, a typestate analysis
would also determine that the objects created at program pointss3 ands5 could be in
a closed state ats4. The analysis would, however, not be able to discover thatf can
never point to a closed object ats4, and would incorrectly indicate a possible error.
In this paper we show that for a certain class of problems (includingread∗; close),
it is possible to formulate a precise polynomial-time verification algorithm for shallow
programs.

Main results

The main complexity results established in this paper are as follows (in all cases except
the last one, we assume thatprograms are shallow):
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s0 : x := new ();
s1 : y := new ();
z := y;
if (?) {
y.close();
z := x;
}
s2 : z.read();

s3 : f := new ();
while (?) {
s4 : f.read();
if (?) {
f.close();
s5 : f := new ();
}
}

(a) (b)

Fig. 1. Program fragments illustrating the effect of aliasing on typestate verification.

• Verification is in P for omission-closed properties: a property is said to be omission-
closed if every subsequence of a valid sequence is also a valid sequence. (Example:
read∗; close.)
• Verification is NP-complete for acyclic programs (i.e., programs without loops) and

PSPACE-complete for arbitrary programs for properties with a repeatable enabling
sequence: a property is said to have a repeatable enabling sequence if there is an
automaton state where a particular sequenceγ of operations is invalid, but sequences of
the formβ+γ are valid for someβ. Example:open+; read.
• An integer-valued functionf is said to be a bound on the shortest error path length

for a typestate property if every erroneous program of sizen is guaranteed to have an
error path of length f (n) or less. If PSPACE is not equal to NP, then no polynomial
bound exists for the shortest error path length for properties with a repeatable enabling
sequence. (In other words, it may not be possible to find short, i.e., polynomial-size
error paths in the worst case.)
• Verification is in P for acyclic programs for almost-omission-closed properties: a

property is said to be almost-omission-closed if there is an integerk such that every
subsequence of a valid sequence of length greater thank is also valid. Example:
open; read. Note that any property with only finitelymany valid sequences is trivially
almost-omission-closed.
• Verification is in P for almost-omission-closed properties that have a polynomial bound

on the shortest error path length.
• A program is said to have a maximum aliasing width ofk if there is no path in the

program that will produce an object pointed to by more thank different variables.
Arbitrary finite state properties for programs of sizen with a maximum aliasing width
of k may be verified in timeO(nk+1) for programs of sizen.
• Alias analysis and typestate verification are NP-hard for programs with maximum

aliasing width of three and aliasing depth of two. (A program is said to have aliasing
depth of two if the program contains pointers to pointers.)

The results above are summarized inFig. 2in terms of the properties of regular expressions
which define the properties to be verified (the notation used there will be defined in
Section 2).

The polynomial-time verification results summarized above use program abstractions
that may be of independent interest—in particular, they may prove useful as the starting
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Omission- Almost-Omission- Repeatable Other

Closed Closed Enabling Seq

E.g. read∗; close open; read open+; read (lock;unlock)∗

Defn. ∀αβγ. ∃k∀αβγ.(|αβγ | ≥ k ∧ ∃αβγ.
Valid(αβγ ) Valid(αβγ )) Valid(αβ+γ )∧
⇒ Valid(αγ ) ⇒ Valid(αγ ) ¬Valid(αγ )

Acyclic Pgms P P NP-complete ?

(Shallow)

Cyclic Pgms P Poly. Error Path⇒ P PSPACE ?

(Shallow) General: ? complete

Bounded Aliasing P

Width (Shallow)

Bounded Aliasing NP-hard

Width (Non-shallow)

Fig. 2. An overview of ourcomplexity results.

point for developing more general abstractionsfor non-shallow programs (e.g., in a manner
similar to that of [24]). The bulk of the abstractions we use arepredicate abstractions [15];
however we show in the following that the choice of predicates used in a predicate
abstraction can have a dramatic impact on the efficiency of the resulting analysis. Our
predicate vocabularies are carefully designed to yield efficient analyses without sacrificing
precision. In addition, inSection 5, we develop a novelinteger abstraction, which is based
oncounting thenumber of program paths along which a simple property holds true; this in
turn allows inferring whether amore complex property holds.

Related work

There has been significant recent interest in avariety of property verification techniques,
many of them focusing on typestate verification. While significant progress has been made
in improving the precision and efficiency of verification, developing verification techniques
that are sufficiently precise and scalable to handle industrial-size applications for a wide
variety of problems is still a challenge, and motivates our work here.

One of theopen challenges in typestate verification is an adequate treatment of aliasing.
Some approaches avoid the issue:e.g., the original work on typestate verification [27,26]
did not allow any aliasing; more recent work on typestate verification based on linear
types [8] also restricts aliasing severely. Other approaches (e.g. [7]) perform alias analysis
and typestate verification separately: an initial phase performs a conservative alias analysis
for the program, and a subsequent phase uses the information from the alias analysis to
do typestate verification. However, this can lead to imprecise results, as illustrated by the
examples inFig. 1.

A second challenge to practical verification is dealing with infeasible program paths.
Das et al. [7] address this issue using efficient path-sensitive algorithms (which eliminate
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certain infeasible paths from consideration during analysis), but do not track certain
additional information, e.g., aliasing, precisely. Our algorithms do not address the question
of path sensitivity, but there could be meritin combining aspects of our approach with
those that eliminate infeasible paths.

One of theprimary intuitions behind the algorithms presented in this paper (for
shallow programs) is that maintaining just the right correlation required between “analysis
facts” can be the key to efficient and precise verification: maintaining no correlations
(independent attribute analysis) can lead to imprecision, whilemaintaining all correlations
(relational analysis) can lead to inefficiency. The recent work of [28], following this paper,
shows one way to exploit this intuition for verification of arbitrary (i.e. non-shallow)
programs as well.

Several recent verification approaches [2,16] combine predicate abstraction [15],
counterexample-guided refinement of the predicate vocabulary [4], and exploration of the
resulting abstract state space using model-checking. These techniques use symbolic and
theorem-proving techniques to identify a setP of predicates relevant to the problem of
interest, then model-check the resulting finite state system over a state space constructed
from the powerset lattice 2P→{true,false}. This process iterates with increasingly larger
sets of predicates until a satisfactory result is obtained. In principle, these algorithms have
the potential to avoid imprecision due to both aliasing and path infeasibility. However,
the worst-case complexity of asingle iteration is exponential in the number of predicates.
By contrast, while most of the algorithms we present are based on abstractions by a set
of predicatesQ, our analysis is based on the function-space latticeQ → {false,maybe},
and runs in time linear in the size ofQ. This approach yields polynomial-time algorithms,
while none of the techniques based on model-checking have a polynomial-time worst-
case complexity for the same problems (even though they may utilize a smaller number
of predicates than our algorithm). Our selection of predicates ensures that the use of
the smaller function space lattice results in no loss of precision, i.e., we ensure that our
abstraction iscomplete (e.g., see [14]). Finally, the predicate abstractions we use are
dependent solely on the nature of the typestate problem being verified, and do not require
expensive predicate discovery at verification time.

