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One fundamental requirement for quantum computation is to perform universal manipula-
tions of quantum bits at rates much faster than the qubit’s rate of decoherence. Recently,
fast gate operations have been demonstrated in logical spinqubits composed of two electron
spins where the rapid exchange of the two electrons permits electrically controllable rota-
tions around one axis of the qubit. However, universal control of the qubit requires arbitrary
rotations around at least two axes. Here we show that by subjecting each electron spin to
a magnetic field of different magnitude we achieve full quantum control of the two-electron
logical spin qubit with nanosecond operation times. Using asingle device, a magnetic field
gradient of several hundred milliTesla is generated and sustained using dynamic nuclear po-
larization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is
then demonstrated using quantum state tomography. The presented technique provides the
basis for single and potentially multiple qubit operationswith gate times that approach the
threshold required for quantum error correction.

The potential realization of quantum computers has attracted a lot of attention because of
their promise to perform certain calculations practicallyintractable for classical computers. While
a classical bit attains only two values (0 and 1), the phase space of a quantum bit (a two-level
system) is in one-to-one correspondence with the points on the surface of a three dimensional
sphere, known as the Bloch sphere1, where the basis states (corresponding to the classical 0 and
1) are represented at the north and south pole (Fig. 1a). A generic manipulation of the qubit
needed to implement universal gate operations requires theability to perform rotations around two
axes in the Bloch sphere2–5 (for example thez andx-axis). In the present work, the two-level
quantum bit (smallest logical unit of the quantum computer)is encoded in the spin state of two
electrons confined in a double-well potential. This semiconductor-based system has potential for
good scalability, manipulations are all-electrical and potentially fast enough to enable104 universal
gate operations within the coherence time, an essential requirement for quantum error correction6.

For the two-electron spin qubits, rotations around thez-axis, corresponding to the coherent
exchange of two electrons, have recently been demonstratedby Pettaet al.7. Rotations around the
second axis require the presence of a non-uniform magnetic field across the double-well potential,
making the two spins precess at different rates. Here we takeadvantage of the interaction of
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the electrons with the nuclear magnetic field of the Ga and As sublattices of the host material in
order to generate the required magnetic field gradient. While fluctuations of this hyperfine field
are known to be a major source of decoherence8–12, in this letter we demonstrate the possibility
of building up a gradient in the hyperfine field that significantly exceeds the fluctuations and can
be sustained for times longer than 30 min. This is done by employing pumping schemes that
transfer spin and thus magnetic moment from the electronic system to the nuclei. Internally created
gradients of nuclear field, in excess of 200 mT, together withthe coherent exchange of the two
electrons allow us to rapidly manipulate the two-electron spin qubit. The coherent manipulation is
demonstrated by reconstructing the evolution of the state within the Bloch sphere through quantum
state tomography.

The double-well potential that confines the electrons is formed by applying a negative voltage
to metal gates deposited on top of a two dimensional electrongas embedded in a GaAs/AlGaAs
heterostructure. The negative potential depletes the electrons underneath the metal gates creating
two isolated puddles of electrons (double quantum dot, Fig.1b). The number of electrons in the
dots can be controlled by tuning the potentials on the gates.We restrict the total occupation of
the double quantum dot to two electrons, and describe their spatial separation by the parameter
ε: for ε ≫ 0 both electrons are in the right quantum dot, the (0,2) configuration; forε ≪ 0 one
electron occupies each dot, the (1,1) configuration. The parameterε and hence the dots’ charge
state can be continuously swept through intermediate configurations by varying the voltages on the
metal gates. In the (0,2) charge configuration, the only energetically accessible spin configuration
is the singlet stateS(0,2)= (↑↓−↓↑)/

√
2 (the arrows indicate the direction of the electron spins).

