835 research outputs found

    Changes in fatty acid biosynthesis in marine microalgae as a response to medium nutrient availability

    Get PDF
    To maximize and enhance the fatty acid (FA) profiles of microalgae, it is crucial to understand the metabolic path ways that lead to high levels of the desired product. Nannochloropsis gaditana, Rhodomonas marina, and Isochrysis sp. were cultivated in media with various nutrient concentrations, and the biomass was analyzed for protein and fatty acid contents. The long chain polyunsaturated fatty acid (LC-PUFA) and protein contents were maximized in media with high nutrient concentrations. Under these conditions, the reduction in the (SFA + MUFA)/PUFA ratio (by as much as 83%) indicated that R. marina and N. gaditana shifted preference towards PUFA synthesis. The ∑ω3/∑ω6 ratio indicated that R. marina preferentially synthesized ω3 FA towards high nutrient concentrations (depicted by an eightfold increase) in contrast to Isochrysis sp. (which yielded a 35% reduction). In addition, the limitations of LC-PUFA biosynthesis at the level of its precursors (e.g. C18:2ω6, C18:3ω3, C18:4ω3) and further conversion to LC-PUFA as nutrients were increased, suggesting that external variations induced changes in the sets of enzymes that maintain the desaturation and elongation pathways of FA. The present study provides novel insights into the regulation of LC-PUFA biosynthesis and facilitates the modeling of microalgal FA patterns depending on the field of application.info:eu-repo/semantics/publishedVersio

    Acetyl-L-Carnitine Prevents Methamphetamine-Induced Structural Damage on Endothelial Cells via ILK-Related MMP-9 Activity

    Get PDF
    Abstract Methamphetamine (METH) is a potent psychostimulant highly used worldwide. Recent studies evidenced the involvement of METH in the breakdown of the blood-brain-barrier (BBB) integrity leading to compromised function. The involvement of the matrix metalloproteinases (MMPs) in the degradation of the neurovascular matrix components and tight junctions (TJs) is one of the most recent findings in METH-induced toxicity. As BBB dysfunction is a pathological feature of many neurological conditions, unveiling new protective agents in this field is of major relevance. Acetyl- L-carnitine (ALC) has been described to protect the BBB function in different paradigms, but the mechanisms underlying its action remain mostly unknown. Here, the immortalized bEnd.3 cell line was used to evaluate the neuroprotective features of ALC in METH-induced damage. Cells were exposed to ranging concentrations of METH, and the protective effect of ALC 1 mM was assessed 24 h after treatment. F-actin rearrangement, TJ expression and distribution, and MMPs activity were evaluated. Integrin-linked kinase (ILK) knockdown cells were used to assess role of ALC in ILK mediated METH-triggered MMPs’ activity. Our results show that METH led to disruption of the actin filaments concomitant with claudin-5 translocation to the cytoplasm. These events were mediated by MMP-9 activation in association with ILK overexpression. Pretreatment with ALC prevented METH-induced activation of MMP-9, preserving claudin-5 location and the structural arrangement of the actin filaments. The present results support the potential of ALC in preserving BBB integrity, highlighting ILK as a new target for the ALC therapeutic use.info:eu-repo/semantics/publishedVersio

    Ion speciation: A key for the understanding of the solution properties of ionic liquid mixtures

    Get PDF
    Recently, combinations of two (or more) ionic liquids, known as ionic liquid mixtures, have become popular and have a broad range of applications. However, the fundamental knowledge on the molecular interactions that exist in ionic liquid mixtures is far from being understood. In this work, the experimental measurement of the water activity coefficient and computational modelling using Conductor-like Screening Model for Real Solvent (COSMO-RS) were carried out to get an insight into the molecular interactions that are present in ionic liquid mixtures in aqueous solution. The results show that the combination of two ionic liquids of different basicity in aqueous solution allows fine tuning of the water activities, covering a wide range of values that could replace several pure fluids. This is an important feature resulting from the unexpected ion speciation of the ionic liquid mixtures in aqueous solution.We thank the CICECO – Aveiro Institute of Materials, POCI-01- 0145-FEDER-007679 (Ref. FCT UID/CTM/50011/2019) and Associate Laboratory LSRE-LCM, POCI-01-0145-FEDER-006984 (Ref. FCT UID/ EQU/50020/2019), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDDER under the PT2020 Partnership Agreement.info:eu-repo/semantics/publishedVersio

    The oblique plane deformity in slipped capital femoral epiphysis.