Finally, we note that our lower bound results follow the tradition set by earlier
complexity results due to Landi and Ryder [19] and Muth and Debray [20].

2. Terminology and notation

In this section, weprovide some basic definitions that we will use in the rest of the
paper.

Definition 1 (Shallow Program). A shallow program is a <Stmt> defined by the
following context-free grammar, where the? denotes a nondeterministic branch (i.e., an
uninterpreted conditional). All variables<Var> in the language are references to objects of
type T. All operations<Op> in the language are methods supported by type T.

<Stmt> ::= <Var> := <Var> | <Var> := new() | <Var>.<Op>()
| <Stmt>;<Stmt> | if (?) <Stmt> [ else <Stmt> ]
| Label: <Stmt> | goto Label
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init �� open
q1

�������� close ��
	
��

read���
closed

q2
�������� {read,close} �� err�������� 	


��
{read,close}

���

Fig. 3. A finite state automaton for the propertyread∗; close.

We will make the simplifying assumption that when a program begins execution all
program variables point to separate objects (i.e., initialized to non-aliased values), and
all objects reside in their initial state. In other respects, the semantics of shallow programs
is completely standard, and we will not formalize it here. We will, however, appeal to
the intuitive notion of apath ρ through a programP (or P-path): a valid sequence of
statements starting atP ’s entry.

In this paper, we will study safety properties of shallow programs. Although safety
properties could be specified via temporal logics (e.g., LTL [5]), we will use finite automata
or regular expressions to simplify the presentation. Formally:

Definition 2 (Prefix-Closed Safety Automaton). A prefix-closed safety propertyF is
represented by a finite state automaton (FSA)F = 〈Σ ,Q, δ, init,Q \ {err}〉 whereΣ
is the automaton alphabet consisting of observable operations,Q is the set of automaton
states,δ is the transition function mapping a state and an operation to a successor state,
init ∈ Q is a distinguishedinitial state, err ∈ Q is a distinguishederror state for which for
everyσ ∈ Σ , δ(err, σ ) = err, and all states inQ \ {err} are accepting states. We say that
q ′ is the successor of a stateq on operationop whenδ(q, op) = q ′. Givena sequence of
operationsα = op1; op2; . . . ; opk , we write ValidF (α) or α ∈ ValidF whenα is accepted
byF , and wewrite InvalidF (α) whenα is not accepted byF .

For brevity, we will refer to safety properties using a regular expression representing the
language accepted by an automaton, rather thanspecifying the automaton itself. When
specifying a safety property using a regular expression, we will adopt the convention that a
regular expressionα denotes theprefix closure of the set of sequences of operations defined
byα. For example, whenwe writeread∗; close we also considerε (the empty sequence)
andread to be valid sequences.

Example 3. Consider the property read∗; close stating that a file may beread an
arbitrary number of times before it is closed (and should never be read after it was closed
and never be closed twice). The alphabet for this problem consists of two operations
Σ = {read, close}. TheFSA for this property is shown inFig. 3.

When verifying a safety property represented by an automaton〈Q, init, err,Σ , δ〉 for
a shallow programP, we will assume that each method name used inP is mapped to an
element ofΣ . Given this convention, we will use names of operations inΣ and methods
in P interchangeably, i.e., we will say that a statement of the formx.op() invokes an
operationop ∈ Σ . Wecan then relate method invocations to sequences of operations inΣ
as follows:
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Definition 4 (Operation Sequences for Objects). Given aP-pathρ, U(ρ) denotes the set
of object instances created during this execution, and for any objecto ∈ U(ρ), ρ[o] denotes
the sequence of operations performed ono during execution ofρ.

Given thedefinitions above, we can now formally describe the class of verification
problems we wish to solve:

Definition 5 (SVF ). Given a safety propertyF , theshallow verification problem for F ,
SVF , determines for any shallow programP whether there exists a pathP-pathρ such
thatρ[o] ∈ InvalidF for someo ∈ U(ρ).

3. Omission-closed properties in polynomial time

In this section, we show thatomission-closed properties can be verified in polynomial
time.

Omission-closed properties

Informally, a property is omission-closed if the set of all valid sequences of operations
is closed with respect to omissions: any sequence obtained by omitting one or more
operations from a valid sequence of operations is also valid.

Definition 6. A property represented by an automatonF is said to beomission-closed
when for all sequencesα, β, γ ∈ Σ∗, ValidF (αβγ )⇒ ValidF (αγ ).

The following theorem presents alternative characterizations of omission-closed
properties.

Theorem 7. Given an automaton F , the following are all equivalent, where all sequences
are elements of Σ∗:

(a) For all sequences α, β, γ , ValidF (αβγ )⇒ ValidF (αγ ).
(b) If ω1 is a subsequence of ω2, then ValidF (ω2)⇒ ValidF (ω1).
(c) There exists a finite set of forbidden subsequencesξ1, ξ2, . . . , ξk such that a sequence

α is in InvalidF iff α contains some ξi as a subsequence.

Proof. The equivalence of (a) and (b) is straightforward. As for (c), consider the forbidden
subsequencesξi corresponding to theacyclic paths in theautomatonF from the initial
state to the error state. Any sequence containing someξi is invalid (from (b)), and it is
clear that any invalid sequence must contain an acyclic path from the initial state to the
error state as a subsequence. (For example, the forbidden subsequences for the automaton
in Fig. 3areξ1 = close; read andξ2 = close; close.) The result follows.

Example 3.1. Consider the automatonF3 of Fig. 3. For this automaton,the sequence
read; read; close is in ValidF3, and so is the sequence read; close obtained
by dropping the intermediateread operation. Moreover, for any valid sequence
read∗; close, dropping any subsequence ofreads,or dropping theclose yields a valid
sequence.
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ForF3, it is sufficient to consider the forbidden subsequencesξ1 = close; read and
ξ2 = close; close. Each sequenceα containingξ1 or ξ2 as a subsequence is inInvalidF3,
and each sequence inInvalidF3 containsξ1 or ξ2 as a subsequence.

Background: Distributive predicate abstractions

The analysis we present will utilize apredicate abstraction that tracks the values of a set
of predicates P defined on the concrete program-state. (We will use the termprogram-state
to denote the state of the whole program in the concrete semantics, to distinguish it from a
state in a FSA specifying a property.) For efficiency reasons, we will utilize anindependent
attributes analysis [22], an analysis that doesnot maintain the correlation between different
predicate values. Specifically, the set of concrete program-states arising at a program point
will be abstracted by a value inP → {false,maybe}. We now summarize the conditions
under which anindependent attributes analysis can be used for a predicate abstraction
without losing precision. Given a predicateϕ and a statementSt, we denote by WP(St, ϕ)
the weakest precondition ofϕ with respect toSt [10].

