82 research outputs found

    Influence of non-aqueous phase liquid configuration on induced polarization parameters: Conceptual models applied to a time-domain field case study

    Get PDF
    Resistivity and induced polarization (IP) measurements on soil contaminated with non-aqueous phase liquids (NAPLs) show a great variety in results in previous research. Several laboratory studies have suggested that the presence of NAPLs in soil samples generally decrease the magnitude of the IP-effect, while others have indicated the opposite. A number of conceptual models have been proposed suggesting that NAPLs can alter the pore space in different ways, e.g. by coating the grain surfaces and thus inhibiting grain polarization, or by changing the pore throat size and thus affecting the membrane polarization mechanism. The main aim of this paper is to review previously published conceptual models and to introduce some new concepts of possible residual NAPL configurations in the pore space. Time domain induced polarization measurements were performed at a NAPL contaminated field site, and the data were inverted using the Constant Phase Angle (CPA) model and the Cole–Cole model respectively. No significant phase anomalies were observed in the source area of the contamination when the CPA inverted profiles were compared with soil sampling results of free-phase contaminant concentrations. However, relatively strong phase and normalized phase anomalies appeared next to the source area, where residual free-phase presence could be expected according to the chemical data. We conclude that depending on the NAPL configuration, different spectral IP responses can be expected. In previous research, the NAPL configurations in different samples or field sites are often unknown, and this may to some extent explain why different results have been achieved by different authors. In our field case, we believe that the NAPL forms a more or less continuous phase in the pore space of the source zone leading to an absence of IP anomalies. The increase in phase and normalized phase angle observed next to the source zone is interpreted as a degradation zone. The ongoing biodegradation may have led to a fractionation of the continuous NAPL in the outer part of the original source zone, leading to residual presence of isolated NAPL droplets in the soil pores. With such NAPL configurations, an increased polarization can be expected according to the electrochemical- and membrane polarization mechanisms. More research is needed to confirm the effects of different NAPL configuration on spectral IP parameters

    Generalized focusing of time-lapse changes with applications to direct current and time-domain induced polarization inversions

    Get PDF
    Often in geophysical monitoring experiments time-lapse inversion models vary too smoothly with time, owing to the strong imprint of regularization. Several methods have been proposed for focusing the spatiotemporal changes of the model parameters. In this study, we present two generalizations of the minimum support norm, which favour compact time-lapse changes and can be adapted to the specific problem requirements. Inversion results from synthetic direct current resistivity models that mimic developing plumes show that the focusing scheme significantly improves size, shape and magnitude estimates of the time-lapse changes. Inversions of the synthetic data also illustrate that the focused inversion gives robust results and that the focusing settings are easily chosen. Inversions of full-decay time-domain induced polarization (IP) field data from a CO2 monitoring injection experiment show that the focusing scheme performs well for field data and inversions for all four Cole-Cole polarization parameters. Our tests show that the generalized minimum support norms react in an intuitive and predictable way to the norm settings, implying that they can be used in time-lapse experiments for obtaining reliable and robust result

    Measuring time-domain spectral induced polarization in the on-time: decreasing acquisition time and increasing signal-to-noise ratio

    Get PDF
    Combined resistivity and time-domain direct current induced polarization (DCIP) measurements are traditionally carried out with a 50\% duty cycle current waveform, taking the resistivity measurements during the on-time and the IP measurements during the off-time. One drawback with this method is that only half of the acquisition time is available for resistivity and IP measurements, respectively. In this paper, this limitation is solved by using a current injection with 100\% duty cycle and also taking the IP measurements in the on-time. With numerical modelling of current waveforms with 50\% and 100\% duty cycles we show that the waveforms have comparable sensitivity for the spectral Cole–Cole parameters and that signal level is increased up to a factor of 2 if the 100\% duty cycle waveform is used. The inversion of field data acquired with both waveforms confirms the modelling results and shows that it is possible to retrieve similar inversion models with either of the waveforms when inverting for the spectral Cole–Cole parameters with the waveform of the injected current included in the forward computations. Consequently, our results show that on-time measurements of IP can reduce the acquisition time by up to 50\% and increase the signal-to-noise ratio by up to 100\% almost without information loss. Our findings can contribute and have a large impact for DCIP surveys in general and especially for surveys where time and reliable data quality are important factors. Specifically, the findings are of value for DCIP surveys conducted in urban areas where anthropogenic noise is an issue and the heterogeneous subsurface demands time-consuming 3D acquisitions

    Impact of Time-domain IP Pulse Length on Measured Data and Inverted Models

    Get PDF
    The duration of time domain (TD) induced polarization (IP) current injections has significant impact on the acquired IP data as well as on the inversion models, if the standard evaluation procedure is followed. However, it is still possible to retrieve similar inversion models if the waveform of the injected current and the IP response waveform are included in the inversion. The on-time also generally affects the signal-to-noise ratio (SNR) where an increased on-time gives higher SNR for the IP data

    Doubling the spectrum of time-domain induced polarization by harmonic de-noising, drift correction, spike removal, tapered gating, and data uncertainty estimation