    Get PDF
    Background Slipped capital femoral epiphysis (SCFE) is commonly treated with in situ pinning. However, a severe slip may not be suitable for in situ pinning because the required screw trajectory is such that it risks perforating the posterior cortex and damaging the remaining blood supply to the capital epiphysis. In such cases, an anteriorly placed screw may also cause impingement. It is also possible to underestimate the severity of the slip using conventional radiographs. The aim of this study was to describe and evaluate a novel method for calculating the true deformity in SCFE and to assess the interobserver and intraobserver reliability of this technique. Methods We selected 20 patients with varying severity of SCFE who presented to our institution. Cross-sectional imaging [either axial computed tomography (CT) scans or magnetic resonance imaging (MRI) scans] and anteroposterior (AP) pelvis radiographs were assessed by four reviewers with varying levels of experience on two occasions. The degree of slip on the axial image and on the AP pelvis radiographs were measured and, from this, the oblique plane deformity was calculated using the method as popularised by Paley. The intraclass correlation coefficient (ICC) was calculated to determine the interobserver and intraobserver reliabilities between and amongst the raters. Results The interobserver reliability for the calculated oblique plane deformity in SCFE ICC was 0.947 [95 % confidence interval (CI) 0.90–0.98] and the intraobserver reliability for the calculated oblique plane deformity of individual raters ranged from 0.81 to 0.94. The deformity in the oblique plane was always greater than the deformity measured in the axial or the coronal plane alone. Conclusion This method for calculating the true deformity in SCFE has excellent interobserver and intraobserver reliability and can be used to guide treatment options. This technique is a reliable and reproducible method for assessing the degree of deformity in SCFE. It may help orthopaedic surgeons with varying degrees of experience to identify which hips are suitable for in situ pinning and those which require surgical dislocation and anatomical reduction, given that plain radiographs in a single plane will underestimate the true deformity in the oblique plane. Level of evidence Level II diagnostic study

    Controlled drug release from hydrogels for contact lenses: drug partitioning and diffusion

    Get PDF
    Optimization of drug delivery from drug loaded contact lenses assumes understanding the drug transport mechanisms through hydrogels which relies on the knowledge of drug partition and diffusion coefficients. We chose, as model systems, two materials used in contact lens, a poly-hydroxyethylmethacrylate (pHEMA) based hydrogel and a silicone based hydrogel, and three drugs with different sizes and charges: chlorhexidine, levofloxacin and diclofenac. Equilibrium partition coefficients were determined at different ionic strength and pH, using water (pH 5.6) and PBS (pH 7.4). The measured partition coefficients were related with the polymer volume fraction in the hydrogel, through the introduction of an enhancement factor following the approach developed by the group of C. J. Radke (Kotsmar et al., 2012; Liu et al., 2013). This factor may be decomposed in the product of three other factors EHS, Eel and Ead which account for, respectively, hard-sphere size exclusion, electrostatic interactions, and specific solute adsorption. While EHS and Eel are close to 1, Ead > > 1 in all cases suggesting strong specific interactions between the drugs and the hydrogels. Adsorption was maximal for chlorhexidine on the silicone based hydrogel, in water, due to strong hydrogen bonding. The effective diffusion coefficients, De, were determined from the drug release profiles. Estimations of diffusion coefficients of the non-adsorbed solutes D = De × Ead allowed comparison with theories for solute diffusion in the absence of specific interaction with the polymeric membrane.info:eu-repo/semantics/publishedVersio