Definition 8. Given a finite set of predicatesBase, we say that a finite set of predicates
P = {P1, . . . , Pk} is a distributive WP-closure of Base when Base ⊆ P and for each
predicatePi ∈ P , and for each statementSt, WP(St, Pi ) = Pj1 ∨ . . . ∨ Pjm , where
Pj1, . . . , Pjm ∈ P . We also say that the set of predicatesP is distributively WP-closed.

Theorem 9. Given a distributively WP-closed set of predicates P for a program Pgm,
precise analysis (i.e., determining for every program point and every predicate in P
whether there exists a path to the program point causing the predicate to be true) is possible
in time O(|P ||Pgm|).
Proof. Straightforward. For example, the problem can be reduced to a reachability problem
over a graph of sizeO(|P ||Pgm|), as in the IFDSframework of [25]. We note that the
analysis can also identify paths that will cause a given predicate to become true at a given
point when such a path exists.�

A polynomial algorithm

We use adesignated predicateError that is true in a program-state if and only if the
program-state contains an object in the error stateerr. We will now show that for omission-
closed properties, a distributive WP closure of polynomial size can be constructed for
{Error}. In general, a distributive WP closure for{Error} needs to include predicates that
refer to aliasing relationships among variablesas well as the state of theobjects pointed to
by the variables. This motivates the following definition of a family of predicates.

Definition 10. We write Inσ (x) to denote the fact that the object pointed to by the variable
x is in stateσ ∈ Q. Givenany S ⊆ Q, we use the shorthandInS(x) �

∨
σ∈S Inσ (x) to

denote that the object pointed to by the variablex is in one of the states inS.

Definition 11. Let A be a non-empty set of variables (in a given program),S ⊆ Q a set
of states inF . We use the predicate〈A, S〉 to mean that all variables inA have the same
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V←−F = ∅; E←−F = ∅; workSet = {{err}};
while workSet �= ∅ {

select and remove S from workSet;

for each operation op ∈ Σ {
P = ←−δ (S, op);

if P �∈ V←−F { V←−F = V←−F ∪ {P}; workSet = workSet ∪ {P}; }
E←−F = E←−F ∪ {P → S};

} }

Fig. 4. Backwards exploration of theproperty automaton.

value (are aliases), and the object referred to by variables inA is in one of the states inS.
Formally,

〈A, S〉 � ∧
x∈A,y∈A(y = x) ∧∧

x∈A InS(x).

The number of predicates of the form〈A, S〉 is exponential in the number of program
variables. However, not all predicates of this form arerelevant, i.e. need to be in a
distributive WP closure for{Error}. The key to obtaining a polynomial-size distributive
WP closure for{Error} is to bound the size of the setA, for any relevant predicate〈A, S〉,
by a constant. We will do thisin two steps. First, we will show that a predicate〈A, S〉 is
relevant only for certainS ⊆ Q. Then, we will show that for each such setS, thepredicate
〈A, S〉 is relevantfor only A of cardinality less than a specific constant.

We first present an algorithm for determining whichS ⊆ Q are relevant for verification.
The algorithm shown inFig. 4 is based on a backward traversal of the finite state

automaton. The algorithm constructs a graph
←−F = (V←−F , E←−F ), where each vertex is a

subset ofQ, and anedgeP → S denotes thatP is a pre-image ofS for the transition
functionδ (see below).

Definition 12. Let
←−
δ denote thereverse transition relation of F , i.e., given a stateq ∈ Q,

an operationa ∈ Σ , and a setof statesS ⊆ Q,
←−
δ (q, a) � {q ′ ∈ Q|δ(q ′, a) = q},

and
←−
δ (S, a) �

⋃
q∈S
←−
δ (q, a). For S1, S2 ⊆ Q, S2 is said to be apre-image of S1 if

∃a ∈ Σ .
←−
δ (S1, a) = S2.

Fig. 5 illustrates the graph constructed by backward exploration of theread∗; close

automaton shown inFig. 3. We now establish a result about the graph
←−F .

Theorem 13. If F represents an omission-closed property, then for any S ∈ V←−F , and any

operation a ∈ Σ ,
←−
δ (S, a) ⊇ S. Further, the graph

←−F is acyclic except for self-loops.

Proof. For anyS ∈ V←−F there exists a sequence of operationsξ suchthat S is the set of

all states in whichξ is invalid (by construction). Now,
←−
δ (S, a) is the set of all states in
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init �� {err, q2
q1}

�������� ��
	
�����

{err,
q2}

�������� �� {err}�������� 	

�����

Fig. 5. The graph constructed by backward exploration of the automaton ofFig. 3.

Stmt WP(Stmt, 〈A, S〉)
x := y 〈A[x �→ y], S〉
x := new () 〈A, S〉 if x �∈ A

false if x ∈ A ∧ A �= {x}
true if A = {x} ∧ init ∈ S

false if A = {x} ∧ init �∈ S

x.op() 〈A, S〉 if
←−
δ (S,op) = S

〈A ∪ {x},←−δ (S, op)〉 ∨ 〈A, S〉 if
←−
δ (S, op) ⊃ S

At program true if |A| = 1∧ init ∈ S

entry false if |A| �= 1∨ init �∈ S

Fig. 6. WP equations for predicates of the form〈A, S〉. We denote by A[x �→ y] the set obtained by replacing
any occurrence ofx in A by y.

which aξ is invalid. SinceF is omission-closed,
←−
δ (S, a) ⊇ S. Sinceany predecessorP

of S must be a superset ofS, it follows immediately that any cycle in the graph
←−F must be

a self-loop. �

Figs. 6and7 present weakest precondition equations for predicates of the form〈A, S〉
and the special predicateError. From these equations, we can determine which predicates
are relevant for verification. The equations reveal two things. First, they show that it is
sufficient if we restrict our attention to predicates of the form〈A, S〉 whereS ∈ V←−F . Sec-
ond, they show that a predicate〈A, P〉 is relevantonly if there is a relevant predicate〈B, S〉
whereS is a proper successor ofP in the graph

←−F andB hascardinality at least|A|−1. In
other words, we need to only consider predicates of the form〈A, P〉 where the cardinality

of A is lessthan or equal to the length of the longest acyclic path fromP to {err} in←−F .

Definition 14. For anyS ∈ V←−F , definedist(S) to be the number of edges in the longest

acyclic path fromS to {err} in←−F . Given a program with a set of variablesVars, we define
a set ofpredicatesP = {〈A, S〉|S ∈ V←−F , A ⊆ Vars, |A| ≤ dist(S)} ∪ {Error}.
Theorem 15. The set P ∪ {true, false} is a distributively WP-closed set of predicates for
{Error}.
Proof. Follows from the above discussion. �
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Stmt WP(Stmt,Error)

x := y Error

x := new () Error

x.op() Error if
←−
δ ({err}, op) = {err}

〈{x},←−δ ({err}, op)〉 ∨ Error if
←−
δ ({err}, op) ⊃ {err}

At program entry false

Fig. 7. WP equations for the predicateError.

