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ABSTRACT 

 

A  Bio-Inspired Multi-Agent System Framework for Real-Time Load Management in  

All-Electric Ship Power Systems. (May 2012) 

Xianyong Feng, B.S., Harbin Institute of Technology; 

M.S., University of Science and Technology of China 

Chair of Advisory Committee: Dr. Karen L. Butler-Purry 

 

 All-electric ship power systems have limited generation capacity and finite 

rotating inertia compared with large power systems. Moreover, all-electric ship power 

systems include large portions of nonlinear loads and dynamic loads relative to the total 

power capacity, which may significantly reduce the stability margin. Pulse loads and 

other high-energy weapon loads in the system draw a large amount of power 

intermittently, which may cause significant frequency and voltage oscillations in the 

system. Thus, an effective real-time load management technique is needed to 

dynamically balance the load and generation to operate the system normally.  

 Multi-agent systems, inspired by biological phenomena, aim to cooperatively 

achieve system objectives that are difficult to reach by a single agent or centralized 

controller. Since power systems include various electrical components with different 

dynamical systems, conventional homogeneous multi-agent system cooperative 

controllers have difficulties solving the real-time load management problem with 

heterogeneous agents. In this dissertation, a novel heterogeneous multi-agent system 
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cooperative control methodology is presented based on artificial potential functions and 

reduced-order agent models to cooperatively achieve real-time load management for all-

electric ship power systems. The technique integrates high-order system dynamics and 

various kinds of operational constraints into the multi-agent system, which improves the 

accuracy of the cooperative controller. The multi-agent system includes a MVAC multi-

agent system and a DC zone multi-agent, which are coordinated by an AC-DC 

communication agent. 

 The developed multi-agent system framework and the notional all-electric ship 

power system model were simulated in PSCAD software. Case studies and performance 

analysis of the MVAC multi-agent system and the DC zone multi-agent system were 

performed. The simulation results indicated that propulsion loads and pulse loads can be 

successfully coordinated to reduce the impact of pulse loads on the power quality of all-

electric ship power systems. Further, the switch status or power set-point of loads in DC 

zones can be optimally determined to dynamically balance the generation and load while 

satisfying the operational constraints of the system and considering load priorities.  

 The method has great potential to be extended to other isolated power systems, 

such as microgrids. 
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1. INTRODUCTION 

 

1.1  Introduction 

 Some isolated power systems are located in rural or remote areas [1], [2], such as 

offshore oil exploration areas, remote mining districts, islands, ships, etc. They can 

operate autonomously without connecting to bulk power systems. However, because 

isolated power systems have limited generation capacity and finite rotating inertia 

compared with large power systems, a sudden load increase can easily overload 

generators. Some isolated power systems include large portions of dynamic loads and 

nonlinear loads, moreover, which may significantly reduce the stability margin of the 

system. In addition, the various operational constraints of the system, such as frequency, 

current, and voltage constraints, and power capacity constraints of electrical devices, 

need to be satisfied in operational real time. Otherwise, the system may not operate 

normally to supply power to loads. Therefore, an effective real-time load management 

technique needs to be developed for isolated power systems to dynamically balance the 

generation and load while satisfying operating constraints of the system.  

 The all-electric ship power system is an isolated power system, which consists of 

gas turbine generators, electric propulsion loads, service loads, high-energy weapon 

loads, and power electronics devices. The all-electric ship power system helps ships 

accomplish cruising and military functions using electric propulsion loads and high-

energy weapon loads, respectively. The system supplies power to propulsion loads 

____________ 
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to drive the ship speed to its cruising speed and supplies power to high-energy weapon 

loads, such as electromagnetic, radar, and sonar guns, to attack its targets and protect 

itself from battle damage. This dissertation discusses a novel real-time load management 

methodology developed for all-electric ship power systems and potential applications of 

the methodology for microgrids. 

 The all-electric ship power system includes four gas turbine generators – two 

main turbine generators (MTGs) and two auxiliary turbine generators (ATGs). The total 

generation capacity of the system is 80 MW. The inertia constants of MTG and ATG are 

1.49 MW sec/MVA and 1.06 MW sec/MVA, respectively. The typical inertia values of 

H for thermal units and hydraulic units are shown in Table 1.1 [3]. Since these gas 

turbine generators have smaller inertia constants, they have faster mechanical dynamics 

than steam turbine and hydro turbine generators.  

 Since isolated power systems are small-scale power systems and electrical 

components are tightly coupled, it is realistic to assume that the system frequency is 

approximately the same at different locations in the system. The collective behavior of 

the generation system is used to analyze the dynamic behavior of the system frequency, 

so the system frequency decline [4] rate can be expressed as (1-1). 

∑ =

Δ
−= n

i i

Lrated

H
Pf

dt
fd

12
                                                     (1-1) 

where, dtfd /  (Hz/sec) is the average frequency decline rate; ratedf  is the rated system 

frequency (60 Hz); LPΔ  (pu) is the magnitude of generation and load mismatch; ∑ =
n
i iH1  

is the total inertia of the system. The frequency decline rate at the first few seconds of a 
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disturbance directly depends on the total system inertia and the magnitude of the 

generation and load mismatch because the turbine governors take several seconds to 

respond to system disturbances. For the same magnitude of the generation and load 

mismatch, the smaller the total system inertia, the larger the system frequency deviation. 

Since isolated power systems have much smaller inertia compared with large power 

systems, the frequency deviation of isolated power systems after certain disturbances 

will be much larger than that of larger inertia power systems, as shown in Figure 1.1. 

Thus, real-time load management is needed to balance the generation and load of the 

system to reduce the frequency oscillation and deviation. 

 
 

Table 1.1 Typical value of generator inertia [3] 
 

Type of generating unit H (MW·sec/MVA) 
Thermal unit 

(a) 3600 r/min (2-pole) 
(b) 1800 r/min (4-pole)

 
2.5 – 6.0 

4.0 – 10.0 
Hydraulic unit 2.0 – 4.0 

 
 
 

Time (sec)

Frequency (Hz)

60
larger inertia

smaller inertia

LPΔ is the same

 

Figure 1.1 Power system frequency behavior after a system disturbance 



 

 

4

 In the all-electric ship power system, battle damage or a sudden increase in load 

demand, such as a pulse load or other high-energy weapon loads, can easily overload the 

generators. For instance, a pulse load has a very high-rated power with a short pulse 

width. When pulse loads are served in the system, the total load demand may exceed the 

generation capacity quickly, as shown in Figure 1.2(a). In this case, for a simplified 

notional all-electric ship power system model, the total generation capacity of the power 

system was only 36 MW (only one MTG was in service); the pulse load was served at 10 

sec with a 12 MW magnitude and 0.3 sec pulse width [5]. When the pulse load was 

served at 10 sec, the total load demand was 44 MW, which greatly exceeded the 

generation capacity and caused the system frequency to decline very quickly. The 

maximum frequency deviation was 0.8 Hz, which is shown in Figure 1.2(b). Therefore, a 

real-time load management technique needs to be used to reduce the impact of pulse 

loads on the power system. 
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(a) 
 
Figure 1.2 Dynamic performance of components of a notional all-electric ship power system with a pulse 
load. (a) Total load demand and generation capacity of a notional all-electric ship power system model, 
(b) Frequency dynamic behavior of the MTG generator  
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Figure 1.2 Continued 
 

 
 

 The all-electric ship power system includes loads with various priorities such as 

vital loads, semi-vital loads, and non-vital loads. Non-vital loads, such as lighting loads, 

heater loads, and air conditioners, receive only a single power feed, and can be 

immediately shed without affecting the ship’s survivability. Semi-vital loads can be shed 

to prevent total loss of ship’s power. In contrast, vital loads, such as radar, sonar, and 

electromagnetic weapons, are required to maintain the military effectiveness of the ship 

[6], [7]. The vital loads have a normal path and an alternate path, as shown in Figure 1.3, 

which improves their reliability. For instance, in Figure 1.3, if the port side DC 

distribution bus is damaged in DC zone 1, loads in DC zone 1 cannot be served by the 

port side bus; thus, vital loads served by the port side bus should be immediately 

switched to the alternate path to be continuously served. 
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Figure 1.3 Diagram of vital loads in the DC zone system of a portion of a notional all-electric ship power 
system model 
 
 
 
 Moreover, the system serves a large number of dynamic and nonlinear loads, 

such as propulsion loads driven by a 36.5 MW advanced induction motor, DC loads 

interfaced with the MVAC system based on power electronics devices, etc. The power 

demand of the propulsion load can be changed from no-load to its rated power in a few 

seconds, which introduces large transients into the power system. For example, if the 

propulsion load power set-point was changed instantaneously, frequency oscillations 

would be introduced by the load changes. In this case, for a simplified notional all-

electric ship power system model with one MTG and one ATG in service, the total 

generation capacity was 40 MW. A propulsion load was also served in the system, and 

the power set-point of the propulsion load was changed from 0 to 32 MW at 0 sec, 

reduced to 16 MW at 10 sec, increased to 26 MW at 20 sec, and then reduced to 7 MW 

at 30 sec, as shown in Figure 1.4(a). The system frequency deviation was more than 1 

Hz when the propulsion load power set-point was changed, as shown in Figure 1.4(b). 
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 If the propulsion load power set-point could be regulated slowly based on the 

system frequency deviation, the frequency deviation of the system would be reduced 

significantly, which would improve the dynamic performance of the system. Therefore, 

the dynamic loads and nonlinear loads should be regulated dynamically to balance the 

generation and load in real time. Otherwise, the system may not operate normally, and 

the failure of the all-electric ship power system would reduce the ability of the ship to 

perform cruising and military functions.  
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Figure 1.4 Dynamic performance of a simplified notional all-electric ship power system with propulsion 
load changes. (a) Propulsion load demand, (b) Frequency behavior of the MTG generator with propulsion 
load changes 
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 In the all-electric ship power system, load priorities should be taken into 

consideration because vital loads need to be served before non-vital and semi-vital loads 

when the system does not have enough available power. The priority of loads may be 

different for various ship operation modes. When the system operates in battle mode, 

pulse loads and high-energy weapon loads have the highest priority to achieve ship’s 

military functions; when the system operates in cruise mode, propulsion loads have the 

highest priority to drive a ship at the desired cruising speed. When a ship’s operation 

mode is changed, a load management technique needs to be used to regulate individual 

loads to achieve certain objectives. For instance, when the operation mode is changed 

from cruise mode to battle mode, pulse loads would be served and the propulsion load 

demand would be regulated to compensate for the impact of pulse loads on the power 

quality of the power system. 