    The use of TFBGF method with a 3D transient analytical solution to solve an inverse heat conduction problem in the presence of a moving heat source

    Get PDF
    Moving heat source are present in numerous problem pratical in ingeenring. For example, machining process as the Gas tungsten arc welding (GTAW) , laser welding, friction stirwleing process or milding problem. Moving heat source are also present in biological heating as the metabolism or in heat thermal treatment. All this case, the heat input identification is a complex task and represents an important factor in the optimization of the process. The aim of this work is to investigate both the temperature field as the heat flux delivered to a piece during a process with moving heat source. The temperature measurements are obtained using thermocouples at accessible regions of the workpiece surface while the theoretical temperatures are calculated from a 3D transient heat conduction thermal model with a moving heat source. The thermal model solution is obtained analytically (direct problem). The inverse problem, it means, the estimation of the moving heat source, uses the Transfer Function Based on Green’s Function (TFBGF) method. This method is based on Green’s function and in the equivalence between thermal and dynamic systems. The technique is a simple approach without iterative processes, and therefore extremely fast. From the knowledge of both the temperature profile (hypothetical or experimental temperature far from the heat source) and of the transfer function it is possible to estimate the heat flux by an inverse procedure of the Fast Fourier Transform (IFFT) . The TFBGF is, then, adapted to solve an inverse heat conduction problem with a moving heat source. Simulated and experimental test are used for estimating the heat source delivered to the piece. The estimation of the moving heat source without use of minimization least square, or optimization technique is the great advantages of the technique proposed here. The moving heat source can, then, be obtained directly from the temperature measured since the 3D transient analytical solution is obtained and the TFBGF can be applied in that solution.Papers presented to the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Costa de Sol, Spain on 11-13 July 2016

    Profiling and framing structures for pervasive information systems development

    Get PDF
    Pervasive computing is a research field of computing technology that aims to achieve a new computing paradigm. Software engineering has been, since its existence, subject of research and improvement in several areas of interest. Model-Based/Driven Development (MDD) constitutes an approach to software design and development that potentially contributes to: concepts closer to domain and reduction of semantic gaps; automation and less sensitivity to technological changes; capture of expert knowledge and reuse. This paper presents a profiling and framing structure approach for the development of Pervasive Information Systems (PIS). This profiling and framing structure allows the organization of the functionality that can be assigned to computational devices in a system and of the corresponding development structures and models, being. The proposed approach enables a structural approach to PIS development. The paper also presents a case study that allowed demonstrating the applicability of the approach.Fundação para a Ciência e a Tecnologia (FCT

    Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass

    Get PDF
    A microcosm experiment was carried out to evaluate the effects of municipal solid waste compost (MSWC) or garden waste compost (GWC), and liming materials in the rehabilitation of a soil affected by mining activities, and to study the use of perennial ryegrass (Lolium perenne L.) for phystostabilization. The performance of the amendments was assessed by soil chemical parameters, total and bioavailable metals (Cu, Pb and Zn), soil enzymatic activities, and plant relative growth and mineral composition. In general, both composts corrected soil acidity and increased the total organic matter content of the soil, although with a better performance in the case of MSWC, especially when considering total N and available P and K levels in the amended soil. The application of both composts and liming materials led to a decrease in the mobile fractions of Cu, Pb and Zn, but mobilisable fractions of Cu and Zn increased with MSWC application. Plant biomass increased more than three times in the presence of 50 Mg MSWC ha−1 and with the combined use of 25 or 50 Mg MSWC ha−1 and CaO, but no significant differences were observed when GWC was applied. Plant tissue analysis showed that the treatments did not significantly reduce Cu, Pb and Zn uptake by the plant. Dehydrogenase, and the enzymes related to the N-cycle, urease and protease, had increased activities with increasing MSWC application rate. Conversely, the enzymatic activities of both enzymes related to the C-cycle, cellulase and β-glucosidase, were only positively affected by GWC application, a compost obtained from raw materials rich in C. Principal component analyses evidenced this clear separation between the effect of MSWC on soil enzymes related to the N-cycle and of GWC on soil enzymes related to the C-cycle. This study indicates that MSWC (50 Mg ha−1, limed or unlimed) can be used successfully in the remediation of a highly acidic metal-contaminated soil, allowing the establishment of perennial ryegrass