Theorem 16. If F is omission-closed, then SVF is in P.

Proof. Immediate fromTheorems 15and9. Note that thecardinality ofP is O(|Vars|k),
whereVars is the set of all variables in the program andk is the length of the longest

acyclic path in
←−F . (Note, from Theorem 13, thatk is also bounded by the number of states

in F .) �

Example 3.2. Consider the propertyread∗close represented by the automaton ofFig. 3.

The graph
←−F for this automaton is shown inFig. 5. Thederivation for this property is as

follows3:

WP(x.read(),Error) = 〈{x}, {err, q2}〉 ∨ Error

WP(x.close(),Error) = 〈{x}, {err, q2}〉 ∨ Error

WP(y.close(), 〈{x}, {err, q2}〉) = 〈{x, y}, {err, q2, q1}〉 ∨ 〈{x}, {err, q2}〉
WP(w.read(), 〈{x, y}, {err, q2, q1}〉) = 〈{x, y}, {err, q2, q1}〉.

Thus,read∗; close verification can be done in timeO(|Vars|2|Pgm|).
Discussion

A logical formula can usually be simplified into a number of equivalent forms. Hence,
a weakest precondition can often be expressed in many ways. The form we chose to
use in expressing weakest preconditions above is critical to deriving a polynomial-time
verification algorithm. As an example, consider theread∗; close example. The following
is an alternative, correct, weakest precondition equation, which says that an object in the
err state is possible afterx.close() iff either x points to an object in stateq2 or an object
exists in theerr state before the statement:

WP(x.close(),Error) = 〈{x}, {q2}〉 ∨ Error. (1)

The actual formulation we used

WP(x.close(),Error) = 〈{x}, {err, q2}〉 ∨ Error (2)

3 Note that the variablesx, y, andw used in the derivation process are free variables and not variables of a
specific program.
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init �� q1�������� open ���� 	

read

��
q2��������	
��

open���
read �� q3�������� {open,read} �� err��������	
��

{open,read}���

Fig. 8. An automaton for the propertyopen+; read.

actually contains some redundancy. In particular,〈{x}, {err, q2}〉 is equivalent to
〈{x}, {err}〉 ∨ 〈{x}, {q2}〉. But the disjunct 〈{x}, {err}〉 is redundant because it implies
Error, another disjunct in our formula.

However, Eq. (2) is preferable to Eq. (1). In particular, we have seen that we can
determine in polynomial time if〈{x}, {err, q2}〉 is possible at any program point. However,
one can show that determining whether〈{x}, {q2}〉 is possible at a program point is
PSPACE-hard, adapting the proof we present inSection 4. Thus, unless PSPACE= P, a
distributively WP-closed set containing〈{x}, {q2}〉 of polynomial sizedoes not exist! Note
that the set{q2} has a pre-image (namely

←−
δ ({q2}, close) = {q1}) that isnot a superset of

{q2}, thus not satisfying the requirements ofTheorem 13. This is why the proof used for
omission-closed properties cannot be used for this predicate.

4. Repeatable enabling sequence properties

In this section we show that verification of repeatable enabling sequence properties (see
Definition 17) is NP-complete for acyclic programs and PSPACE-complete in general.

Definition 17 (Repeatable Enabling Sequence Properties). We say that a property repre-
sentedby an automatonF is a repeatable enabling sequence property if there exist se-
quences of operationsα, β andγ such that the sets of sequencesαβ+γ are all valid but the
sequenceαγ is invalid. (The sequenceβ may be thought of as a repeatable sequence that
enablesγ .)

For example, the propertyopen+; read (seeFig. 8) which requires that aread be
preceded by one or moreopen operations is a repeatable enabling sequence property.
(The more natural propertyopen+; read∗ is also a repeatable enabling sequence property,
but we useopen+; read as the running example to contrast it with the omission-
closed propertyread∗; close.) We show that verification of repeatable enabling sequence
properties is PSPACE-complete by reduction from thesimultaneously false problem
(see [20,11]).

Definition 18 (Simultaneously False Problem). Given a program P with an initial
assignment of values (0 or 1) to a setx1, x2, . . . , xn of boolean variables, where
the program P contains only assignments (of constants or variables), conditionals or
unconditional jumps, asimultaneously false problem for P is a problem of the form:
Is there an execution path from the entry point ofP to a program point p such that
x1 = 0, x2 = 0, . . . , xk = 0 when control reachesp?
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Lemma 19. (1) The simultaneously false problem for acyclic programs is NP-complete.
(2) The simultaneously false problem for arbitrary programs is PSPACE-complete.

Proof. The binary simultaneous value problem can be easily reduced to the simultaneously
false problem by following the construction used in the proof of Theorem 3.6 in Muth and
Debray [20]. The idea is to transform a programP into a programP ′ such that every
variablexi in P corresponds to two variablesXi and Xi , every assignmentxi = 0 is
converted toXi = 0; Xi = 1, every assignmentxi = 1 is converted toXi = 1; Xi = 0,
and every assignmentxi = x j is converted intoXi = X j ; Xi = X j . Considerthe
simultaneous value problemx1 = c1, x2 = c2, . . . , xk = ck for P. It can be easily shown
that the simultaneously false problem forP ′ obtained by replacing every conjunctxi = 0
with Xi = 0 and xi = 1 with Xi = 0 is equivalent. Thus, the simultaneously false
problem is also NP-complete and PSPACE-complete for acyclic and arbitrary programs
respectively. �

Let F be an automaton representing a repeatable enabling sequence property. We show
that SVF is PSPACE-hardby reduction from the simultaneously false problem. Ifα, β,
γ are such that sequencesαβ+γ are valid and sequenceαγ is invalid, thenβ andγ must
be non-empty (althoughα may be empty). Given an instance of the simultaneously false
problemx1 = 0, x2 = 0, . . . , xk = 0 at program pointp in a programP, we construct a
programP ′ as follows. First, we create two objectsZero andOne which support methods
corresponding to the sequencesα, β, andγ . Next, we copy programP into P ′ replacing
every assignment of the form xi = 0 by xi = Zero andxi = 1 by xi = One respectively.
Then, at program pointp, we insert the statementif (?) goto p1. Let the sequenceα be
a1, a2, . . . , al , letβ beb1, b2, . . . , bm , and letγ bec1, c2, . . . , cn . We insert the following
sequence of statements at the end:

goto exit;
p1 : Zero.a1(); Zero.a2(); . . . ; Zero.al();

One.a1(); One.a2(); . . . ; One.al();
x1.b1(); x1.b2(); . . . ; x1.bm();
x2.b1(); x2.b2(); . . . ; x2.bm();
. . .

xk.b1(); xk.b2(); . . . ; xk.bm();
One.c1(); One.c2(); . . . ; One.cn();

exit :
Note that control can reach program pointp1 only through the conditional branch statement
if (?) goto p1 (because of the statementgoto exit; just beforep1).