    Get PDF
    The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. Two major limitations restrict the extraction of the spectral information of TDIP data in the field: i) the difficulty of acquiring reliable early-time measurements, in the millisecond range and ii) the self-potential drift in the measured potentials distorting the shape of the late time IP responses, in the second range. Recent developments in TDIP acquisition equipment have given access to full waveform recordings of measured potentials and transmitted current, opening a breakthrough for data processing. For measuring at early times, we developed a new method for removing the significant noise from powerlines contained in the data through a model-based approach, localizing the fundamental frequency of the powerline signal in the full-waveform IP recordings. By this, we cancel both the fundamental signal and its harmonics. Furthermore, a novel and efficient processing scheme for identifying and removing spikes TDIP data is developed. The noise cancellation and the de-spiking allow the use of earlier and narrower gates, down to a few milliseconds after the current turn-off. Furthermore, tapered windows are used in the final gating of IP data, allowing the use of wider and overlapping gates for higher noise suppression without signal distortion. For measuring at late times, we have developed an algorithm for removal of the self-potential drift. Usually constant or linear drift-removal algorithms are used, but these algorithms fail in removing the background potentials due to the polarization of the electrodes previously used for current injection. We developed a drift-removal scheme that model the polarization effect and efficiently allows for preserving the shape of the IP responses at late times. Uncertainty estimates are essential in the inversion of IP data. Therefore, in the final step of the data processing, we estimate the data standard deviation based on the data variability within the IP gates and the misfit of the background drift removal Overall, the removal of harmonic noise, spikes, self-potential drift, tapered windowing and the uncertainty estimation allows for doubling the usable range of TDIP data to almost four decades in time (corresponding to four responses in frequency), and will significantly advance the science and the applicability of the IP method

    Mapping localised freshwater anomalies in the brackish paleo-lake sediments of the Machile–Zambezi Basin with transient electromagnetic sounding, geoelectrical imaging and induced polarisation

    Get PDF
    A recent airborne TEM survey in the Machile-Zambezi Basin of south western Zambia revealed high electrical resistivity anomalies (around 100 Omega m) in a low electrical resistivity (below 13 Omega m) background. The near surface (0-40 m depth range) electrical resistivity distribution of these anomalies appeared to be coincident with superficial features related to surface water such as alluvial fans and flood plains. This paper describes the application of transient electromagnetic soundings (TEM) and continuous vertical electrical sounding (CVES) using geoelectrics and time domain induced polarisation to evaluate a freshwater lens across aflood plain on the northern bank of the Zambezi River at Kasaya in south western Zambia. Coincident TEM and CVES measurements were conducted across the Simalaha Plain from the edge of the Zambezi River up to 6.6 km inland. The resulting TEM, direct current and induced polarisation data sets were inverted using a new mutually and laterally constrained joint inversion scheme. The resulting inverse model sections depict a freshwater lens sitting on top of a regional saline aquifer. The fresh water lens is about 60 m thick at the boundary with the Zambezi River and gradually thins out and deteriorates in water quality further inland. It is postulated that the freshwater lens originated as a result of interaction between the Zambezi River and the salty aquifer in a setting in which evapotranspiration is the net climatic stress. Similar high electrical resistivity bodies were also associated with other surface water features located in the airborne surveyed area

    Application of time domain induced polarization to the mapping of lithotypes in a landfill site

    Get PDF
    Abstract. A direct current (DC) resistivity and time domain induced polarization (TDIP) survey was undertaken at a decommissioned landfill site situated in Hørløkke, Denmark, for the purpose of mapping the waste deposits and to discriminate important geological units that control the hydrology of the surrounding area. It is known that both waste deposits and clay have clear signatures in TDIP data, making it possible to enhance the resolution of geological structures compared to DC surveys alone. Four DC/TDIP profiles were carried out crossing the landfill, and another seven profiles in the surroundings provide a sufficiently dense coverage of the entire area. The whole dataset was inverted using a 1-D laterally constrained inversion scheme, recently implemented for TDIP data, in order to use the entire decay curves for reconstructing the electrical parameters of the soil in terms of the Cole-Cole polarization model. Results show that it is possible to resolve both the geometry of the buried waste body and key geological structures. In particular, it was possible to find a silt/clay lens at depth that correlates with the flow direction of the pollution plume spreading out from the landfill and to map a shallow sandy layer rich in clay that likely has a strong influence on the hydrology of the site. This interpretation of the geophysical findings was constrained by borehole data, in terms of geology and gamma ray logging. The results of this study are important for the impact of the resolved geological units on the hydrology of the area, making it possible to construct more realistic scenarios of the variation of the pollution plume as a function of the climate change

    Heterodox transients in time-domain induced polarization

    Get PDF
    Negative induced polarization (IP) time-domain transients, sign-changing or non-monotonically decaying transients are currently often considered as measurement errors and removed in the data processing. These transients, here named heterodox in the sense of other than generally accepted signals, might originate from measurement errors, inductive effects, or poor signal processing, but synthetic modelling and field measurements show that these transients are physically possible. A simple theoretical explanation of the basic mechanism for their origin can be found through the superposition of contributions from regions with different sensitivities and such heterodox transients can be identified through the processing of full-waveform IP data. A mathematical classification of orthodox and heterodox IP transients into six different types is introduced based on the temporal development of the sign of their amplitude and derivative. The basic mechanism for IP transients with heterodox shapes is further investigated by considering the subsurface Cole-Cole parameter sensitivities and time-varying IP potential for 2D synthetic models. The time-domain forward response and sensitivities are computed through a time transformation that accounts for the current waveform. This approach allows for quantitative unbiased estimates of the time-domain transients and sensitivities, different from the estimates obtained when using multiple direct-current forward computations, as often done in the inversion of time-domain IP data. Time-domain IP transients may differ from the traditionally expected decaying-like transients when the electrode geometry has IP potential sensitivities with different signs for areas with different IP parameters. Hence, previously disregarded IP transients containing valuable information of the subsurface can be kept for inversion and contribute to the final parameter distribution. Increased understanding of theoretically possible IP transients makes way for more accurate processing of data in the future, reducing the time and resources needed for spectral inversion of time-domain data
    • …
    corecore