Sustainable forest management of miombo woodlands in Niassa National Reserve, northern Mozambique: a multidisciplinary approach of fire resistance analysis

Universidade Eduardo Mondlane

Natasha Ribeiro¹, Anabela Rodrigues², José Carlos³, Isabel Moura³, Carmen Garcia-Fernandez⁴, Gisella Guambe¹ and Ana Ribeiro³

¹Faculdade de Agronomia e Engenharia Florestal, Maputo, Mozambique, ²Sociedade para a Gestão e Desenvolvimento da Reserva do Niassa, Mozambique, ³Tropical Research Institute, Portugal, ⁴Bioversity International, CGIAR, Italy

Sponsored by Fundo Nacional de Investigação, Ministery of Science and Technology of Mozambique, Fundo Aberto (UEM, Mozambique) and CGIAR

Introduction

Miombo is the Swahili word for *Brachystegia*, a genus of trees comprising a large number of species, often interspersed with open savanna (40%), and wetlands (5%).

It is the most important type of vegetation in southern Africa:

80% of rural households depend on it for land and products;

Main source of highly valued timber and non- timber species;

Global impact through emissions of trace gases from fires, soils, vegetation and animals, and by sequestrating carbon and biomass.

Methods

Selected species: Brachystegia boehmii,
 Pseudolachnostylis maprouneifolia, Terminalia sericea,
 Pterocarpus angolensis and Burkea africana

Field data Collection: phenotypic traits (height, bark thickness, leaves thickness, height of ramification, natural regeneration) and genetic material (leaves and seeds) along the fire frequency gradient

Natural regeneration

> *B. boehmii* is better represented in the west (< fire frequency)

P. angolensis and T. sericea (fire resistant species) have higher regeneration in the east (higher fire frequency)

Seed germination

Table 1. Mean percentage germination of T. s	sericea, B. Africana and P. angolensis
--	--

	Treatment	Germination % (mean±s.d.)	NR*	NS/R**
T. sericea	Control	6.25 ± 4.79	4	20
	Chemical scarification	6.25 ± 2.50	4	20
	Mechanical scarification	6.25 ± 4.79	4	20
	Dry heat	0.00 ± 0.00	4	20
B. africana	Control	0.00 ± 0.00	2	17
	Mechanical scarification	23.53 ± 0.00	2	17
P. angolensis	Burned fruits	55.00 ± 7.07	2	10
	Unburned fruits	80.00	1	10
*Number of	of replicates			
**Number	of seeds per replicate			

Consequently: key role in the regional, and probably the global, energy, water and carbon balances, but also in terms of rural development strategies.

<u>Aim</u>

To promote the sustainable management of miombo woodlands in NNR

Components:

- . Fire monitoring and management;
- . Genetic and phenotypic variability of selected species
- Tree resources availability and conservation (ex-situ and in-situ)

Study Site: Niassa National Reserve (NNR)

NNR embodies the largest and most pristine conservation area of miombo woodlands in Southern Africa, being the largest and wildest conservation area of miombo woodlands in the world.

Data analysis:

✓ Index of Importance Value (IIV) and DBH distribution

- ✓ Statistical *t-test* (5%)
- ✓ Lab germination tests (different according to species)
- \checkmark DNA extraction
- Development of microsatellite markers (in progress)

Preliminary Results

Index of Importance Value

140

Mechanical scarification significantly increased *B. africana* germination

- > *T. sericea* presents very low germination (0-6%)
- Seeds of *P. angolensis* removed from unburned fruits had higher germination percentage

Molecular analysis

CALL AND

Pseudolachnostylis maprouneifolia Bukea africana

Terminalia sericea Brachystegia bohem

DNA Extraction (Doyle & Doyle 1990, modified)

T. sericea: prMS-AC₆AG₅

References Doyle JJ and Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13-15. Gleen TC and Schable NC (2005) Isolation Microsatelline DNA Loci.

> B. boehmii (a typical miombo species) is better represented

in the west (lower fire frequency)

 \succ fire resistant species are better represented in the east side

of NNR (*P.angolensis and T. sericea*)

Microsatellite amplification (Gleen annd Schable, 2005)

Conclusions

✓ West side have better representation of miobo typical species at both adult and young stages

✓ GERMINATION

✓ The development of molecular markers will be an important toll to assess the genetic diversity among and between populations and to help the development of conservation strategies;