Lemma 20. Assuming that the sequences of operations β and γ are non-empty, the
simultaneously false problem x1 = 0, x2 = 0, . . . , xk = 0 at program point p in P returns
true if and only if program P ′ violates the property represented by F .
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Proof. ProgramP ′ creates only two objectsZero andOne. Note that the only sequence of
operations performed onZero is αβ i wherei is the number of variables inx1, x2, . . . , xk

that are aliased toZero at program pointp. Thus, no illegal operation is ever performed on
Zero. Theonly sequence of operations performed onOne is αβ jγ where j is thenumber
of variables inx1, x2, . . . , xk that are aliased toOne at program pointp. This sequence
is invalid iff j can be 0. In other words,P ′ violates the property represented byF iff the
simultaneously false problemx1 = 0, x2 = 0, . . . , xk = 0 at program pointp in P returns
true. �

The above lemma shows the hardness of typestate verification for repeatable enabling
sequence properties. We now establish a straightforward completeness result.

Lemma 4.1. For any automaton F , SVF is in NP for acyclic programs and in PSPACE
for arbitrary programs.

Proof. SVF is in NP for acyclic programs since we can non-deterministically choose a
path through the program and check to see whether any object reaches the error state during
execution along that path. To show that SVF for an arbitrary programP is in PSPACE,
we construct a non-deterministic multi-tape polynomial-space-bounded Turing machine
M to solve theproblem.M simulates input programP, non-deterministically choosing the
branch to take at branch points. Let us refer to objects pointed to by the variables inP as
live objects.M keeps track of which variables point towhich (live) objects, and tracks the
finite state of each live object. The space neededto maintain this information is trivially
bounded by a polynomial in the size of programP. If any of the relevant objects goes into
the error state during simulation,M halts and signals the possibility of an error. Conversely,
if there is a path that causes one of theobjects to go into the error state, thenM can guess
this path and will halt signalling the error.�

Theorem 21. Consider a repeatable enabling sequence property represented by an
automaton F . SVF is NP-complete for acyclic programs and PSPACE-complete for
arbitrary (cyclic) programs.

Proof. The proofs of NP-hardness and PSPACE-hardness of acyclic and arbitrary
programs respectively follow fromLemmas 19and20respectively.Lemma 4.1shows that
the problem of shallow verification for all safety properties represented by an automaton
are in NP for acyclic programs and in PSPACE for arbitrary programs.�

Theorem 21shows that verification of repeatable enabling sequence properties is
difficult even for shallow programs. In fact, the situation is worse. We now show that even
the shortest error paths may be of exponential size in the worst case.

Definition 22 (Error Path). LetF be an automaton representing a property to be verified.
We say that apath (possibly cyclic) in the control flow graph ofP from the entry vertex
to some vertexv is anerror path if symbolic execution of the program along this path
(ignoring the conditionals) exhibits a violation of the property associated withF . The
programP is said to beerroneous if there exists an error path inP. An integer-valued
function f is said to be a bound on the shortest error path length if every erroneous program
for sizen is guaranteed to have an error path of lengthf (n) or less.
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Definition 23 (Loop Unrolling). Consider the control-flow-graphG P = (VP , E P ) of
programP. Let G′P = (VP , E ′P ) denote the acyclic graph obtained fromG P by removing
all back-edges. We defineUnroll(G P , n) to be the acyclic graph obtained by makingn+1
copies ofG′P (called G′P(1),G′P(2), . . . ,G′P (n+1) respectively), and for every back-edge
(u, v) in G P , adding an edge from vertexu in G′P(i) to vertexv in G′P(i+1) for all i from
1 tov. More formally Unroll(G P , n) = (V ∗, E∗) where

V ∗ = { (v, i) | v ∈ VP , 1 ≤ i ≤ n + 1 }
E∗ = { [(u, i), (v, i)] | [u, v] ∈ E ′P , 1 ≤ i ≤ n + 1 } ∪

{[(u, i), (v, i + 1)] | [u, v] ∈ E P − E ′P ,1 ≤ i ≤ n }.
It is easy to verify thatUnroll(G P , v) is acyclic and contains every path of lengthv or

less inG P .

Theorem 24. If NP �= PSPACE, then there does not exist a polynomial bound on the
shortest error path length for repeatable enabling sequence properties.

Proof. Let F be the finite state automaton associated with the repeatable enabling
sequence property. FromTheorem 21it follows that verification ofF for acyclic programs
is in NP and for arbitrary (cyclic) programs is PSPACE-hard. We proveTheorem 24by
showing that if there is a polynomial bound on the shortest error path, then the verification
problem for cyclic programs can be polynomial-time reduced to the verification problem
for acyclic programs, which would imply that NP= PSPACE.

Let p(n) denote a polynomial bound on the size of the shortest error path wheren
denotes the size of the program. Given an arbitrary programP with control flow graphG P ,
we construct the acyclic programUnroll(G P , p(n)) which is acyclic and contains all paths
of lengthp(n) or less inG P . The size ofUnroll(G P , p(n)) and the time taken to construct
it are both polynomial inn. Thus, the problem of verification ofG P is polynomially
reduced to the problem of verifyingUnroll(G P , p(n)), which isa contradiction. �

Theorem 24suggests that it may not be possible to find short counterexample paths
exhibiting the violation of properties likeopen+; read. This is important to know because
many approaches to verification (e.g., [3]) are inherently associated with the generation of
a counterexample path that exhibits the violation of the property of interest.Theorem 24
suggests the possibility that even the shortesterror path in the program may be of size
exponential in the size of the program.

5. Verification by counting

We havenow seen that verification is intractable for repeatable enabling sequence
properties and polynomial for omission-closed properties. Unfortunately, there are
properties that fall into neitherclass. A simple example is theopen; read property. Note
that open; read is similar to open+; read in that it requires that an object be opened
before it can be read, but it differs from it in that an object cannot be opened multiple
times. Does this make verification any easier?
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5.1. The intuition

The requirement that an object cannot beopened multiple times is a forbidden sub-
sequence problem (whereopen; open is the forbidden subsequence; seeTheorem 7(c)).
It follows that we can verify whether the given program cannot open an object multiple
times in polynomial time. Thus,open; read verification is polynomial-time equivalent to
open+; read verification of aprogramguaranteed not to open any object more than once.
We will now show that, at least for acyclic programs, this added restriction (that an object
cannot be opened multiple times) does makepolynomial-time verification possible.

