278 research outputs found

    Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors

    Get PDF
    This is the author accepted manuscript. The final version is available from AAAS via the DOI in this record.Graphene-based photodetectors have demonstrated mechanical flexibility, large operating bandwidth, and broadband spectral response. However, their linear dynamic range (LDR) is limited by graphene’s intrinsic hot-carrier dynamics, which causes deviation from a linear photoresponse at low incident powers. At the same time, multiplication of hot carriers causes the photoactive region to be smeared over distances of a few micrometers, limiting the use of graphene in high-resolution applications. We present a novel method for engineering photoactive junctions in FeCl3-intercalated graphene using laser irradiation. Photocurrent measured at these planar junctions shows an extraordinary linear response with an LDR value at least 4500 times larger than that of other graphene devices (44 dB) while maintaining high stability against environmental contamination without the need for encapsulation. The observed photoresponse is purely photovoltaic, demonstrating complete quenching of hot-carrier effects. These results pave the way toward the design of ultrathin photodetectors with unprecedented LDR for high-definition imaging and sensing.S.R. and M.F.C. acknowledge financial support from the Engineering and Physical Sciences Research Council (grant nos. EP/J000396/1, EP/K017160/1, EP/K010050/1, EP/G036101/1, EP/M001024/1, and EP/M002438/1), from the Royal Society’s International Exchanges Scheme 2012/R3 and 2013/R2, and from the European Commission (FP7-ICT-2013-613024-GRASP)

    Coupling molecular spin states by photon-assisted tunneling

    Get PDF
    Artificial molecules containing just one or two electrons provide a powerful platform for studies of orbital and spin quantum dynamics in nanoscale devices. A well-known example of these dynamics is tunneling of electrons between two coupled quantum dots triggered by microwave irradiation. So far, these tunneling processes have been treated as electric dipole-allowed spin-conserving events. Here we report that microwaves can also excite tunneling transitions between states with different spin. In this work, the dominant mechanism responsible for violation of spin conservation is the spin-orbit interaction. These transitions make it possible to perform detailed microwave spectroscopy of the molecular spin states of an artificial hydrogen molecule and open up the possibility of realizing full quantum control of a two spin system via microwave excitation.Comment: 13 pages, 9 figure

    Locking electron spins into magnetic resonance by electron-nuclear feedback

    Full text link
    The main obstacle to coherent control of two-level quantum systems is their coupling to an uncontrolled environment. For electron spins in III-V quantum dots, the random environment is mostly given by the nuclear spins in the quantum dot host material; they collectively act on the electron spin through the hyperfine interaction, much like a random magnetic field. Here we show that the same hyperfine interaction can be harnessed such that partial control of the normally uncontrolled environment becomes possible. In particular, we observe that the electron spin resonance frequency remains locked to the frequency of an applied microwave magnetic field, even when the external magnetic field or the excitation frequency are changed. The nuclear field thereby adjusts itself such that the electron spin resonance condition remains satisfied. General theoretical arguments indicate that this spin resonance locking is accompanied by a significant reduction of the randomness in the nuclear field.Comment: 6 pages, 5 figures, 4 pages supplementary materia

    Spin-orbit qubit in a semiconductor nanowire

    Get PDF
    Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to electrically control spins and as such lies at the foundation of spintronics. Even at the level of single electrons, spin-orbit interaction has proven promising for coherent spin rotations. Here we report a spin-orbit quantum bit implemented in an InAs nanowire, where spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime we realize fast qubit rotations and universal single qubit control using only electric fields. We enhance coherence by dynamically decoupling the qubit from the environment. Our qubits are individually addressable: they are hosted in single-electron quantum dots, each of which has a different Land\'e g-factor. The demonstration of a nanowire qubit opens ways to harness the advantages of nanowires for use in quantum computing. Nanowires can serve as one-dimensional templates for scalable qubit registers. Unique to nanowires is the possibility to easily vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and push semiconductor qubit fidelities towards error-correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, the flying qubit, for long-distance quantum communication

    Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

    Get PDF
    One fundamental requirement for quantum computation is to perform universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here we show that by subjecting each electron spin to a magnetic field of different magnitude we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic field gradient of several hundred milliTesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single and potentially multiple qubit operations with gate times that approach the threshold required for quantum error correction.Comment: 11 pages, 4 figures. Supplementary Material included as ancillary fil

    Ultrafast optical rotations of electron spins in quantum dots

    Full text link
    Coherent manipulation of quantum bits (qubits) on time scales much shorter than the coherence time is a key prerequisite for quantum information processing. Electron spins in quantum dots (QDs) are particularly attractive for implementations of qubits. Efficient optical methods for initialization and readout of spins have been developed in recent years. Spin coherence times in the microsecond range have been demonstrated, so that spin control by picosecond optical pulses would be highly desirable. Then a large number of spin rotations could be performed while coherence is maintained. A major remaining challenge is demonstration of such rotations with high fidelity. Here we use an ensemble of QD electron spins focused into a small number of precession modes about a magnetic field by periodic optical pumping. We demonstrate ultrafast optical rotations of spins about arbitrary axes on a picosecond time scale using laser pulses as control fields.Comment: 10 pages, 4 figure

    Electrically driven single electron spin resonance in a slanting Zeeman field

    Full text link
    The rapidly rising fields of spintronics and quantum information science have led to a strong interest in developing the ability to coherently manipulate electron spins. Electron spin resonance (ESR) is a powerful technique to manipulate spins that is commonly achieved by applying an oscillating magnetic field. However, the technique has proven very challenging when addressing individual spins. In contrast, by mixing the spin and charge degrees of freedom in a controlled way through engineered non-uniform magnetic fields, electron spin can be manipulated electrically without the need of high-frequency magnetic fields. Here we realize electrically-driven addressable spin rotations on two individual electrons by integrating a micron-size ferromagnet to a double quantum dot device. We find that the electrical control and spin selectivity is enabled by the micro-magnet's stray magnetic field which can be tailored to multi-dots architecture. Our results demonstrate the feasibility of manipulating electron spins electrically in a scalable way.Comment: 25 pages, 6 figure

    Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance.

    Get PDF
    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K-1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K-1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K-1, and the ability to resolve temperature variations down to 15 μK

    Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance

    Get PDF
    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR 2–4%K^(-1) for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs 4–11%K^(-1) have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900%K^(-1), and the ability to resolve temperature variations down to 15mK

    An addressable quantum dot qubit with fault-tolerant control fidelity

    Get PDF
    Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy (N-V) centers in diamond and phosphorus atoms in silicon, including the demonstration of long coherence times made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has orders of magnitude improved coherence times compared with other quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning of the electron g*-factor, we can Stark shift the electron spin resonance (ESR) frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct path to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies
    • …
    corecore