 All operational constraints of the power system should be satisfied in real time to 

operate the system normally. Some significant constraints for the research include: 1) 

available power source capacity constraint; 2) bus voltage, system frequency, and cable 

constraints; 3) dynamic system constraints, 4) the power capacity constraints of 

individual power electronics components; and 5) rated power constraints for individual 

loads.  

 For these reasons, an effective real-time load management technique needs to be 

developed to balance the generation and load of all-electric ship power systems while 

satisfying the operational constraints of the system and considering load priorities. The 

developed real-time load management technique can not only be used for all-electric 
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ship power systems, but also has great potential to be extended to other isolated power 

systems, such as microgrids and islanded power systems in oil fields. 

 The objective of this research was to develop a bio-inspired multi-agent system 

framework to achieve the real-time load management objective for all-electric ship 

power systems. The new multi-agent system framework determines the optimum switch 

status or power set-points for individual loads using autonomous agents based on local 

communication and coordination to maximize the served loads in the system. This 

solution must satisfy the operational constraints of the system, considering load priorities 

in operational real time. 

 The bio-inspired multi-agent system framework was implemented and applied to 

all-electric ship power system model in PSCAD/EMTDC® software to study the 

dynamic performance of the framework. Various pulse loads and operating conditions 

were used to evaluate the dynamic performance of the system. Various operational 

constraints of all-electric ship power systems were also illustrated to show the 

effectiveness of the new method. 

 

1.2  Organization 

 The dissertation includes six chapters. In chapter 2, a notional all-electric ship 

power system model is introduced, and a time-frame analysis of various loads, such as 

pulse loads, propulsion loads, and motors, is also provided. Chapter 3 discusses isolated 

power system operations, a literature review of load management methods, a proof-of-

concept for a real-time load management method for all-electric ship power systems, and 
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the problem formulation for the new real-time load management method. In addition, the 

decision time step for the real-time load management method is discussed. The new bio-

inspired multi-agent system methodology for real-time load management in the all-

electric ship power system is presented in chapter 4. The implementation of the multi-

agent system framework for real-time load management in an all-electric ship power 

system and the performance analysis for the method are discussed in chapter 5. Finally, 

chapter 6 presents conclusions and contributions of the research and discusses potential 

applications of the developed methodology in microgids. 
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2. NOTIONAL ALL-ELECTRIC SHIP POWER SYSTEM MODEL 

 

2.1  Introduction 

 This chapter discusses the various component models and system behavior for a 

notional all-electric ship power system. The outline of this chapter is as follows. In 

section 2.2, the MVAC and DC zone subsystems of the notional all-electric ship power 

system model are introduced; the propulsion load model, pulse load model, and motor 

load model are also discussed. In section 2.3, the dynamic time-frame of various types of 

loads in all-electric ship power systems was analyzed using the PSCAD/EMTDC® 

transient simulation software to determine a feasible decision time step to use for the 

real-time load management method. A summary is given in section 2.4. 

 

2.2  Notional All-Electric Ship Power System Model 

 The one-line diagram of a notional all-electric ship power system is shown in 

Figure 2.1. The system includes four gas turbine generators – two main turbine 

generators (MTGs) and two auxiliary turbine generators (ATGs). Four transformers are 

used to convert the 13.8 kV AC into 4.16 kV AC to supply power to propulsion loads 

and service loads. Rectifiers are used to convert 4.16 kV AC voltage into 1000 V DC 

voltage to supply power to loads in DC zones. The system includes two propulsion 

loads, and each one has a 36.5 MW rated power. A pulse load is served by a MTG bus, 

which has a 13.8 kV input voltage. The system consists of four DC zones, which  
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Figure 2.1 One-line diagram of a notional all-electric ship power system model for navy ships 
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construct the DC zone system. The DC zone system includes various power electronics 

devices to supply power to AC motor loads, DC motor loads, and constant power loads, 

which may have different priorities. The electrical component definitions are shown in 

Table 2.1. 

 
 

Table 2.1 Component definitions for the all-electric ship power system model 
 

No. Component Name Component Description 
1 MTG 3 ph, 13.8 kV, 36 MW generator, 60 Hz 
2 ATG 3 ph, 13.8 kV, 4 MW generator, 60 Hz 
3 Transformer 3 ph, Δ-Δ connected, 13.8/4.16 kV  
4 Propulsion load 36.5 MW (rating), 4.16 kV, AC 
5 Propulsion converter Variable frequency drive (VFD) 
6 PCM1 1000 V DC to 375, 650, and 800 V DC power converters  
7 PCM2 800 V DC to 3-ph, 450 V AC power converter 
8 PCM4 3-ph, 4.16 kV AC to 1000 V DC rectifier (2 MW power capacity) 
9 AC cable 1 3 ph, 13.8 kV AC cable 
10 AC cable 2 3 ph, 4.16 kV AC cable 
11 AC cable 3 3 ph, 4.16 kV AC cable 
12 DC cable 1 1 kV DC cable 
13 DC cable 2 1 kV DC cable 
14 DC cable 3 375 V DC cable 
15 DC cable 4 650 V DC cable 
16 DC cable 5 800 V DC cable 
17 Vital load Vital loads should be served all the time 
18 Semi-vital load Loads can be shed to prevent total loss of ship’s power 
19 Non-vital load Non-vital loads can be shed without affecting ship operations 

 
 
 
2.2.1  MVAC system model 

 The MVAC system consists of 13.8 kV AC voltage level and 4.16 kV AC 

voltage level systems. The system includes two MTGs and two ATGs with 13.8 kV 

voltage level. MTG capacity is 36 MW and ATG capacity is 4 MW, so the total 

generation capacity of the system is 80 MW. A pulse load is connected to a MTG bus 

with 13.8 kV AC voltage. Four transformers convert 13.8 kV AC voltage into 4.16 kV 

AC voltage to supply power to propulsion loads and services loads. Each propulsion 
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load is driven by an advanced induction motor (AIM), and a propulsion converter is used 

to drive an AIM to accomplish the cruising function of ships. 

2.2.1.1  Generation system model 

 Each gas turbine generator consists of an exciter, a gas turbine governor, and a 

synchronous generator. The exciter is used to maintain the output voltage of the 

generator at the desired value. The gas turbine governor is used to control the gas turbine 

to convert mechanical power to electrical power using the synchronous generator. The 

gas turbine generator has smaller inertia compared with steam or hydro turbine 

generators. The mismatch between the generation and load may result in significant 

frequency oscillations in all-electric ship power systems. Thus, the gas turbine governor 

needs to respond fast to make the system frequency converge to 60 Hz quickly. 

 The gas turbine governor model, as shown in Figure 2.2(a), includes a 

temperature control loop and a speed control loop [8], [9], which is a commonly used 

dynamic model for gas turbine governors. A low value selector is used to select a 

smaller value from outputs of speed controller and temperature controller. Two first-

order inertia elements are used to model fuel valve and fuel system, respectively. TurbD  

is the damping coefficient of the gas turbine. During system operation, the gas turbine 

generator should be set as droop mode or isochronous (isoch) mode. The parameters of 

the gas turbine governor are shown in Table 2.2. 

 For a droop mode generator, a load reference should be designated to control the 

power output of the generator; the model for the droop mode generator is shown in 

Figure 2.2(b). As shown in the diagram, the temperature control loop is neglected to 
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simplify the system analysis. R is the droop of the speed governor, which is usually 

chosen as 4% or 5%. When the speed equals the reference speed, the output power 

equals the load reference. 
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(a) Diagram of the actual gas turbine governor model 
 

sT11
1

+ sT21
1

+

maxV

minV
+-

Load 
reference

Speed
+

-

TurbD

MechP
Fuel valve Fuel system

R
1+-

refω

 
 
(b) Diagram of gas turbine governor model in droop mode 
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(c) Diagram of gas turbine governor model in isoch mode 
 
Figure 2.2 Diagrams of gas turbine governor model for the all-electric ship power system 
 
 
 
 When load changes occur, there will be a mismatch between the generation and 

load in the system. Consequently, the system frequency will deviate from 60 Hz. In this 
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situation, an isoch generator can pick up the load change to restore the system frequency 

to approximately 60 Hz. For the isoch generator, the synchronous speed should be 

designated to ensure that the system frequency is maintained at 60 Hz; the model for the 

isoch generator is shown in Figure 2.2(c). K is the gain of the integral controller, which 

determines the response speed of the isoch generator. 