Let us begin by considering whyread∗; close verification is easy whileopen+; read
verification is not. Consider the following code fragment:

...; p1.open(); ...; pk.open(); ...; q.read();

Theopen+; read property will be violated if there is an execution path such that the value
of q at theread statement is different from the values ofeach pi at the corresponding
open statements (assuming there are noopen statements in the program other than those
shown above). Determining whether certain relationships cansimultaneously exist among
apotentially unbounded number of program variables is difficult.

In contrast, consider the following code fragment:

...; p1.close(); ...; pk.close(); ...; q.read();

Theread∗; close property will be violated here if there is an execution path such that the
value ofq at theread statement is equal to the value ofsome pi at the correspondingclose
statement. In other words, this requiresindependent answers tok different questions, each
about the value of onlytwo program variables. This turns out to be easy.

Let us now turn back to the earlier example above:

...; p1.open(); ...; pk.open(); ...; q.read();

If we now know that no object is opened twice, how can we exploit this foropen+; read
(i.e., open; read) verification? For any giveni, we know that it is easy to determine
whether the q.read() statement may read the same object that is opened by the
pi .open() statement. Imagine that we cancount thenumber of execution paths,ni , along
which this can happen, for eachi. Adding up all theni would tell us how many times
(i.e., along how many execution paths) theq.read() statement is avalid operation.4 If
this number does not equal the number of execution paths to theq.read() statement, then
there must be an execution path along which q.read() will read an unopened object!
Such indirect reasoning based on counting is the basis for the algorithm presented in this
section.

Obviously, counting the number of paths is not feasible in the presence of cycles. In
the rest of this section we will restrict our attention to acyclic, or loop-free, programs, and
show how the above approach can be used for a class of verification problems.

4 This is where we exploit the fact that no objectis opened twice. Otherwise, adding upni will end up counting
somepaths multiple times.
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5.2. Definitions

We start by formally defining the quantities we want to compute. Given some program
P, consider aP-pathρ. Recall thatU(ρ) denotes the set of object instances created inρ,
and for anyi ∈ U(ρ), ρ[i ] denotes the sequence of operations performed oni . Let ρ[p]
denote the value of variablep at the end ofρ. If s is a statement in the program, we will
usesin andsout to denote the program points just before and just after the statements.

Definition 25. Let α denote a sequence of operations,π a program path, andΠu

the set of all paths from entry to a program pointu. Then, define ct(α, π) �
|{ i ∈ U(π) | π[i ] = α }| andct(α, u) �

∑
π∈Πu

ct(α, π).

We now define auxiliary counts of the form̂ct(〈X, α〉, u), which wewill subsequently
use to computect(α, u), whereX is a set ofprogram variables. Informally, the setX will
constrain the counting to the object instance pointed to by all variables inX . Second,
while ct(α, u) countsexact matches forα, ĉt(〈X, α〉, u) will countsubsequence matches
for α.

Definition 26. Given twosequencesα andβ, let ĉt(α, β) denote the number of timesα
occurs as a (not necessarily contiguous) subsequence ofβ:

ĉt(a1 · · · ak, b1 · · · bm) � | {(i1, . . . , ik) | 1≤ i1 < · · · < ik ≤ m

∧ a1 · · · ak = bi1 · · · bik } |.
In the special case whereα is the empty sequence,̂ct(α, β) is definedto be1.

Definition 27. Given a set of variablesX , we defineU(π, X) � { i ∈ U(π) | ∀p ∈
X.π[p] = i }. Essentially, ifX is empty, thenU(π, X) is U(π). If X is non-empty and all
variables inX point to the same objecti thenU(π, X) is { i }. If all variables inX do not
point to the same object, thenU(π, X) is empty.

Definition 28. Let α denote a sequence of operations,π a program path, andΠu the set
of all paths from the entry vertex to a program pointu. Then, defineĉt(〈X, α〉, π) �∑

i∈U(π,X) ĉt(α, π[i ]) andĉt(〈X, α〉, u) �
∑
π∈Πu

ĉt(〈X, α〉, π).
Example 29. Consider the following program:

x = new (); y = new ();
x.open();
if (?) {

y.open();
}
x.read(); y.read();

Let u denote the program point after the last statementy.read(). Let ρ1 denote the path
to u where the false branch of the if-statement is taken, and letρ2 denote the other path to
u. Thetable below shows the values of the various quantities defined above. The fact that
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Statementu Equations

ĉt(〈X, α〉,entryin ) = if ( |X | > 1 or |α| > 0) then 0 else 1

ĉt(〈X, α〉, uin ) =
∑
v∈pred(u) ĉt(〈X, α〉, vout )

x := y ĉt(〈X, α〉, uout ) = ĉt(〈X − { x } ∪ { y }, α〉, uin ) (if x ∈ X)

ĉt(〈X, α〉, uout ) = ĉt(〈X, α〉, uin ) (if x �∈ X)

x := new () ĉt(〈{ x }, ε〉, uout ) = ĉt(〈{ x }, ε〉, uin )

ĉt(〈X, α〉, uout ) = 0 (if x ∈ X and (|X | > 1 or |α| > 0))

ĉt(〈X, α〉, uout ) = ĉt(〈X, α〉, uin ) (if x �∈ X andX �= φ)

x.op() ĉt(〈X, α〉, uout ) = ĉt(〈X, α〉, uin ) (whenα is not of the formβop )

ĉt(〈X, α〉, uout ) = ĉt(〈X, βop〉, uin )+ (whereα = βop )

ĉt(〈X ∪ { x }, β〉, uin )

Fig. 9. Equations for computing the number of subsequence matches. Note that, in general, the setX may be
empty, or the sequenceα may be theempty sequenceε, but the equations assume that bothX andα cannot be
simultaneously empty. (We are not interested in the value ofĉt(〈φ, ε〉, u).)

ct(read, u) is non-zero indicates that the program contains a violation of theopen; read
property.

X α ĉt(〈X, α〉, ρ1) ĉt(〈X, α〉, ρ2) ĉt(〈X, α〉, u) ct(α, u)

{x} read 1 1 2 _

{x} open; read 1 1 2 _

{y} read 1 1 2 _

{y} open; read 0 1 1 _

φ read 2 2 4 1

φ open; read 1 2 3 3

5.3. Counting subsequences

We now show how the quantities defined above can be computed.Fig. 9 expresses the
relationships that must hold between theĉt valuesat different program points.

Lemma 30. For any sequence α and any acyclic program Pgm over a set of program
variables Vars, ĉt(〈φ, α〉, u) can be computed for all program points u in polynomial time.

Proof. We compute the values of̂ct(〈φ, α〉, u) using the equations presented inFig. 9.
Note that computinĝct(〈φ, α〉, u) at a program pointu may transitively require computing
the value of ĉt(〈X, β〉, v) at some vertexv, whereβ is a prefix ofα, and X is a set of
variables of cardinality at most|α| − |β|. Hence, the number of values (or equations) we
need to compute at any program point isO(|Vars||α|), whereVars is the set of all variables
in the program. The result follows.�
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5.4. Counting exact matches

Earlier we argued how we could compute the number of exact matches forread from
thenumber of subsequence matches forread and the number of subsequence matches for
open; read. We now present a generalization of this idea.