    Organic residues as immobilizing agents in aided phytostabilization: (I) Effects on soil chemical characteristics

    Get PDF
    A greenhouse experiment was conducted to evaluate the effect of three different organic residues, sewage sludge (SS), municipal solid waste compost (MSWC), and garden waste compost (GWC), as immobilizing agents in aided phytostabilization of a highly acidic metal-contaminated soil, affected by mining activities, using perennial ryegrass (Lolium perenne L.). The organic residues were applied at 25, 50 and 100 Mg ha 1 (dry weight basis), and their effects on soil chemical characteristics and on relative plant growth and metal concentrations were assessed. All the organic residues tested immobilized Cu, Pb and Zn, decreasing their mobile fractions. This was corroborated by negative correlations obtained between mobile Cu, Pb and Zn and other soil chemical characteristics, which rose as a consequence of the amendments applied (i.e., pH, electrical conductivity, organic matter, nitrogen content, available P and available K), and by the multivariate exploratory techniques performed that showed an inverse correlation between these groups of variables. The greatest increase in ryegrass relative growth (more than three times) was obtained in the presence of 50 Mg MSWC ha 1, followed by SS at the same application dosage. GWC did not contribute to an increase in shoot growth, due to its small capacity to correct soil acidity and to supply essential macronutrients (N, P, K). No extractant was able of demonstrating by a linear correlation the uptake of Cu, Pb and Zn by ryegrass. This plant was therefore not a good ‘‘indicator” of Cu, Pb and Zn availability in the soil. The results obtained in this study suggest that ryegrass can be used in aided phytostabilization for this type of mine contaminated soils and that MSWC, and to a minor extent SS, applied at 50 Mg ha 1, were effective in the in situ immobilization of metals, improving soil chemical properties and leading to a large increase in plant biomas

    Evaluation of tests to assess the quality of mine-contaminated soils

    Get PDF
    An acid metal-contaminated soil from the Aljustrel mining area (a pyrite mine located in SW Portugal in the Iberian Pyrite Belt) was subjected to chemical characterisation and total metal quantiWcation (Cd, Cr, Cu, Ni, Pb and Zn). Water-soluble metals were determined and a sequential extraction procedure was used to investigate metal speciation. Two bioavailable metal fractions were determined: a mobile fraction and a mobilisable fraction. Soil ecotoxicity was studied using a battery of bioassays: plant growth test and seed germination with cress (Lepidium sativum L.), earthworm (Eisenia fetida) mortality, E. fetida avoidance behaviour, luminescent inhibition of Vibrio Wscheri and Daphnia magna immobilisation. Although the total content of Cu, Zn and Pb in the soil was large (362, 245 and 1,250 mg/ kg dry matter, respectively), these metals were mostly structurally bound (87% for Cu, 81% for Zn and 89% for Pb) and, therefore, scarcely bioavailable. Nonetheless, the D. magna immobilization test using soil leachate showed an EC50 (48 h) of 36.3% (v/v), and the luminescent inhibition of V. Wscheri presented an EC20 (15 min) of 45.2% and an EC20 (30 min) of 10.7% (v/v), suggesting a considerable toxic eVect. In the direct exposure bioassays, E. fetida avoided the mine soil at the highest concentrations (50%, 75% and 100% v/v). At the same soil concentrations, cress showed negligible growth. The results suggest the need to use a battery of toxicity tests, in conjunction with chemical methods, in order to assess the quality of mine-contaminated soils correctly
    corecore