34,189 research outputs found

    Characterization of non-intentional emissions from distributed energy resources up to 500 kHz: A case study in Spain

    Get PDF
    Narrow Band Power Line Communications (NB-PLC) systems are currently used for smart metering and power quality monitoring as a part of the Smart Grid (SG) concept. However, non-intentional emissions generated by the devices connected to the grid may sometimes disturb the communications and isolate metering equipment. Though some research works have been recently developed to characterize these emissions, most of them have been limited to frequencies below 150 kHz and they are mainly focused on in-house electronic appliances and lightning devices. As NB-PLC can also be allocated in higher frequencies up to 500 kHz, there is still a lack of analysis in this frequency range, especially for emissions from Distributed Energy Resources (DERs). The identification and characterization of the emissions is essential to develop solutions that avoid a negative impact on the proper performance of NB-PLC. In this work, the non-intentional emissions of different types of DERs composing a representative microgrid have been measured in the 35–500 kHz frequency range and analyzed both in time and frequency domains. Different working conditions and coupling and commutation procedures to mains are considered in the analysis. Results are then compared to the limits recommended by regulatory bodies for spurious emissions from communication systems in this frequency band, as no specific limits for DERs have been established. Field measurements show clear differences in the characteristics of non-intentional emissions for different devices, working conditions and coupling procedures and for frequencies below and above 150 kHz. Results of this study demonstrate that a further characterization of the potential emissions from the different types of DERs connected to the grid is required in order to guarantee current and future applications based on NB-PLC.This work has been financially supported in part by the Basque Government (Elkartek program)

    Tomography of high-redshift clusters with OSIRIS

    Get PDF
    High-redshift clusters of galaxies are amongst the largest cosmic structures. Their properties and evolution are key ingredients to our understanding of cosmology: to study the growth of structure from the inhomogeneities of the cosmic microwave background; the processes of galaxy formation, evolution, and differentiation; and to measure the cosmological parameters (through their interaction with the geometry of the universe, the age estimates of their component galaxies, or the measurement of the amount of matter locked in their potential wells). However, not much is yet known about the properties of clusters at redshifts of cosmological interest. We propose here a radically new method to study large samples of cluster galaxies using microslits to perform spectroscopy of huge numbers of objects in single fields in a narrow spectral range-chosen to fit an emission line at the cluster redshift. Our objective is to obtain spectroscopy in a very restricted wavelength range (~100 A in width) of several thousands of objects for each single 8x8 square arcmin field. Approximately 100 of them will be identified as cluster emission-line objects and will yield basic measurements of the dynamics and the star formation in the cluster (that figure applies to a cluster at z~0.50, and becomes ~40 and ~20 for clusters at z~0.75 and z~1.00 respectively). This is a pioneering approach that, once proven, will be followed in combination with photometric redshift techniques and applied to other astrophysical problems.Comment: 4 pages, 3 figures. Proceedings of "Science with the GTC", Granada (Spain), February 2002, RMxAA in pres

    Optimal detection of changepoints with a linear computational cost

    Full text link
    We consider the problem of detecting multiple changepoints in large data sets. Our focus is on applications where the number of changepoints will increase as we collect more data: for example in genetics as we analyse larger regions of the genome, or in finance as we observe time-series over longer periods. We consider the common approach of detecting changepoints through minimising a cost function over possible numbers and locations of changepoints. This includes several established procedures for detecting changing points, such as penalised likelihood and minimum description length. We introduce a new method for finding the minimum of such cost functions and hence the optimal number and location of changepoints that has a computational cost which, under mild conditions, is linear in the number of observations. This compares favourably with existing methods for the same problem whose computational cost can be quadratic or even cubic. In simulation studies we show that our new method can be orders of magnitude faster than these alternative exact methods. We also compare with the Binary Segmentation algorithm for identifying changepoints, showing that the exactness of our approach can lead to substantial improvements in the accuracy of the inferred segmentation of the data.Comment: 25 pages, 4 figures, To appear in Journal of the American Statistical Associatio

    Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes

    Full text link
    By using a theoretical formalism able to work in both real and k-spaces, the physical origin of the phenomenon of extraordinary transmission of light through quasi-periodic arrays of holes is revealed. Long-range order present in a quasiperiodic array selects the wavevector(s) of the surface electromagnetic mode(s) that allows an efficient transmission of light through subwavelength holes.Comment: 4 pages, 4 figure
    • …
    corecore