Lemma 31. Let u denote any program point. We will use β � α to denote that β is a
proper supersequence of α (i.e., that α is a proper subsequence of β). Then,

ct(α, u) = ĉt(〈φ, α〉, u) −
∑
β�α

ĉt(α, β)ct(β, u).

Proof. We will now show thatct(α, π) = ĉt(〈φ, α〉, π) −∑
β�α ĉt(α, β)ct(β, π) for any

execution pathπ , from which the lemma followsimmediately. Note thatct(α, π) counts
exact matches forα in π , while ĉt(〈φ, α〉, π) counts occurrences ofα as a subsequence
in π . Now, consider any supersequenceβ of α. Everyexact match forβ in π will gi ve us
ĉt(α, β) subsequence matches forα. Hence, the above equality follows.�

A sequenceα has infinitely many supersequencesβ. So,how can we make use of the
above equation?

Definition 32. A property represented by an automatonF is said to bealmost-omission-
closed if there exists an integerk such that for all sequencesα, β, γ ∈ Σ∗, if |αβγ | > k
thenValidF (αβγ )⇒ ValidF (αγ ).

Let us refer to(αγ, αβγ ) as an omission-violation ifαβγ is a valid sequence butαγ is
not. An omission-closed property is one with no omission-violations. An almost-omission-
closed property is one with only finitely many omission-violations. Note thatopen; read
is an example of a verification problem where there is only one omission-violation, namely
read is invalid butopen; read is valid. We will now establish the following.

Theorem 33. If F represents an almost-omission-closed property, then SVF for acyclic
programs is in P.

Proof. Consider anyα that is invalid. Then,any supersequenceβ of α of lengthk+1 must
be a forbidden subsequence. Hence, we can check a program in polynomial time to see if it
contains any suchβ. If it does, we can stop since the program does not satisfy the required
property. Otherwise, we count the number of subsequence matches in the program forα

and every supersequenceβ of α of sizek or less. We can then compute the exact match
count usingLemma 31. �

5.5. Verification of programs with loops

How can we adapt the ideas described above to verify programs with loops? Given
an almost-omission-closed property, if we can come up with a polynomial boundp(n)
on the length of the shortest error path, then we can “unroll” loops in a given program
P sufficiently to generate a corresponding loop-free programP ′ that includes all paths
of length p(n) or less in P, and apply the preceding verification algorithm toP ′.
(Definition 23shows howsuch unrolling can be done.) This gives us the following theorem.
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Theorem 34. If F represents an almost-omission-closed property with a polynomial
bound on the shortest error path length, then SVF is in P.

Unfortunately, we have not been able to identify polynomial bounds on the shortest error
path length for almost-omission-closed properties. We conjecture that such polynomial
bounds exist, at least for theopen; read property.

6. Programs with width-limited aliasing

In Section 4we saw that, unless P= NP, verification of repeatable enabling sequence
properties will require exponential timein the worst case. Is it, however,possible to
design verification algorithms that are efficientin practice, e.g., by exploiting properties of
programs that arise in practice? For example, one seldom sees programs in which a very
largenumber of variables point to the same object at a program point. Let us say that a
program has a maximumaliasing width of k if there is no execution path in the program
that will produce an object pointed to by more thank different variables. In this section, we
look at the complexity of typestate verification for programs where the maximum aliasing
width is bounded by a constant.

6.1. Polynomial time verification for shallow programs with width-limited aliasing

In this section we present a verification algorithm motivated by the observation that
the aliasing widths of programs tend to be small in practice. The algorithm runs in time
O(|Pgm|k+1), where|Pgm| is the size of the program andk is the maximum aliasing
width of the program. Unlike the polynomial solutions of previous sections, the algorithm
presented here works for any typestate property.

We note that naive verification algorithms donot achievethe above complexity, i.e.
they may take exponential time even for programs with a maximum aliasing width of 2.
In particular, consider the obvious abstraction where the program-state is represented by a
partition of the program variables into equivalence classes (of variables that are aliased to
each other), with a finite state associated with each equivalence class. The number of such
program-states that can arise at a program point is exponential in the number of program
variables even for programs with a maximum aliasing width of 2.

Our algorithm uses predicates of the form[A, S] defined below.

Definition 35. Let A ⊆ Vars be a non-empty set of program variables, andS ⊆ Q a set of
states ofF .

[A, S] =
∧

x∈A,y∈A

(y = x) ∧
∧

x∈A,z∈Vars\A
(z �= x) ∧

∧
x∈A

InS(x) ).

WhenS contains a single stateσ ∈ Q, we write [A, σ ], rather than[A, {σ }].
Intuitively, a predicate[A, S] means that all variables inA have the same value (are

aliases), every variable not inA has a different value from the variables inA, and the
object referred to by variables inA is in one of the states ofS. Thedifference between
[A, S] and〈A, S〉 (Definition 11) isnoteworthy. The non-aliasing conditions are implicitly
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Statement flow(Statement)([A, σ ])
x := y {[A ∪ {x}, σ ]} if y ∈ A

{[A \ {x}, σ ]} if y �∈ A

x := new() {[{x}, init], [A \ {x}, σ ]} if x ∈ A

{[A, σ ]} if x �∈ A

x.op() {[A, δ(σ, op)]} if x ∈ A

{[A, σ ]} if x �∈ A

Fig. 10.flow equations for predicates of the form[A, σ ].

workList = ∅
for each program point l

results(l) = ∅
for each program variable xi

add (entry, [xi , {init}]) to workList

while workList �= ∅ {
remove (l, ψ) from workList

for each ψ ′ ∈ flow(stmtl )(ψ) {
for l′ ∈ Succ(l) {

if ψ ′ �∈ results(l′) {
results(l′) = results(l′) ∪ {ψ ′}
add (l′, ψ ′) to workList

} } } }

Fig. 11. An iterative algorithm using predicates of the form[A, S].

represented in[A, S] by assuming that every variable not inA has a different value from
the variables inA, whereas in〈A, S〉 the variables not inA may or may not be aliased to
the variables inA.

Fig. 11presents our verification algorithm that computes, for all program points, the set
of predicates of the form[A, σ ] that may-be-true at the program point. (It is said that a
predicatep may-be-true at a program pointu iff there exists a path tou such that execution
along that path will causep to become true.) The algorithm is based on a standard iterative
collecting interpretation algorithm. The functionflow(St)(ϕ), defined inFig. 10, identifies
the set of predicates that may-be-true after statementSt given a predicateϕ that may-
be-true before statementSt. For any program pointl, Succ(l) denotes the successors
of l.
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Theorem 36. The algorithm of Fig. 11preciselycomputes the set of predicates [A, S] that
may hold at any program point in time O((

∑
1≤i≤k

(n
i

)
) ∗ |Pgm|) = O(nk ∗ |Pgm|) where

k is the maximum number of variables aliased to each other at any point in the program
Pgm, and n = |Vars| is the number of program variables.