 
 

Table 2.2 Parameters of the gas turbine governor model 
 

Parameter Value 
Time constant of fuel valve T1 0.1 sec 
Time constant of fuel system T2 0.4 sec 
Droop coefficient R 4% 
Damping coefficient DTurb 0 
Gain of integral controller K 5 

 
 

 
2.2.1.2  Propulsion load model 

 The diagram of the marine propulsion system model is shown in Figure 2.3. An 

advanced induction motor is driven by a propulsion converter, which includes a rectifier, 

a DC link, and an inverter. The rectifier converts 4.16 kV AC into DC voltage, and a 

space vector PWM inverter is used to convert the DC voltage into AC voltage to serve 

the advanced induction motor. The marine propulsion controller has two operation 

modes – speed control mode and power control mode. In the speed control mode, the 

speed controller is used to drive the ship speed to the desired value. In the power control 

mode, the power controller is used to regulate the power demand of the advanced 

induction motor to the desired value. The propulsion system and the hydrodynamics for 
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the marine propulsion system have been discussed in detail in [10]. The parameters of 

the advanced induction motor are shown in Table 2.3 [11]. 
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Figure 2.3 Diagram of the marine propulsion system model 
 
 
 

Table 2.3 Parameters of the advanced induction motor model [11] 
 

Parameter Value 
Rated power 45 MVA 
Rated voltage 12 kV 
Base angular frequency 377 rad/s 
Stator / rotor turns ratio 2.637687 
Angular moment of inertia (J = 2H) 1 sec 
Mechanical damping 0.01 pu 
Stator resistance 0.0034 pu 
Wound rotor resistance 0.00607 pu 
Magnetizing inductance 0.9 pu 
Stator leakage inductance 0.0102 pu 
Wound rotor leakage inductance 0.011 pu 

 
 
 
 The diagram of the power controller of the marine propulsion system is shown in 

Figure 2.4. The power controller includes the power control loop and rotor speed control 

loop. The output of the power controller is the set-point of the rotor speed controller; the 

output of the rotor speed controller is the torque command, which is used to control the 
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dq currents of the inverter; and the switch control component is used to control the status 

of switches in the inverter. 
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Figure 2.4 Diagram of the power controller for the marine propulsion system 
 
 
 
 The power controller can be expressed as (2-1). 

skksG IP +=)(                                                (2-1) 

where, the proportional gain Pk  and integral gain Ik  of the power controller were 

chosen as 0.1 and 0.5, respectively. The maximum and minimum limits of the power 

controller were chosen as 1.5 and 0 (p.u.), respectively. The rotor speed controller used 

the same kind of PI controller as shown in (2-1), and the proportional gain Pk  and 

integral gain Ik  of the rotor speed controller were chosen as 40 and 2.5, respectively. 

The maximum and minimum limits of the rotor speed controller were chosen as 20 and -

5 (p.u.), respectively. 

 The main function of the propulsion system is to drive the ship speed to a user 

desired value; the speed controller of the marine propulsion system is shown in Figure 

2.5. The ship speed controller has maximum and minimum limits to constrain the 

maximum and minimum power demand of the propulsion system. The speed controller 

also used (2-1). The proportional gain Pk  and integral gain Ik  of the speed controller 
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were chosen as 1 and 500, respectively; the maximum and minimum limits of the speed 

controller were chosen as 1.1 and 0 (p.u.), respectively.  
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Figure 2.5 Diagram of the speed controller for the marine propulsion system model 
 
 
 
 When the speed set-point of the marine propulsion system is increased, the PI 

controller operates in the saturation region immediately, which means that output value 

of the controller reaches the maximum limit. The ship is accelerated using the maximum 

power of the propulsion load. When the ship speed reaches the desired speed, the PI 

controller returns to the linear region, which reduces the power demand of the 

propulsion load to steady state. Due to this reason, the ship can be accelerated to its 

desired speed quickly. For the same reason, when the ship speed set-point is decreased, 

the speed controller hits its minimum limit, which decelerates the ship using its 

minimum power. When the ship speed decreases to its desired value, the PI controller 

returns to the linear region, which also decreases the ship speed to the desired value 

quickly. 

2.2.1.3  Pulse load model 

 The pulse load was modeled using a pulse charging circuit, as shown in Figure 

2.6. A rectifier was used to convert AC voltage into DC voltage to supply power to the 
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pulse load, which was modeled as a resistor. This pulse load model is used in [12], [13] 

to study the impact of pulse loads on all-electric ship power systems. It was assumed that 

the discharging time was much smaller than the charging time, so the discharging pulse 

was almost instantaneous compared with the charging duration. When the charging 

circuit was charging, it produced a pulse in the power system. A small value was chosen 

for the resistor in the charging circuit to emulate the charging process of the pulse load; 

in contrast, a very large value was chosen for the resistor to emulate the disconnection of 

the charging circuit from the power system. The inductor PL  and capacitor PC  in the 

charging circuit were chosen as 1 mH and 10 mF, respectively. 
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Figure 2.6 Diagram of the pulse load charging circuit model [12], [13] 
 
 
 
 A pulse load can draw a large amount of power in a short period of time. A 

typical power demand waveform of a pulse load is shown in Figure 2.7. The pulse load 

was served from 10 to 11 seconds. The pulse magnitude was 10 MW; the pulse length 

was 1 second.  

 The priorities of pulse loads, propulsion loads, and service loads are varied based 

on the operation mode of ships [14]. In battle mode, pulse loads have the highest priority 
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to serve weapon loads; in cruise mode, propulsion loads have the highest priority to 

drive the ship to its cruising speed. In battle mode, when a pulse load needs to be served, 

the propulsion load demand can be decreased temporarily to compensate for the impact 

of the pulse load on the power quality of the all-electric ship power system. Due to the 

inertia of the ship, the disturbance would not decrease the ship speed significantly. 
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Figure 2.7 The power demand waveform of a pulse load with 10 MW magnitude and 1 second pulse 
width 
 
 
 
2.2.2  DC zone system model 

 The DC zone system consists of four DC zones, as shown in Figure 2.1. A detail 

diagram of a DC zone is shown in Figure 2.8. Each DC zone has two DC distribution 

buses – a starboard side bus and a port side bus (port and starboard are nautical terms 

which refer to the left and right sides of a ship). The DC distribution buses are served by 

PCM4 modules (rectifiers) which convert 4.16 kV 3-ph AC voltage to 1000 V DC 

voltage. A PCM4 does not serve the starboard side bus and the port side bus at the same 

time. The power capacity of each PCM4 is 2 MW. Each DC distribution bus is 
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connected to a PCM1 which converts the 1000 V DC voltage into three voltage levels, 

375 V DC, 650 V DC, and 800 V DC. PCM2 modules (inverters) are served by 800 V 

DC-DC converters and invert the 800 V DC to 3-ph 450 V AC to serve AC loads, such 

as induction motors. 
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Figure 2.8 Diagram of a DC zone model in the notional all-electric ship power system 
 
 
 
2.2.2.1  DC-DC converter model 

 Each DC zone consists of a starboard side DC distribution bus and a port side DC 

distribution bus. Each DC distribution bus supplies power to three DC-DC converters at 

375 V, 650 V, and 800 V DC voltage levels. A diagram of the DC-DC converter model 
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is shown in Figure 2.9. The DC-DC converter includes a switch, an inductor, and a 

capacitor. A PI controller is used to regulate the output power of the DC-DC converter to 

the desired value. The averaged model of the DC-DC converter is expressed in (2-2). 
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where, Li  and Cv  are the inductor current and capacitor voltage, respectively; inV  and ini  

are the input voltage and current, respectively; d is the duty ratio of the switch in the 

converter; d̂  is the output signal of the PI controller; D is the feed-forward term of the 

converter; refv  is the output voltage reference; R is the equivalent resistor of the load; pk  

and ik  are the proportional and integral coefficients of the PI controller. The averaged 

model neglects the high-frequency switching of the power electronic device in the 

converter. This model can be used to study dynamic behaviors of the control system. 

 

)(tVin

L

C

)(td

Li

Cv

Lv
ini

Ci

)(sGc

)(sH

refv

ev CHv

D

d̂

outi

 
 
Figure 2.9 Diagram of DC-DC converter model with a voltage controller 
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2.2.2.2  DC motor model 

 In the DC zone system, DC motors are used to drive mechanical loads. A 

diagram of a DC motor model is shown in Figure 2.10. The DC motor model includes 

the electrical part and mechanical part. The DC motor is connected to a DC voltage bus. 

The mechanical torque of the DC motor is proportional to the square of the rotor speed 

of the DC motor. The model also includes the damping effect of the DC motor. The DC 

motor model can be expressed as (2-3). 
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where, motorω   is the rotor speed; B is the damping coefficient; MT  is the mechanical 

torque; Mk  is a positive constant; aL  is the equivalent armature inductance; aR  is the 

equivalent armature resistance; J is the inertia of the DC motor; 1K  and 2K  are 

coefficients of the DC motor model; motorv  and motori  are the input voltage and current to 

the DC motor model, respectively. 
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(a) Diagram of electrical part for DC motor            (b) Diagram of mechanical part for DC motor 
 
Figure 2.10 Diagram of a DC motor model 
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2.2.2.3  AC motor model 

 In the DC zone system, 800 V DC-DC converters supply power to induction 

motors. PCM2 is used to invert the 800 V DC voltage into 450 V AC voltage. A variable 

frequency drive was designed to drive the induction motor. The power demand of the 

induction motor was regulated using the machine drive system. The total power demand 

of the induction motor was controlled by regulating the set-point of the machine drive 

system. The block diagram of the induction motor and the machine drive system is 

expressed in Figure 2.11. The AC motor model includes a power converter and an 

induction motor. The power converter consists of a rectifier, a DC link, and an inverter. 

The power controller was designed to regulate dq currents to drive the power demand of 

the induction motor to track the power demand set-point. 
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Figure 2.11 Diagram of an induction motor model and a variable frequency drive 
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2.3  Time-Frame Analysis of Loads in the Notional All-Electric Ship Power System 

 Since the notional all-electric ship power system consists of large portions of 

nonlinear loads and dynamic loads with fast dynamics, load dynamics need to be 

carefully studied to determine an appropriate decision time step for real-time load 

management. In the MVAC system, the power set-point of the propulsion load needs to 

be regulated when the pulse load is served. In the DC zone system, the load demand of 

each load needs to be regulated when the available power to the DC zone system is 

changed. Thus, an appropriate decision time step for real-time load management needs 

to be determined to achieve these objectives. 

