129 research outputs found

    Application Analysis of Artificial Intelligence in Computer Network Technology

    Get PDF
    Artificial Intelligence (AI) is a kind of intelligent behavior similar to human being which helps human being to participate in dangerous and complicated work directly. The effective application of computer network technology has changed people's production and life style, and technological innovation has paid more attention to intelligence and humanity, leading to that artificial intelligence has become a development trend. This paper analyzes the general situation of artificial intelligence and its application and future development in computer network technology, hoping to provide help for related work

    A Bio-Inspired Multi-Agent System Framework for Real-Time Load Management in All-Electric Ship Power Systems

    Get PDF
    All-electric ship power systems have limited generation capacity and finite rotating inertia compared with large power systems. Moreover, all-electric ship power systems include large portions of nonlinear loads and dynamic loads relative to the total power capacity, which may significantly reduce the stability margin. Pulse loads and other high-energy weapon loads in the system draw a large amount of power intermittently, which may cause significant frequency and voltage oscillations in the system. Thus, an effective real-time load management technique is needed to dynamically balance the load and generation to operate the system normally. Multi-agent systems, inspired by biological phenomena, aim to cooperatively achieve system objectives that are difficult to reach by a single agent or centralized controller. Since power systems include various electrical components with different dynamical systems, conventional homogeneous multi-agent system cooperative controllers have difficulties solving the real-time load management problem with heterogeneous agents. In this dissertation, a novel heterogeneous multi-agent system cooperative control methodology is presented based on artificial potential functions and reduced-order agent models to cooperatively achieve real-time load management for all-electric ship power systems. The technique integrates high-order system dynamics and various kinds of operational constraints into the multi-agent system, which improves the accuracy of the cooperative controller. The multi-agent system includes a MVAC multiagent system and a DC zone multi-agent, which are coordinated by an AC-DC communication agent. The developed multi-agent system framework and the notional all-electric ship power system model were simulated in PSCAD software. Case studies and performance analysis of the MVAC multi-agent system and the DC zone multi-agent system were performed. The simulation results indicated that propulsion loads and pulse loads can be successfully coordinated to reduce the impact of pulse loads on the power quality of all-electric ship power systems. Further, the switch status or power set-point of loads in DC zones can be optimally determined to dynamically balance the generation and load while satisfying the operational constraints of the system and considering load priorities. The method has great potential to be extended to other isolated power systems, such as microgrids

    Increased Neutralizing Antibody Production and Interferon-γ Secretion in Response to Porcine Reproductive and Respiratory Syndrome Virus Immunization in Genetically Modified Pigs

    Get PDF
    T cell-mediated immunity plays a prominent role in combating pathogens infection. Both the engagement of the T cell receptor with the peptide-bound major histocompatibility complex and a costimulatory signal are needed for the complete activation of the T cell. To determine whether host immune responses to vaccination could be improved by enhancing CD28-mediated costimulation and verify whether the boosted immune responses could protect the host against viral challenge, we produced a transgenic pig line expressing an extra copy of the CD28 gene controlled by its own promoter at the Rosa26 locus. As expected, in response to porcine reproductive and respiratory syndrome virus (PRRSV) strain vaccination, CD4+ T cells was remarkably increased in CD28 transgenic pigs and a similar response in CD8+ T cells was elicited after challenge. Importantly, because of increased T cell frequencies, the virus-neutralizing antibody against JXA-1 (a highly pathogenic Chinese PRRSV strain), as well as interferon-γ secretion, were enhanced in transgenic pigs. These findings in our translational study provide a novel concept for farm animal breeding in disease resistance, in which we may use the transgenic technology to force overexpression of confirmed immunity-promoting molecules like CD28 and produce an animal with enhanced immune responses to vaccination and broad-spectrum resistance to infectious diseases

    Self-assembled MgxZn1−xO quantum dots (0 ≤ x ≤ 1) on different substrates using spray pyrolysis methodology

    Get PDF
    By using the spray pyrolysis methodology in its classical configuration we have grown self-assembled MgxZn1−xO quantum dots (size [similar]4–6 nm) in the overall range of compositions 0 ≤ x ≤ 1 on c-sapphire, Si (100) and quartz substrates. Composition of the quantum dots was determined by means of transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy. Selected area electron diffraction reveals the growth of single phase hexagonal MgxZn1−xO quantum dots with composition 0 ≤ x ≤ 0.32 by using a nominal concentration of Mg in the range 0 to 45%. Onset of Mg concentration about 50% (nominal) forces the hexagonal lattice to undergo a phase transition from hexagonal to a cubic structure which resulted in the growth of hexagonal and cubic phases of MgxZn1−xO in the intermediate range of Mg concentrations 50 to 85% (0.39 ≤ x ≤ 0.77), whereas higher nominal concentration of Mg ≥ 90% (0.81 ≤ x ≤ 1) leads to the growth of single phase cubic MgxZn1−xO quantum dots. High resolution transmission electron microscopy and fast Fourier transform confirm the results and show clearly distinguishable hexagonal and cubic crystal structures of the respective quantum dots. A difference of 0.24 eV was detected between the core levels (Zn 2p and Mg 1s) measured in quantum dots with hexagonal and cubic structures by X-ray photoemission. The shift of these core levels can be explained in the frame of the different coordination of cations in the hexagonal and cubic configurations. Finally, the optical absorption measurements performed on single phase hexagonal MgxZn1−xO QDs exhibited a clear shift in optical energy gap on increasing the Mg concentration from 0 to 40%, which is explained as an effect of substitution of Zn2+ by Mg2+ in the ZnO lattice

    The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights

    Get PDF
    Antarctic krill (Euphausia superba) is Earth’smost abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases

    Genome-wide association meta-analysis in Chinese and European individuals identifies ten new loci associated with systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE; OMIM 152700) is a genetically complex autoimmune disease. Genome-wide association studies (GWASs) have identified more than 50 loci as robustly associated with the disease in single ancestries, but genome-wide transancestral studies have not been conducted. We combined three GWAS data sets from Chinese (1,659 cases and 3,398 controls) and European (4,036 cases and 6,959 controls) populations. A meta-analysis of these studies showed that over half of the published SLE genetic associations are present in both populations. A replication study in Chinese (3,043 cases and 5,074 controls) and European (2,643 cases and 9,032 controls) subjects found ten previously unreported SLE loci. Our study provides further evidence that the majority of genetic risk polymorphisms for SLE are contained within the same regions across both populations. Furthermore, a comparison of risk allele frequencies and genetic risk scores suggested that the increased prevalence of SLE in non-Europeans (including Asians) has a genetic basis
    corecore