As we separate the electrons, the wavefunctions overlap decreases and four spin configurations
become energetically degenerate: the singletS(1,1) and three tripletsT0 = (↑↓+↓↑)/

√
2, T− =↓↓

andT+ =↑↑ (Fig. 1d). We select the statesS(1,1) andT0, both having zeroz component of the
spin angular momentum, as the basis states of our logical qubit13, 14 and lift the degeneracy with
the statesT− andT+ by applying an external magnetic fieldBext. The Zeeman energyEz =
gµBB (g = −0.4 is the g-factor for GaAs,µB Bohr’s magneton) shifts theT+ state to lower
energies, creating a crossing point with the singlet (marked by a red circle in Fig. 1d) at a value
of ε that depends onB = Bext + Bnuc, whereBnuc ≡ (Bnuc,L + Bnuc,R)/2 is the average
hyperfine field andBnuc,L andBnuc,R the nuclear fields felt by the electron in the left and right dot,
respectively (Fig. 1c). Within this logical subspace, rotations around thez-axis are controlled by
the energy splitting betweenS(1,1) andT0, denoted byJ(ε). This evolution amounts to a coherent
exchange of the two electrons. Rotations around thex-axis are controlled by thez-component of
a magnetic field gradient across the two electrons,∆Bnuc = Bnuc,L − Bnuc,R. If we thus let a
state evolve around a combined axisJz+ gµB∆B

z
nucx, the precession frequency will be given by

f =
√

J2 + (gµB∆Bz
nuc)

2/h (h ≈ 4 · 10−15 eV · s is Plank’s constant).

While controlledz-rotations have been previously shown7, controlled rotations around thex-
axis of the two-electron logical qubit have not been demonstrated to date. Clearly, the challenge is
to provide a stable magnetic field gradient across the two dots which exceeds the intrinsic nuclear
fluctuations due to the hyperfine interaction. Here we present two polarization schemes by which
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Figure 1:Pump and measurement schemes. a,Geometrical representation (Bloch sphere) of the
two level system (S andT0) and the two rotation axes (J and∆Bz

nuc) allowing the implementation
of universal single qubit gates.b, SEM micrograph of a device similar to the one measured. Gates
GL and GR control the charge configuration of the two dots, thecentral gates (Nose and Tail)
control the tunneling rate between the two dots. The averagecharge configuration is detected
by measuring the conductance (GQPC) through a capacitively coupled quantum point contact.c,
Bnuc,L andBnuc,R are the local magnetic fields experienced by the electrons inthe left and right
dot through hyperfine coupling with the Ga and As nuclei.d, Schematic representation of the
energy levels at the (0,2)-(1,1) charge transition for finite external magnetic field. The detuning
ε from the degeneracy point is controlled by the voltages on GLand GR. Two pulse cycle are
presented: 1) Nuclear pumping: the system is moved to point PwhereS andT+ are degenerate
and can mix 2) Measurement pulse: the system is moved to largenegative detuning where the
statesS andT0 can mix.e,The measurement pulse schemef, TheS-pumping pulse schemeg,The
T+-pumping pulse scheme, all shown as a function of GL and GR.
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the gradient can be increased to values significantly exceeding its fluctuations. Both pumping
schemes make use of the degeneracy point betweenS(1,1) andT+. Transitions between the two
states that are driven by the transverse component of∆Bnuc

15 are accompanied by a spin flip of
the nuclei in order to conserve the total angular momentum. Our first pumping scheme follows
a standard recipe16, 17 of initializing the system in theS(0,2) state followed by a 50 or 100 ns
long sweep across theS–T+ degeneracy point. This process ideally transfers one unit of angular
momentum into the nuclear sub system. In addition, we have developed an alternative pumping
scheme whereby we initialize the system in aT+(1,1) state followed by a similar slow passage
through theS–T+ degeneracy point. This newT+-pumping scheme allows us to polarize the
nuclear subsystem in a direction opposite to theS-pumping scheme. TheT+-pumping scheme
works only when the Zeeman energy exceeds the electron temperature in the reservoirs: the system
is swept slowly into (0,1) and subsequently reloaded into the (1,1) charge state (Fig. 1g). First the
right and then the left electron align with the external fielddue to large Zeeman energy (≈ 12.5
µeV at 500 mT), which preferentially loads aT+ state.

While the above nuclear pumping schemes should produce nuclear polarization, it is not
obvious at all that this nuclear polarization should be different across the two dots17. Since the
mixing between theS(1,1) andT0(1,1) is only sensitive to the field gradient, we use a pulse cycle
that monitors the coherent evolution around thex-axis in order to measure this gradient. The
system is first reset into aS(0,2) state.ε is then abruptly set to pointS in (1,1) for an evolution time
τS (see Fig. 1e). Here∆Bz

nuc ≫ J(ε)/gµB drives coherent oscillations betweenS(1,1) andT0 and
the probability of being in a singlet state oscillates in time asp(S) = cos2(gµB∆B

z
nuc · τS/2~).