2.3.1  Time-frame analysis for pulse load 

 In future all-electric warships, high-energy weapon loads, such as 

electromagnetic guns, electromagnetic launch systems, free-electron lasers, pulse radar, 

aircraft launch, and high power microwave, will be integrated into all-electric ship 

power systems. These pulse loads draw very large short-time power in an intermittent 

way and may cause significant voltage and frequency oscillations in the system, which 

deteriorate the power quality of the all-electric ship power system. The dynamic and 

transient stabilities of the all-electric ship power system, when pulse loads were served, 

were analyzed using PSCAD simulation studies.  

2.3.1.1  Literature review for pulse loads in all-electric ship power systems 

 Pulse loads can be classified as kinetic energy weapons, direct energy weapons, 

and high power sensors [15]. Kinetic energy weapons use electric power to accelerate a 

projectile, such as electromagnetic guns, coil guns, electrothermal guns, and 
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electrothermal-chemical guns [15], [16]. Direct energy weapons emit a high power 

electromagnetic wave to the target, such as high energy laser, high power microwave, 

[15]. High power sensors include pulse sonar and pulse radar.  

 MIL-STD-1399, IEEE-STD-45 [17], and STANAG 1008 [18] provide 

specifications for voltage and frequency modulations for navy shipboard power systems. 

The frequency and voltage modulations are defined in (2-4). 
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                                                 (2-4) 

where freqm  and voltagem  are the frequency and voltage modulation, respectively; nomf  

and nomV  are the nominal frequency and RMS or peak line-to-line voltage, respectively. 

To meet the IEEE-STD-45 requirement, the frequency and voltage modulations should 

be less than 0.5% and 2%; to meet STANAG 1008 requirement, the frequency and 

voltage modulations should be less than 0.5% and 5%. The frequency modulation of the 

two standards is the same, but the voltage modulation is different. 

 Based on the requirements for voltage and frequency modulations, STANAG 

1008 [18] provides specifications of the power constraints for pulse loads in all-electric 

ship power systems, which are shown in (2-5). 
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where, pulseP  and pulseQ  are pulse load active and reactive power demand, and supplyS  is 

the full rated apparent power of the supply at the occurrence of the pulse load. The 
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power quality requirements for shipboard power systems defined by IEEE-STD-45 [17] 

are summarized in Table 2.4. 

 
 

Table 2.4 IEEE-STD-45 power quality requirements for shipboard power systems 
 

Characteristics Frequency Voltage 
Tolerance ±3% ±5% 
Modulation 0.5% 2% 
Transient tolerance ±4% ±16% 
Transient recovery time 2 sec 2 sec 

 
 
 
 Various kinds of pulse loads have been studied in the literature. These pulse 

loads have different energy demand, power demand, pulse width, and pulse frequency. 

The magnitudes of various pulse loads are summarized in Table 2.5. The durations of 

various pulse loads are summarized in Table 2.6. The power requirements for typical 

pulse loads are shown in Table 2.7. 

 
 

Table 2.5 Summary of pulse load magnitudes 
 

Pulse load magnitude Reference # 
5 MW – 20 MW  [12], [13] 
20 MW – 70 MW [19], [20], [21], [22], [23] 
20 kW – 200 kW  [24], [25], [26] 

 
 
 

Table 2.6 Summary of pulse load durations 
 

Pulse load duration Reference # 
1 sec – 25 sec   [12], [13], [24], [26] 
0.1 sec – 1 sec [19], [25], [20], [21], [22], [23] 
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Table 2.7 Summary of power requirements for typical pulse loads 
 

Pulse load type Energy Pulse 
length 

Average power 
(Charging power) 

Peak power 

EM rail-gun [16], [27] 30-40 MJ 4-6 ms 2 MW 15-28 GW 
Radar [15], [27] 0.2 kJ 0.2 µs 2 MW 20 GW 
Coil gun [15] 8.6 MJ 100 ms 0.09 MW 0.086 GW 
ETC igniter [16] 0.3-0.5 MJ 1-2 ms 25 kW 100-500 kW 
ETC gun [16] 3-5 MJ 3-4 ms 0.25 MW 0.36-0.9 GW 
Pure ET gun [16] 60-90 MJ 3-4 ms 4.5 MW 0.11-8 GW 
Electromagnetic aircraft launch 
system (EMALS) [27], [28]  

550-2250 MJ Several 
seconds 

≤6 MW 150 MW 

 
 
 
2.3.1.2  Dynamic studies for pulse loads in the notional all-electric ship power system 

 To study the dynamic behaviors of pulse loads in the notional all-electric ship 

power system, a simplified notional system was designed to demonstrate the dynamic 

behavior of the system, when a pulse load was served. The one-line diagram of the 

simplified notional all-electric ship power system model is shown in Figure 2.12. The 

system consists of one MTG with 36 MW/45 MVA capacity, one auxiliary turbine 

generator (ATG) with 4 MW/5 MVA capacity, one propulsion load with 36.5 MW rated 

power, two DC zones with 2 MW rated power for each zone, and one pulse load 

connected to the MTG bus.  

 It was assumed that MTG and ATG were in service, so the total generation 

capacity of the system was 40 MW. An automatic generation control (AGC) was used to 

regulate set-points of generators to maintain the system frequency at 60 Hz. Each gas 

turbine generator included a gas turbine governor, an exciter, and one synchronous 

generator. Droop control was used to dynamically regulate the output mechanical power 

of the gas turbine based on the generator frequency. If the total load demand exceeded 

the generation capacity, the system frequency would decline quickly from 60 Hz. 
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Figure 2.12 One-line diagram of a simplified notional all-electric ship power system model 
 
 
 
 Ten case studies were conducted to study the dynamic behavior of two types of 

pulse loads – single-pulse load and multiple-pulse load. The pulse loads used in the ten 

case studies are summarized in Table 2.8. The magnitude of pulse loads was chosen as 

10 MW, which was 25% of the generation capacity. The pulse lengths were chosen 

between 0.1 and 1 second, which were widely used in the literature. 

 
 

Table 2.8 Summary of pulse loads for case studies 
 

Case No. Pulse magnitude 
(MW) 

Pulse length (sec) 
& duty ratio  

Number 
of pulses 

Propulsion load 
demand (MW) 

DC zone load 
demand (MW) 

1 10 0.1 – NA 1 16 4 
2 10 0.5 – NA 1 16 4 
3 10 1.0 – NA 1 16 4 
4 10 0.1 – NA 1 32 4 
5 10 0.5 – NA 1 32 4 
6 10 1.0 – NA 1 32 4 
7 10 0.1 – 10% 10 16 4 
8 10 0.1 – 50% 10 16 4 
9 10 0.1 – 10% 10 32 4 

10 10 0.1 – 50% 10 32 4 
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 The pulse load in case studies was served at 10 seconds. In case studies 1-3, three 

pulse loads had different pulse lengths and the same magnitude (10 MW), and the 

propulsion load demand was 16 MW. The RMS voltage drop of the MTG generator was 

almost the same in case studies 1-3, as shown in Figure 2.13. The frequency behavior of 

the MTG generator in case studies 1-3 is shown in Figure 2.14. The frequency behavior 

was different when the pulse duration was different. When the pulse length was 

increased from 0.1 second to 0.5 second, the maximum frequency deviation of the MTG 

generator was increased from 0.4 Hz to 1.1 Hz, as shown in Figure 2.14. However, when 

the pulse duration was increased from 0.5 sec to 1 sec, the maximum frequency 

deviation was not increased because the system included enough generation capacity to 

supply all the loads and the prime movers of generators picked up the load changes in 

0.5 second to restore the system frequency. If the generation capacity was less than load 

demand, the system frequency decreased significantly, which was illustrated in case 

studies 4-6. 
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Figure 2.13 RMS voltage of the MTG generator for case studies 1-3 
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Figure 2.14 Frequency dynamic behavior of the MTG generator for case studies 1-3 
 
 
 
 In case studies 4-6, the pulse load had a different pulse length and the same 

magnitude (10 MW) for each case. The propulsion load demand was 32 MW for each 

case. The frequency behavior of the MTG generator in case studies 4-6 is shown in 

Figure 2.15. As the pulse length was increased from 0.1 second to 1.0 second for each 

case, the maximum frequency deviation of the MTG generator increased significantly. 

Since the total generation capacity was 40 MW, the available power source capacity 

constraint was violated when the pulse load was served in case studies 4-6. When the 

pulse length was larger than 1 second, the maximum frequency deviation of the MTG 

generator was more than 2 Hz, which might trip generators and sensitive loads in the all-

electric ship power system. Comparing the MTG frequency behavior of case studies 2 

and 5, as shown in Figure 2.16, the pulse load characteristics in the two cases were the 

same, but the maximum frequency deviation in case study 5 was larger than case study 2 

because the available power source capacity constraint was violated in case study 5. For 

the same reason, the maximum frequency deviation in case study 6 was much larger than 



 

 

33

case study 3, as shown in Figure 2.17, even though they used the same pulse load 

characteristics.  
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Figure 2.15 Frequency dynamic behavior of the MTG generator for case studies 4-6 
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Figure 2.16 Frequency dynamic behavior of the MTG generator for case studies 2 and 5 
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Figure 2.17 Frequency dynamic behavior of the MTG generator for case studies 3 and 6 
 
 
 
 Since the notional all-electric ship power system will serve pulse train loads in 

which several pulses occur periodically such as rail gun [24], [19] and radar [25], the 

system frequency behavior will be impacted by the repetition period of the pulse loads. 

In case studies 7-10, multiple-pulse loads were used to study the dynamic performance 

of the notional all-electric ship power system with repetition pulses. The pulse load 

characteristics were the same in case studies 8 and 10, and the propulsion load demand 

was 16 MW in case study 8 and 32 MW in case study 10. The maximum frequency 

deviation of the MTG generator in case study 10 was larger than case 8, as shown in 

Figure 2.18, because the load demand exceeded the generation capacity in case study 10. 