Proof. It can be shown that (a)∪ϕ∈P flow(St)(ϕ) computes a precise abstract transfer
function for statementSt with respect to the set of predicatesP, and that (b) this is a
distributive function. It directly follows from these facts that the algorithm computes the
precise solution.

We now establish the complexity of the algorithm. Assume that the maximal size of
an alias-set occurring in the program isk. The algorithm may generate predicates of the
form [A, S] for all subsets of any size up tok of program variablesVars. Thenumber of
predicates that may have atrue value in a program point is thereforeO(

∑
1≤i≤k

(n
i

)
) where

n = |Vars| (we treat the number of FSM states as a constant). The complexity of the chaotic
iteration algorithm ofFig. 11 is thereforeO((

∑
1≤i≤k

(n
i

)
)∗ |Pgm|). The expression is also

bounded byO(nk ∗ |Pgm|). The above assumes that the stepof computingflow(stmtl)(ψ)

takes constant time.�

Though the worst-case complexity of the algorithm is exponential, the exponential
factor k is expected to be a smallconstant for typical programs, since the number
of pointers simultaneously pointing to the same object is expected to be small (and
significantly smaller than|Vars|).

Note that using the set of predicates defined inDefinition 35is not sufficient to achieve
the desired complexity. The style of “forward propagation” used by our algorithm is also
essential, as it ensures that the cost of analysis is proportional to the number of predicates
that may-be-true (rather than the number of total predicates, as is the case with alternative
analysis techniques).

6.2. Width-limited aliasing in non-shallow programs

Wehave now seen that typestate verification can be done efficiently for programs where
the aliasing is bounded in certain ways. Specifically, the results of the previous section
show that for shallow programs, typestate verification can be done in polynomial time if
the aliasing width is assumed to be bounded by a constant. A natural question is whether
any such result holds true for non-shallow programs.

Recall that shallow programs are programs where the aliasingdepth is restricted to be
one: program variables may point to objects, but program contains no variables that point
to objects that contain pointers to objects.

Unfortunately, it turns out that typestate verification is hard for non-shallow programs
even if the aliasing width is bounded by a constant. It is known [19] that alias analysis
is intractable for programs where the aliasing depth is two. We now show that the
intractability result holds even if in addition the aliasing width is also restricted to three.

Theorem 37. Alias analysis is NP-hard for programs with aliasing depth two and aliasing
width three.
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Proof. The proof is by reduction from 3-SAT. Consider a 3-SAT formulaC1∧C2 · · ·∧Cn

over logical variablesw1 throughwm . We create a program with a typeT and a second
typePT consisting of a fieldf of type (pointer to)T. Corresponding to every clauseCi , the
program consists of variablesXi, Yi,true, andYi,false of type (pointer to)PT initialized
as follows:

Yi,true = new PT(); Yi,true.f = new T();
Yi,false = new PT(); Yi,false.f = new T();
Xi = Yi,false

BothYi,true andYi,false are constants in the program.
After the initialization code, the program consists of one if-then-else statement for every

logical variablewi in the 3-SAT formula. The then-branch of this statement consists of an
assignment statementXi = Yi,true for every clauseCi that contains the literalwi as one of
its disjuncts. The else-branch of this statement consists of a similar assignment statement
Xi = Yi,true for every clauseCi that contains the negated literalwi as one of its disjuncts.

Thus, there exists a one-to-one correspondence between execution paths through them
if-then-else statements and possible truth assignments to them logical variables, where
we associate the then-branch of thei -th if-statement with an assignment of true to logical
variablewi . It should be clear that after execution through any path,Xi points to the same
object asYi,true if f the corresponding truth assignment makes clauseCi evaluateto true.

We now append the following code fragment:

S = new T();
Y1,true.f = S;
Y2,true.f = X1.f; Y1,true.f = new T();
Y3,true.f = X2.f; Y2,true.f = new T();
· · ·
Yn,true.f = Xn−1.f; Yn−1,true.f = new T();
R = Yn,true.f;

Now, consider any execution path through the whole program that corresponds to a
truth assignment that makes the entire formula true. Then, a pointer to the object created
by the statementS = new T(); will be successively copied through everyYi,true.f and
then finally toR, causingS andR to be aliased at the end of the program. Conversely, it
can be verified that an execution path will causeS andR to be aliased to each other at the
end of the program only if the path corresponds to a truth assignment that makes the given
3-SAT formula true.

Hence,R and S may alias each other at the end of the program iff the given 3-SAT
formula is satisfiable.

Note that the programgenerated above has an aliasing width of three (i.e., no more than
threepointers point to the same object at any point during program execution). In particular,
the assignmentsYi,true.f = new T(); guarantee that no more than three pointers could
point toS at any given time. �

The following theorem is a straightforward consequence of the above result.
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Theorem 38. Typestate verification is NP-hard for programs with aliasing depth two and
aliasing width three.

7. Conclusion

In this paper we have shown that verification of omission-closed properties is in P and
that verification of repeatable enabling sequence properties is NP-complete for acyclic
programs and PSPACE-complete in general. We have shown that verification of almost-
omission-closed properties is in P for acyclic programs. However, many questions still
remain open. For example, we do not know whether verification of almost-omission-
closed properties is in P for cyclic programs. Moreover there are properties which do
not lie in any of these classes. For example, consider the propertyopen; read∗ which
generalizesopen; read by allowing any number ofread operations. We can adapt the
counting method ofSection 5to show that verification ofopen; read∗ is in P for acyclic
programs. However, we have not been able to formulate such a result for a general class
of properties that includesopen; read∗. Finally, there are also other properties such as
(lock; unlock)∗ (any number of alternatinglock andunlock operations) for which we
have neither been able to show a polynomial bound, nor been able to show an NP-hardness
result.

On a more pragmatic note, we have presented a typestate verification algorithm,
for arbitrary typestate properties, that we expect will perform well on the basis of the
reasonable assumption that programs tend to have small aliasing width. However, this
algorithm is restricted to shallow programs. A natural question is how these ideas can
be generalized to do verification for arbitrary programs. One of the primary intuitions
behind our verification algorithm (for shallow programs) isthat maintaining just the
right correlation required between “analysisfacts” can be the key to efficient and precise
verification: maintaining no correlations (independent attribute analysis) can lead to
imprecision, while maintaining all correlations (relational analysis) can lead to inefficiency.
The recent work of [28] shows one way to exploit this intuition for verification of arbitrary
(i.e. non-shallow) programs as well.
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