When the system is brought back to the measurement pointM only transitions fromS(1,1) to
S(0,2) are allowed, whileT0 remains blocked in the (1,1) charge configuration. This spin-blockade
effect allows to map the spin configuration of the state onto acharge configuration18, which is
measured by a charge sensor18. Here we use a quantum point contact (QPC) positioned next tothe
double quantum dot (Fig. 1b) in order to detect changes in thedouble dot charge configuration.
The QPC signal, averaged over many gradient-probing cycles, is proportional to the probability of
being in a singlet state.

A steady state nuclear field can be achieved by continuously alternating between a pump
cycle that runs for a timetpump, and a gradient probing cycle that runs for 1 sec, as schematically
visualized in Fig. 2a. In each measurement stage a gradient probing pulse with a different separa-
tion timeτS is used (0≤τS≤ 30 ns for eachτS-sweep). The outcome of a measurement repeating
τS-sweeps 40 times and usingtpump = 60 ms is shown in Fig. 2b. An oscillatory signal with a
frequency fluctuating around a steady mean is clearly visible. In the present measurement the gra-
dient is kept in a steady state for 40 minutes, but this time could have been extended indefinitely.
Each curve in Fig. 2c shows an average over 30τS sweeps and the different values oftpump control
the steady state value of the gradient in each data set. We observe that the oscillations vanish (cor-
responding to a∆Bz

nuc fluctuating around 0) at moderateS-pumping rather thentpump = 0. This
appears to reflect a small polarization effect from the measurement pulses that can be compensated
with S-pumping (see Supplementary Material). To compare theS andT+-pumping schemes, we
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have taken a measurement where we have switched betweenS-pumping andT+-pumping every
40 τs sweeps (see Fig. 2c). The data show that upon changing the pump cycle, the oscillations
disappear and then recover after a few minutes in a way that suggests a sign change of the induced
gradient.

While the magnitude of the gradient is determined via coherentx-rotations, we can also mea-
sure the average value of the nuclear field by monitoring the position of theS–T+ transition16. This
should clarify whether spins are flipped only in one or both dots. Figs. 3a,b show interleaved mea-
surements of the position of theS–T+ transition17 and the oscillatoryS–T0 mixing as a function of
tpump using theT+-pumping cycle. A shift of theS–T+ transition to more negativeε corresponds
to the build-up of an average fieldBz

nuc oriented opposite to the external magnetic field, consistent
with spin flips from down to up in the nuclear system19. Fig. 3e shows that atBext= 500 mT,
∆Bz

nuc reaches 230 mT whileBz
nuc is about 130 mT. The ratio of nearly a factor 2 indicates that

the nuclei are polarized predominantly in one of the two dots. Data obtained using theS-pumping
cycle (Fig. 3e) show a∆Bz

nuc that tends to be slightly smaller than the average field. The value
of Bz

nuc can be subject to various systematic analysis errors, but itis clearly not much larger than
∆Bz

nuc (see Supplementary Material).

Combining our slowly tunablex-rotation gate with the electrically controllable exchange
gate allows single qubit rotations around an axis that can berapidly tilted to any desired angle
between 0 and nearlyπ/2 away from thex-axes (angleθ in Fig. 4d). Concatenating rotations
around different axis allows to implement universal quantum control. We demonstrate and charac-
terize the rotation around an arbitrary axes using state tomography, consisting of three independent
measurements of the probability of being in a|S〉 ≡ |Z〉, in an |S〉+|T0〉 ≡ |↑↓〉 ≡ |X〉 and in
a |S〉+i|T0〉 ≡ |Y 〉 state1, with pulses shown in Fig. 4a. This allows us to fully reconstruct the
time evolution of the state vector. For each of the measurements, we first prepare an|↑↓〉 state by
loading aS(0,2) and adiabatically switching offJ(ε) in (1,1). The desired rotation is performed
by quickly settingJ to a finite value for a timeτrot. Rapidly returning toS(0, 2) allows to measure
p(|Z〉) ≡ |〈Z|ψ〉|2, whereas slowly increasingJ brings | ↑↓〉 onto |S〉 and | ↓↑〉 onto |T0〉, thus
allowing the readout ofp(|X〉) ≡ |〈X|ψ〉|2. To obtainp(|Y 〉) ≡ |(〈Y |)|ψ〉|2, J is turned off for a
time corresponding to aπ/2 rotation around thex-axis before rapidly returning toM . Results of
this procedure for a particular choice ofJ and∆Bz