Comparing frequency behaviors of pulse loads with 10% and 50% duty ratios, the 

maximum frequency deviation of case study 10 was larger than case study 9, as shown 

in Figure 2.19. Thus, the duty ratio of the pulse load also affected the frequency behavior 

of the notional all-electric ship power system. 
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Figure 2.18 Frequency dynamic behavior of the MTG generator for case studies 8 and 10 
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Figure 2.19 Frequency dynamic behavior of the MTG generator for case studies 9 and 10 
 
 
 
 The case studies indicated that the impact of pulse loads on the dynamics of the 

all-electric ship power system depended on the pulse magnitude, pulse length, generation 

capacity, total load demand, number of pulses, and duty ratio of pulses. Especially when 

the total load demand was close to the generation capacity, the frequency oscillation was 

significant after a pulse load was served. It was because after the pulse load was served, 

the available power source capacity constraint was violated, which resulted in a 

significant frequency decline. 
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2.3.2  Time-frame analysis for propulsion load 

 In the notional all-electric ship power system, propulsion loads consume 90% of 

the total generation capacity, which has great impact on the finite inertia power system. 

When the power demand of propulsion loads increases or decreases quickly, the 

frequency and voltage may deviate from the nominal values. The navy ship has a large 

inertia, so the ship speed does not change quickly after the power demand of propulsion 

loads is changed. Due to this reason, propulsion loads can be temporarily regulated to 

compensate for the load changes in the system when other higher priority loads need to 

be served [29]. For instance, pulse loads have higher priority and propulsion loads have 

lower priority in battle mode [14]. When a pulse load is served, the propulsion load 

demand can be reduced immediately to keep the total load demand constant and reduce 

the frequency deviation. Similar ideas have been implemented in [13], [24], [30], [31]. 

2.3.2.1  Literature review for propulsion loads in all-electric ship power systems 

 In [32], typical time constants of a marine propulsion system based on a 20-MW 

propulsion motor and rapid-response ship are given to show the diversity of the time 

constant in the marine drive system. The time constant of hydrodynamics is on the order 

of hundred seconds; the time constants of the variable frequency drive and motor 

dynamics are on the order of milliseconds to seconds; and the time constant of power 

electronics devices is on the order of microseconds. If the simulation step size is chosen 

based on the time constant of power electronics devices, the computation complexity of 

the simulation would be high for the mechanical transient duration. In order to increase 
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the simulation efficiency, the authors developed averages models to model the rectifier 

and inverters in the marine drive system, which allowed a larger simulation step size.  

 In [24], [29], [33], the propulsion system was driven by a 37 kW, 180 rpm, 460 V 

line-line voltage induction motor in the reduced-scale naval combat survivability 

generation and propulsion test-bed. In [24], [33], the propulsion load was coordinated 

with a pulse load to reduce the impact of pulse loads on the power quality of all-electric 

ship power systems. In battle mode, when a pulse load was served in the system, the 

power demand of the propulsion load was immediately reduced to compensate for the 

impact of the pulse load on the dynamics of the system. After the pulse load was 

disconnected from the system, the power demand of the propulsion load was gradually 

regulated to the nominal value. 

 Another pulse load and propulsion load coordination method is discussed in [30]. 

When the ship operates at full speed, the system does not have enough power to recharge 

energy storage systems. In order to recharge the energy storage system quickly, the ship 

speed was reduced to decrease the propulsion load demand. After the ship reached a 

lower cruising speed, energy storage systems were recharged quickly to serve pulse 

loads. The simulation results indicated that, if necessary, the electromagnetic launcher 

and free electron laser could both be served using the energy storage systems, while 

using the full generation power to accelerate the ship.  
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2.3.2.2  Dynamic studies for propulsion loads in the notional all-electric ship power 

system 

 A simplified notional all-electric ship power system model, as shown in Figure 

2.12, was used to study the dynamic behavior of propulsion loads. The simplified system 

consisted of one MTG, one ATG, one propulsion load, one pulse load, and two DC 

zones. In the case studies, it was assumed that the navy ship operated in cruise mode and 

the pulse load was out of service. The rated power of the propulsion load was 36.5 MW, 

and the load demand in the DC zone system was 4 MW. Two case studies were used to 

study the dynamic behavior of the power demand of the propulsion load and the ship 

speed, respectively. The decision time step for the propulsion load power set-point was 

chosen as 10 milliseconds in the case studies. 

 In case study 1, the propulsion load operated in power control mode to study the 

dynamic behavior of the power demand of the propulsion load. The power set-point and 

actual load demand of the propulsion load are shown in Figure 2.20. The power set-point 

of the propulsion load was decreased from 32 MW to 16 MW at 10 seconds, increased to 

25.6 MW at 20 seconds, and decreased to 6.4 MW at 30 seconds. The simulation results 

indicated that the propulsion load demand reached the new desired value in 5 sec for 

each set-point change. The output power signals of the MTG and ATG generators are 

shown in Figure 2.21. After the power demand of the propulsion load was changed, the 

output power of each generator was also changed to balance the generation and load in 

the system. 
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Figure 2.20 Power set-point and actual power demand of the propulsion load for case study 1 
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Figure 2.21 MTG and ATG output power for case study 1 
 
 
 
 The MTG generator frequency is shown in Figure 2.22. When the propulsion 

load demand was decreased from 32 MW to 16 MW at 10 seconds, the maximum 

frequency deviation was 1.2 Hz; when the propulsion load demand was increased from 

16 MW to 25.6 MW at 20 seconds, the maximum frequency deviation was 0.7 Hz; and 

when the propulsion load demand was decreased from 25.6 MW to 6.4 MW, the 

maximum frequency deviation was 1.3 Hz. The propulsion load demand changed from 

one level to another level in a few seconds, and the prime mover could not response 
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quickly enough to pick up the load change, which resulted in the frequency oscillations. 

The output voltages of MTG and ATG generators are shown in Figure 2.23. When the 

power demand of the propulsion load changed, the maximum voltage deviation was 

around 2%. When the power demand of the propulsion load was increased, the output 

voltages of generators were decreased from the normal value; and when the power 

demand of the propulsion load was decreased, the output voltages of generators were 

increased from the nominal value. 
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Figure 2.22 Frequency behavior of the MTG generator for propulsion load changes in case study 1 
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Figure 2.23 MTG and ATG output voltages for propulsion load changes in case study 1 
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 In case study 2, the propulsion load operated in speed control mode to study 

dynamic behavior of the ship speed. The decision time step of the speed controller was 

chosen as 10 milliseconds in the case study. The ship speed set-point was increased from 

20 to 30 knots at 30 seconds, reduced to 20 knots at 60 seconds, and increased to 25 

knots at 80 seconds. The ship speed dynamic behavior is shown in Figure 2.24. The ship 

speed was increased from 0 knot to 20 knots in 15 seconds. The ship was accelerated 

from 20 knots to 28 knots in 12 seconds.  
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Figure 2.24 Ship speed set-point and actual ship speed for case study 2 
 
 
 
 When the ship speed was increased, the propulsion load used its maximum power 

to accelerate the ship to its desired speed, as shown in Figure 2.25. When the ship speed 

reached the desired value, the speed controller returned to the linear region of the 

controller. The ship was accelerated using its maximum power and decelerated using its 

minimum power, which could drive the ship to its desired speed quickly. The system 

frequency behavior is shown in Figure 2.26. When the ship was accelerated, the 

maximum frequency deviation was around 2.2 Hz. When the ship was decelerated, the 
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maximum frequency deviation was around 1.8 Hz. MTG and ATG output voltages are 

shown in Figure 2.27. When the ship was accelerated, the voltage drop was 5% of the 

nominal value, and the voltage returned to the normal value in 2 seconds; when the ship 

speed was decreased, the voltage increased by 3% and then returned to the nominal 

value in 2 seconds. 
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Figure 2.25 Propulsion load demand for ship speed changes in case study 2 
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Figure 2.26 MTG frequency signal for ship speed changes in case study 2 
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Figure 2.27 MTG and ATG output voltages for ship speed changes in case study 2 
 
 
 
 In power control mode, the propulsion load reached the steady state in 5 seconds 

when the load reference changed. The decision time step for the power set-point of the 

propulsion load was chosen as 10 milliseconds. When a pulse load was served in the 

notional all-electric ship power system, the power set-point of the propulsion load could 

be regulated immediately to compensate for the impact of the pulse load based on the 

system frequency signal. The 10 ms decision time step of the propulsion load power 

controller could successfully accomplish this task.  

 In speed control mode, the ship speed could reach the steady state in 15 seconds 

when the speed reference changed. When the ship speed set-point was increased, the 

speed controller immediately operated in saturation region to accelerate the ship using 

the full propulsion power. After the ship speed reached to the desired speed, the speed 

controller returned to linear region to maintain the ship speed at the desired value. The 

decision time step of the speed controller was also chosen as 10 milliseconds in the case 

study 2, which successfully achieved the cruising function of the propulsion load. 
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2.3.3 Time-frame analysis for motor loads in DC zones 

 The data for the motor loads in a DC zone are shown in Table 2.9. The rated 

power of DC and AC motors in DC zones are in the range of 36 kW to 192.6 kW. DC 

motor loads are served by DC-DC converters in PCM1s directly, and AC motor loads 

are served by inverters (PCM2s).  

 
 

Table 2.9 Motor load definitions in one DC zone 
 

Component name Priority Rating (kW) Voltage (V) Switch Board 
DC motor load 1 Non-vital 115.4 650 Port 
DC motor load 2 Non-vital 36 650 Port 
DC motor load 3 Non-vital 115.4 650 Starboard 
DC motor load 4 Non-vital 47.6 650 Starboard 
DC motor load 5 Non-vital 36 375 Port 
DC motor load 6 Non-vital 115.4 375 Starboard 
AC motor load 1 Vital 181 450 Port 
AC motor load 2 Non-vital 79.4 450 Port 
AC motor load 3 Non-vital 115.4 450 Starboard 
AC motor load 4 Vital 192.6 450 Starboard 

 
 
 
2.3.3.1  Dynamic studies for DC motor loads in the DC zone system 

 The simulation diagram of a DC motor in PSCAD software is shown in Figure 

2.28. The DC motor model consists of the DC motor, excitation system, mechanical 

load, and power controller. The DC motor model discussed in section 2.2.2.2 does not 

include the machine drive system. In this section, a torque control method was designed 

to control the power demand of the DC motor. The power controller is used to drive the 

DC motor power demand to the desired value. To study the dynamic performance of the 

DC motor model, the dynamic behavior of the DC motor and machine drive system was 

modeled using a second-order linear system, which is shown in (2-6). 
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where, DCK , 1T , and 2T  are the coefficients of the model; pointset−P  is the power demand 

set-point of the DC motor; DCP  is the actual power demand of the motor. The state space 

equation for the DC motor model can be shown as (2-7). 

)()(
)()()(

)()/()()/()()/1()(
)(

pointset

1

2221122

21

tPtu
tPtxty

tuTKtxTTtxTtx
xtx

DC

DC

−=
==

−−−=
=

&

&

                        (2-7) 

where, 1x  is equal to the power demand of the DC motor; 2x  is the first derivative of 

state variable 1x ; u is the input variable of the linear system, which is equal to 

)(pointset tP − ; y  is the output signal of the system, which is equal to )(tPDC . The unknown 

parameters 1T , 2T , and DCK  were identified using a system identification method. The 

diagram of the identification procedure is shown in Figure 2.29. 

 

 
 
Figure 2.28 Diagram of DC motor simulation model in PSCAD software 
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Figure 2.29 Diagram of system identification for motor load model 
 
 
 
 To model the DC motor using (2-7), a system identification technique was used 

to identify the unknown parameters of the system model. DC motors were simulated in 

PSCAD software. Based on the DC motor dynamic model (2-7) and data from the 

PSCAD simulation, the unknown parameters of the dynamic model were identified 

using the simplex method.  

 The identification results of 36 kW 375 V DC motor are shown in Figure 2.30. 

The identification results of 115.4 kW 375 V DC motor are shown in Figure 2.31. The 

identification results of 115.4 kW 650 V DC motor are shown in Figure 2.32. The 

identification results of 47.6 kW 650 V DC motor are shown in Figure 2.33. The 

simulation results indicated that the estimated system followed the PSCAD model very 

well. The identified parameters of DC motors are summarized in Table 2.10. 
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Figure 2.30 Power demands of estimated system and actual system for 375 V 36 kW DC motor 
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Figure 2.31 Power demands of estimated system and actual system for 375 V 115.4 kW DC motor 
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Figure 2.32 Power demands of estimated system and actual system for 650 V 115.4 kW DC motor 
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Figure 2.33 Power demands of estimated system and actual system for 650 V 47.6 kW DC motor 
 
 
 

Table 2.10 Identified parameters of DC motors 
 

Component name KDC  T1  T2 
36 kW 375 V DC motor  1 0.2203 0.01 
115 kW 375 V DC motor 1 0.3289 0.01 
115 kW 650 V DC motor 1 0.3648 0.01 
47.6 kW 650 V DC motor 1 0.3123 0.01 

 
 
 
 When the power set-point of a DC motor load was changed from one value to 

another, the system reached the new steady state in a second. When the available power 

to the DC zone system was reduced, load demand of non-vital DC motor loads could be 

immediately decreased to rebalance the generation and load. 

2.3.3.2  Dynamic studies for AC motor loads in the DC zone system 

 The AC motor load used in this section to study the load dynamic behavior is 

shown in Figure 2.11 in section 2.2.2.3, which includes an induction motor and a 

machine drive system. The dynamic behavior of the induction motor and machine drive 

system can be modeled using a second-order linear system, which is shown in (2-8). 
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where, ACK , 1T , and 2T  are the coefficients of the model; pointset−P  is the power set-point 

of the AC motor; ACP  is the actual power demand of the induction motor. The state 

space equation for the AC motor load model can be expressed in (2-9). 
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where, 1x  is equal to the power demand of the AC motor; 2x  is the first derivative of 

state variable 1x ; u is the input variable of the system, which is equal to )(pointset tP − ; y  is 

the system output, which is equal to )(tPAC . The unknown parameters 1T , 2T , and ACK  

were identified using the identification method, as shown in Figure 2.29.  

 The simplex method was used to identify unknown parameters of the AC motors. 

The identification results of 192 kW AC motor are shown in Figure 2.34. The 

identification results of 115 kW AC motor are shown in Figure 2.35. The identification 

results of 181 kW AC motor are shown in Figure 2.36. The identification results of 79 

kW AC motor are shown in Figure 2.37. The simulation results indicated that the 

estimated system tracked the actual system very well. The identified parameters of the 

AC motors are summarized in Table 2.11. 
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Figure 2.34 Power demands of estimated system and actual system for 192 kW AC motor 
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Figure 2.35 Power demands of estimated system and actual system for 115 kW AC motor 
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Figure 2.36 Power demands of estimated system and actual system for 181 kW AC motor 
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Figure 2.37 Power demands of estimated system and actual system for 79.4 kW AC motor 
 
 
 

Table 2.11 Identified parameters of AC motors 
 

Component name KAC  T1  T2 
192 kW AC motor  1 0.3394 0.0105 
115 kW AC motor 1 0.3 0.02 
181 kW AC motor 1 0.1789 0.002 
79 kW AC motor 1 0.2763 0.0116 

 
 
 
2.4  Summary 

 In this chapter, a notional all-electric ship power system model for ships was 

discussed. The MVAC system and DC zone system models were discussed, separately. 

The propulsion load model, pulse load model and motor load models in DC zones were 

discussed in details. The dynamic behaviors of propulsion loads, pulse loads, and motor 

loads in DC zones were studied to analyze the time-frame of these loads. The dynamic 

performances of these loads were studied in PSCAD simulation.  

 The decision time step of the propulsion load was chosen as 10 milliseconds in 

the case studies. The simulation results indicated that the propulsion load successfully 

achieved the cruising function and power control function by using this decision time 
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step. The case studies for pulse loads indicated that the dynamic behaviors of the system 

were determined by the pulse magnitude, pulse length, generation capacity, total load 

demand, number of pulses, and duty ratio of pulses, when pulse loads were served. The 

case studies for AC and DC motors in DC zones indicated that these dynamics loads had 

smaller time constants than the propulsion load. When the available power to the DC 

zone system was changed, the loads in DC zones could be immediately regulated to 

track the available power signal. The time-frame analysis for loads in the all-electric ship 

power system would be used to determine the decision time step for real-time load 

management in the next chapter. 
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3. LITERATURE REVIEW AND PROBLEM FORMULATION 

 

3.1  Introduction 

 This chapter discusses the operations of isolated power systems, which include 

three levels – primary control, secondary control, and tertiary control. The real-time load 

management is defined as a secondary control problem. The load management methods 

for large power systems are reviewed. Most of existing methods aims to balance the 

generation and load while achieving certain objectives. The decision time step for these 

methods is on the order of minutes to hours, and the detail load and system dynamics are 

not included in the load management problem. However, all-electric ship power systems 

have faster dynamics and include large portions of nonlinear loads and dynamics loads, 

which require a smaller decision time step. Moreover, pulse loads in all-electric ship 

power systems draw a large amount of power in an intermittent way. Thus, the loads in 

the system need to be dynamically regulated to achieve the generation and load 

balancing in real time while satisfying various operational constraints of the system. 

Otherwise, pulse loads may cause significant frequency and voltage oscillations in all-

electric ship power systems.  

 Due to these reasons, a real-time load management problem was formulated for 

all-electric ship power systems to achieve dynamic balancing while satisfying various 

operational constraints of the system. The objective of real-time load management is to 

optimally determine the switch status or set-point of each load while satisfying the 

operational constraints of the system and considering load priorities. In the problem 
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formulation, various system operational constraints were included, such as available 

power source capacity constraints, voltage constraints for motor loads, steady state and 

dynamic state cable constraints, and load bus power capacity constraints. The decision 

time step of real-time load management for all-electric ship power systems chosen as 10 

milliseconds based on the time-frame analysis of loads is also discussed. The real-time 

load management problem was illustrated in three scenarios, which indicated that the 

dynamic performance of the system with real-time load management was much better 

than that without real-time load management. 

 The outline of this chapter is as follows. In section 3.2, operations of isolated 

power systems are introduced. In section 3.3, the literature review of load management 

is discussed. The shortcomings of existing methods are also given in this section. A 

proof-of-concept for the real-time load management approach is shown in section 3.4. 

Section 3.5 states the problem formulation of real-time load management and defines the 

decision time step for the real-time load management approach based on the time-frame 

of loads in all-electric ship power systems. At last, a summary is given in section 3.6. 

 

3.2  Operations of Isolated Power Systems 

 The operation of isolated power systems can be classified as primary control, 

secondary control, and tertiary control [34], [35]. A diagram of the operation of isolated 

power systems is shown in Figure 3.1 [34]. The system state information flows from 

primary level to tertiary level, and the decision signals flow from tertiary level to 

primary level to achieve overall operation objectives of isolated power systems. The 
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primary controller has the smallest decision time step to regulate the voltage and 

frequency to desired values. On the other hand, tertiary controller collects state 

information of the system through the communication infrastructure and makes 

decisions to improve the overall performances of isolated power systems, which has a 

longer decision time step. 

 

 
 
Figure 3.1 Diagram of isolated power system control operations [34] 
 
 
 
 The primary control has the smallest decision time step, which ensures that the 

frequency and voltage of a power system can track their reference signals, such as droop 

control and voltage tracking control. For instant, a microgrid operating in islanded mode 

has difficulties to maintain the system frequency using a single distributed generator 

(DG) due to the limited generation capacity of the DG unit. The frequency-droop 

characteristics for microgrids [36], [37], [38], [39], [40] are introduced to control the 

output active power of each DC unit to dynamically balance the generation and load. 