nuc are shown in Fig. 4c as a function ofτrot.
For ideal pulses, one would expectp(|X〉) to oscillate sinusoidally between 1 and(1+cos(2θ))/2,
p(|Z〉) between 1/2 and(1 + sin(2θ))/2, whereasp(|Y 〉) should vary symmetrically around 1/2.
Deviations from this behavior can be attributed to a finite pulse rise time and high pass filtering
of the pulses. The first causes an approximately adiabatic drift of the rotation axis which prevents
p(|Z〉) to return to the starting point, whereas the second leads to slightly different ε-offsets and
thus differentJ(ε) for different pulses, causing a≈ 25 % frequency change. Fits to a model (Fig.
4b, see Supplementary Material) incorporating these effects and inhomogeneous broadening due
to fluctuations in∆Bz

nuc give a good match with the data. In Fig. 4d, the data and fits aredisplayed
in the Bloch sphere representation. We estimate that the errors due to measurement noise, pulse
imperfections other than those included in the model, incomplete ensemble averaging over nuclear

5



Figure 2:Build-up of a gradient with two different pumping cycles. a, Schematics explaining
the measurement of the singlet return probability as a function of τS. Each measurement point
(rectangle) is an average over 1 sec and preceded by a pump cycle that runs for a timetpump.
Each line is a repetition of the same measurement procedure.b, Measurement of the singlet return
probability as a function ofτS for tpump = 60 ms. c, Singlet return probability as a function of
separation timeτS for different tpump. Each data set line is an average over 30τS sweeps.Ps

is normalized by the size of the DC charge transition (see Supplementary Material). Traces are
displaced for clarity.d, Crossover betweenS andT+-pumping. The plot shows an average of
nine subsequent repetitions of the same measurement. The disappearance of the oscillations upon
changing the pump pulse followed by a recovery (around 0 and 50 min) suggests thatS andT+-
pumping produce∆Bz

nuc of opposite sign.Bext = 1.5 T for these data sets.
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fluctuations and uncertainties in the QPC conductance calibration (Supplementary Material) are on
the order of 0.15 for all three probability measurements. They could be substantially reduced by
improving the characteristics of our high frequency setup,such that pulse compensation schemes
would be simpler and pulse dependent variations ofJ could be eliminated.

The mechanism responsible for the large gradient due to pumping is currently unknown.
One possible cause is an asymmetry in the size of the two dots due to local disorder. Both the
probability to flip a nuclear spin in one of the dots and the change in hyperfine field due to that
flip are inversely proportional to the number of nuclei N overwhich the electron wave function
extends20. The overall1/N2 dependance results in the smaller dot being polarized more rapidly.
Different relaxation rates in the two dots and more complex aspects of the nuclear dynamics may
also play a role21. The relation between our results and those in Ref. [17], where a strong suppres-
sion of∆Bz

nuc was reported, is currently under investigation. The apparent contradiction with the
observation of Reillyet al.22 thatS-pumping becomes ineffective at fields exceeding a few tens
of mT might be due to a different coupling between the dots andto the electron reservoirs (see
Supplementary Material).

We demonstrated the ability to perform universal single qubit operations in sub nanosec-
ond time scales23, two orders of magnitude faster than previously shown for single spin qubits24–26.
These short operation times together with the demonstratedcoherence times of a few microseconds7

and predicted coherence times of up to 100 microseconds27–29 suggest that the requirements for
quantum error correction of two-electron spin qubits are within reach. Furthermore, our ability to
record the magnetic field gradient opens the way towards feedback control of the nuclear environ-
ment that would prolongT ∗

2 and thereby reduce the number of error correcting pulses needed.
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