The voltage-droop characteristics for microgrids [37], [38], [39], [40] are introduced to 

maintain bus voltages of microgrids by regulating the reactive power set-point of each 



 

 

56

DG unit. In all-electric ship power systems, the droop control and isochronous control of 

gas turbine generators are discussed in [41]. These droop-based controllers can make 

local decision based on the local measurements and the set-points to achieve local 

objectives. The decision time step of the primary controller can be changed from 

microseconds to milliseconds. 

 The secondary control [35], [40] is responsible for balancing the active and 

reactive power of isolated power systems through communication infrastructures by 

determining the set-points for primary controllers. The secondary control includes 

automatic generation control (AGC), secondary load-frequency control [40], [42], 

secondary voltage control [35], [43], [44], real-time load management [5], etc. In this 

level, the secondary controller is used to determine set-points for local controllers to 

achieve the overall objectives of isolated power systems. For example, one objective of 

AGC is to maintain the system frequency at the nominal value for isolated power 

systems [3], [45]. The AGC can adjust set-points of dispatchable generators in the 

system to regulate the power outputs of these generators when the system frequency 

deviates from the nominal value. The power set-point signals are sent from the control 

center to individual generation units through communication infrastructures. For the 

secondary voltage control problem, the pre-specified voltage signals are sent to the 

dispatchable generation units to maintain bus voltages at desired values [35]. In the all-

electric ship power system, the real-time load management and secondary voltage 

control have been studied in [5], [46], [43], [44]. The time-frame of the secondary 

control is on the order of milliseconds to seconds. 
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 The tertiary control determines the optimal steady state set-points based on 

marketing signals [47] or other system requirements. Economic dispatch (ED), unit 

commitment (UC), and optimal power flow (OPF) are used to operate the system 

normally and economically. For instance, the optimal set-points for generators are 

determined by economic dispatch, which has a slower time-frame on the order of 

seconds to minutes. Due to the larger decision time step of tertiary control, optimization 

techniques are used to solve the problems in this level. 

 

3.3  Literature Review for Load Management 

 This section discusses the literature review for load management in large power 

systems. Since all-electric ship power systems include pulse loads and large portions of 

nonlinear loads and dynamic loads, the traditional methods have difficulties to solve the 

load management problem for all-electric ship power systems. The shortcomings of 

existing methods are also discussed to indicate that a novel real-time load management 

approach needs to be developed for all-electric ship power systems. 

3.3.1 Load management literature review 

 The concept of load management was first introduced in the 1970s. It was aimed 

to control and modify the patterns of demands of various consumers of a power utility in 

order to reduce the operating cost and maintain the reliability of the electric power 

network [48]. Load management can be categorized as direct load control (DLC), 

indirect load control, and local energy storage. DLC mainly focuses on shedding loads 

directly to satisfy certain objectives; indirect load control allows customers to control 
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their loads independently according to the price signal sent by utilities; local energy 

storage allows both utilities and customers to store energy in off-peak periods and use 

the stored energy during times of great demand. DLC mainly focuses on matching the 

generation power and the consumed loads in real time while achieving certain objectives, 

such as reducing the operating cost [49], maximizing the profit margin [48], and 

reducing the peak load [49]. Since the control status and the load profile of the system 

can be accessed by the control center almost instantaneously, real-time load management 

techniques can be developed to optimally coordinate suitable customers for DLC [50].  

 In [49], the objective of load management was to minimize production cost and 

peak load over a period of time. The constraints of load management included the 

maximum disturbed time constraint of controllable loads and the minimum connected 

time constraint of controllable loads. The energy demand constraints of controllable 

loads were also considered. The maximum disturbed time of controllable loads was 

chosen as 4 hours and the minimum connected time of controllable loads was chosen as 

2 hours. The controllable load was formulated as a dynamic load. The decision time step 

was chosen as 1 hour. Forward dynamic programming method was used to solve the 

load management problem. This approach was applied to a residential power system 

with water heater loads. The controllable loads were divided into nine control groups of 

equal size. This method needed more computation complexity when the decision time 

step was reduced.  

 In [48], the objective of the load management approach was to maximize the 

profit margin over a period of time while satisfying the maximum disturbed time 
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constraint, minimum connected time constraint, and maximum disturbed power 

constraint of controllable loads. Linear programming was used to solve the load 

management problem. The objective function of load management was linearized to use 

the linear programming approach. The decision time step was chosen as 1 hour. The load 

management approach was applied to a utility power system to maximize profit margin. 

 In [50], a real-time two-way direct load control algorithm was proposed to 

coordinate suitable loads in power systems based on monitored air conditioning loads to 

minimize the difference between the load planned to be shed and actual load shedding. 

Integer programming was used to solve the direct load control problem. The proposed 

approach was applied to a utility grid with base load groups planned by control center 

and 100 controllable load groups. The decision time step was chosen as 15 minutes. 

 Many researchers have developed approaches to generate load control schemes 

to achieve certain objectives. Several successful direct load control examples and 

feasibility studies were illustrated in the literature [51], [52], [53], [54]. The DLC 

dispatch coordinated with unit commitment was discussed in [55], [56], [57]. Dynamic 

programming was the most commonly used method to solve load management problems 

[49], [57], [58]. Linear programming methods were also used to solve load management 

problems [48], [59] for reducing the peak load or maximizing the profit margin. 

 In [55], the benefit accrued from using DLC capacity as a part of system spinning 

reserve was illustrated, and the load management was formulated as an optimization 

problem, which included a load control objective and several operational constraints of 

the system, such as load balanced constraint, maximum disturbed time constraint of 
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controllable loads, minimum connected time constraint of controllable loads, etc. A 

binary flow network model was proposed to solve the direct load control problem, and 

performance of the proposed technique d was better than that of dynamic programming 

as illustrated in [49]. The proposed method was applied to utility power systems with 

multiple controllable load groups and 6000 MW of thermal capacity over a summer 

week. The decision time step was chosen as 1 hour. 

 In [57], a direct load control method was developed to coordinate with unit 

commitment to reduce the total production cost over a period of time. The operational 

constraints included generation-load balanced constraint, spinning reserve constraint, 

and maximum disturbed time constraint and minimum connected time constraint of 

controllable loads. Dynamic programming approach was used to solve the load 

management problem. The proposed approach was applied to Taiwan power system, 

which included 5 nuclear units, 48 hydro units, 25 thermal units, and multiple groups of 

controllable loads. The decision time step was chosen as 30 minutes. 

 In [60], a multi-pass dynamic programming method was developed to improve 

the efficiency to solve the direct load control problem in Taiwan power system for air 

conditioning loads. The proposed approach was also applied to a Taiwan power system 

in summer period of 1991, which included 5 nuclear units, 48 hydro units, 25 thermal 

units, and multiple groups of controllable loads. 

 A novel adaptive control strategy for integrating DLC and interruptible load 

management to provide instantaneous reserves for ancillary services in deregulated 

power system was discussed in [61]. A fuzzy-dynamic-programming approach was used 
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to minimize operational costs and reduce peak loading while satisfying customers’ 

requirements. The proposed fuzzy dynamic programming approach was applied to a 

Taiwan power system with 38 units, 20 air conditioning loads, and 15 interruptable 

loads. The decision time step was chosen as 10 minutes. 

 In [62], a modified genetic algorithm (GA) called iterative deepening GA was 

developed to optimize the scheduling of DLC strategies. This strategy minimized the 

amount of load shedding so that the utility company’s revenue loss due to DLC was 

minimized. The proposed approach was applied in a utility power system with 60 

controllable load groups. The decision time step was chosen as 7.5 minutes. However, 

the genetic algorithm needs more iterations to determine the optimal or sub-optimal 

solution, which has some difficulties to be extended for real time applications. 

 Even though load management problems have been studied for more than 30  

years, the techniques are mainly applied to solve the load control problem in bulk power 

systems. When applied to bulk systems, load management is integrated with the unit 

commitment or economic dispatch to achieve certain economic and security objectives. 

The decision time step of load management is from 7.5 minutes to 1 hour. Thus, the load 

management problem in large power systems is classified as a tertiary control problem, 

which ensures that power systems operate normally and economically.  

 Since isolated power systems have much faster transients and include large 

portions of dynamic loads and nonlinear loads, it is necessary to take the dynamic 

characteristics of the system into consideration. Moreover, individual loads need to be 

regulated in real time to maintain the power quality of the system. Fortunately, concepts 
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of real-time direct load control can be extended to isolated power systems by including 

system dynamics. When the system does not have enough power generation to serve all 

its loads, only higher priority loads are energized and some non-vital loads are shed to 

avoid overloading generators. When the system has more available power, the non-vital 

loads are restored immediately. Thus, the objective of real-time load management for 

isolated power systems is to balance the generation and load of the system while 

satisfying operational constraints of the system and considering load priorities. 

 In the field of all-electric ship power systems, researchers have studied dynamic 

load shedding problem and the coordination of propulsion loads and pulse loads using 

load control schemes. The research on dynamic load shedding for all-electric ship power 

systems has been studied in [63], [64], [65], [66]. This research mainly focused on the 

load shedding problem for navy shipboard power systems considering load priorities, 

when the total load demand exceeded the generation capacity. However, the dynamic 

load restoration method was not considered, when more generation power is available in 

ship power systems.  

 In [63], [64], [65], a new load shedding scheme was developed for islanded 

power systems. The objective of the developed load shedding scheme was to maximize 

system benefits, minimize load curtailment, and optimize the number of circuit breaker 

switching actions. The constraint of the load shedding scheme included the available 

power capacity constraint. The loads in the system were classified as vital loads, semi-

vital loads, and non-vital loads. Moreover, loads had dynamic priorities, which could 

change based on missions of the power system. A rule-based expert system was 



 

 

63

developed to find the optimal control actions to shed loads using the knowledge-tree 

approach. The developed method was used in a 10-load zone of a shipboard power 

system. However, this method did not consider load restoration when more power was 

available, and the load dynamics were not included in the developed approach.  

 In [66], a dynamic load shedding scheme was developed for shipboard power 

systems using a non-intrusive load monitor. The objective of the load shedding scheme 

was to minimize the amount of load shed while considering available power capacity 

constraint and dynamic load priorities. This scheme was applied in a shipboard power 

system with 450  V voltage level and 3.125 MW power capacity. However, the load 

dynamics and system dynamics of the ship power system were not considered in the 

developed approach. 

 The coordination of propulsion loads and pulse loads for all-electric ship power 

systems have been studied in [12], [13]. Pulse loads were used to accomplish the 

military functions of navy ships; propulsion loads were used to drive the navy ship to its 

cruising speed. In battle mode, pulse loads had the highest priority; propulsion loads and 

other service loads could be disturbed to maintain the power quality of the system. When 

a pulse load was served, propulsion loads were disturbed temporarily to compensate for 

the impact of the pulse load on the all-electric ship power system. Due to the inertia of 

the ship, the cruising speed would not be disturbed significantly after the disturbance 

caused by the pulse load.  

 In [12], [13], a propulsion load was used to compensate the impact of pulse loads 

on the power quality of shipboard power system. When the pulse load was connected to 
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the system, the demand of propulsion load was reduced; on the other hand, when the 

pulse load is disconnected from the system, the demand of propulsion load was 

increased. The developed approach was used in a ship power system. However, this 

method only considered the coordination of pulse loads and propulsion loads, and the 

impact of service loads on the power quality of the system was not considered.   

3.3.2 Shortcomings of existing methods 

 The shortcomings of existing methods can be summarized as follows: 

1) Decision time step of traditional methods for load management is on the 

order of minutes to hours [49], [48], [50], [62], which have difficulties to 

consider fast system and load dynamics in all-electric ship power systems. 

2) The detail load and system dynamics were not included in the existing load 

management methods [48], [59], [63], [64], [65], [66]. 

3) The dynamic state operational constraints of the system were not considered 

in the existing load management methods [49], [57], [60]. 

4) The traditional load management methods have difficulties to reduce the 

impact of the pulse load on the power quality of all-electric ship power 

systems due to large decision time step [60], [62]. 

5) Exisitng load management methods for all-electric ship power systems only 

considered the coordination of propulsion loads and pulse loads, but did not 

study the impact of service loads on the power quality of all-electric ship 

power systems [12], [13]. 
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6) Centralized methods take longer time to make decisions [49], [57], [58], 

[61], [62], which have difficulties to solve the real-time load management 

problem for all-electric ship power systems. 

 Due to these reasons, a real-time load management method for all-electric ship 

power systems needs to be developed to include system and load dynamics and integrate 

steady state and dynamic state system operational constraints. A distributed control 

method is also needed to solve the real-time load management problem for all-electric 

ship power systems because centralized methods have difficulties to solve the real-time 

load management problem with small decision time step. 

 

3.4  Real-Time Load Management Concept 

 The real-time load management concept is illustrated in Figure 3.2. The two 

curves in the figure represent power demands of loads with and without real-time load 

management. At certain time, the power demand exceeds the generation capacity. When 

the real-time load management is available, some non-vital loads would be shed to make 

the available power source capacity constraint satisfied.  

 The generation capacity of a power system is approximately constant for a period 

of time. Since all-electric ship power systems serve pulse loads and nonlinear loads, the 

power demand of loads in the system may exceed the generation capacity if real-time 

load management is not available. When the power demand exceeds the generation 

capacity, the system frequency decreases quickly from 60 Hz. Real-time load 

management is used to disconnect some non-vital loads in the system when the load 
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demand exceeds the generation capacity to achieve the generation and load balancing in 

operational real-time. Moreover, various operational constraints of the system are 

satisfied in operational real time by using real-time load management. 

 
 

 
 
Figure 3.2 Diagram of the real-time load management concept [67] 
 
 
 
 To illustrate the potential of the real-time load management approach, a simple 

real-time load management concept with only available power source capacity constraint 

was applied to a simplified all-electric ship power system model that was simulated in 

PSCAD software [5]. Three scenarios were implemented to illustrate the real-time load 

management approach. A one-line diagram of the system is shown in Figure 3.3. The 

priorities of the loads in DC zones are shown in Table 3.1. The objective of the real-time 

load management approach was to maximize the served loads in the all-electric ship 

power system without violating available power source capacity constraint and PCM4 

capacity constraints. The PCM4 capacity constraints ensured that the total loads 
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connected to starboard (or port) side DC distribution buses in zones should not exceed 2 

MW. The simple real-time load management approach is shown in (3-1), which is to 

maximize the total power demand considering load priorities subject to PCM4 capacity 

constraints and available power source capacity constraint. 
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where, L is the load set in the all-electric ship power system, itΔ  is the decision time 

step of the real-time load management, )( ik ts Δ  is the switch status of load k (if the load 

switch is open, 0)( =Δ ik ts ; otherwise, 1)( =Δ ik ts ), )( ik tP Δ  is the load demand of load 

k, kR  is the equivalent resistance of load k, )( ik tV Δ  is the input voltage of load k, 
mGP  is 

the generation capacity of generator m, Starboard is the set of loads served by starboard 

side DC distribution buses, Port is the set of loads served by port side DC distribution 

buses, and S is the set of all the available generators in the system. 
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Figure 3.3 One-line diagram of a simplified all-electric ship power system model to illustrate real-time 
load management concept 
 
 
 

Table 3.1 Definitions of loads in DC zones of the simplified all-electric ship power system model 
 

Load Weight Factor Priority Rating 
Load LDC12 1.7 Vital 0.95 MW, 0.65 kV DC 
Load LDC22 1.7 Vital 0.95 MW, 0.65 kV DC 
Load LDC11 1.5 Semi-vital 0.4 MW, 0.375 kV DC 
Load LDC21 1.5 Semi-vital 0.4 MW, 0.375 kV DC 
Load LAC13 1.4 Semi-vital 0.5 MW, 0.45 kV AC 
Load LAC23 1.4 Semi-vital 0.5 MW, 0.45 kV AC 
Load LDC14 1.0 Non-vital 0.2 MW, 0.375kV DC 
Load LDC24 1.0 Non-vital 0.2 MW, 0.375kV DC 

 
 
 
3.4.1 Scenario I 

 In this scenario, the available power source capacity constraint was studied based 

on the real-time load management. The system dynamic performance without load 

management was studied first, and the available power source capacity constraint might 

be violated. Then the system with real-time load management was studied to show that 

the available power source capacity constraint was always satisfied. The decision time 

step of the real-time load management in this scenario was chosen as 0.2 second. 
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 It was assumed that the MTG generator was in service and the ATG generator 

was out of service. Thus, the generation capacity of the system was 36 MW. The power 

demand of propulsion load was increased from 31.5 MW to 33.5 MW at 8 seconds, and 

decreased from 33.5 MW to 31.5 MW at 11 seconds. In zones, 
24DCL  was not served, 

and 
11DCL , 

12DCL , 
21DCL , 

22DCL , 
13ACL , 

23ACL , and 
14DCL were served, where, 

12DCL  and 22DCL  

were served by port side DC distribution buses, and the other loads were served by 

starboard side DC distribution buses. The load demand in the two zones was 3.9 MW. 

Therefore, the load demand of the system was changed from 35.4 MW to 37.4 MW at 8 

seconds, and the demand was returned to 35.4 MW at 11 seconds. The total losses of the 

system were 0.6 MW. The total load demand of the system included the power 

consumed by loads and losses of the system. The load status is shown in Table 3.2. 

 
 

Table 3.2 Load status without load management in Scenario I 
 

Time 0~8 s 8~11 s 11~15 s 
Load LDC11 served served served 
Load LDC12 served served served 
Load LAC13 served served served 
Load LDC14 served served served 
Load LDC21 served served served 
Load LDC22 served served served 
Load LAC23 served served served 
Load LDC24 not served not served not served 
Pulse Load not served not served not served 

Propulsion Load 31.5 MW 33.5 MW 31.5 MW 
 

 
 
 From 8 to 11 seconds, the load demand exceeded the generation capacity. If the 

load management method was not applied, the available power source capacity 

constraint was violated between 8 and 11 seconds, as shown in Figure 3.4(a). The 
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frequency of MTG generator was decreased from 60 Hz to 58.7 Hz at 8 seconds due to 

the increased load, and the frequency gradually returned to 60 Hz after the load demand 

decreased at 11 seconds, as shown in Figure 3.4(b). 
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(a) Total load demand in Scenario I 
 

6 7 8 9 10 11 12 13 14 15
57

58

59

60

61

62

Time (Sec)

M
TG

 g
en

er
at

or
 fr

eq
ue

nc
y 

(H
z)

 
 
(b) MTG frequency in Scenario I 
 
Figure 3.4 Dynamic performance of the all-electric ship power system without load management in 
Scenario I 
 
 
 
 To improve the dynamic performance of the system, the real-time load 

management approach shown in (3-1) was applied to the simplified all-electric ship 

power system to maximize the served loads without violating the operating constraints 

of the system. In order to ensure that the total consumed power was less than the 
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generation capacity, the load management approach was applied at 7.8 seconds to shed 

some lower priority loads in zones. The loads were shed based on the load priority to 

make the objective function optimal. In this case, all non-vital and semi-vital loads 
11DCL , 

14DCL , 
21DCL ,

13ACL , and 
23ACL  were shed which  total 2 MW. Only the two vital loads 

12DCL  

and 22DCL  were served, which made the objective function optimal. Therefore, the total 

load demand was decreased from 38 MW to 36 MW. After 11 seconds, the power 

demand of the propulsion load was decreased from 33.5 MW to 31.5 MW. At 11.2 

seconds, the load management approach was applied to restore loads 
11DCL , 

14DCL , 
21DCL , 

13ACL , and 
23ACL , which were shed at 7.8 seconds. The load status of the system is shown 

in Table 3.3. Figure 3.5(a) indicates that the generation power does not exceed the 

generation capacity except some transient times. 

 After 2 MW of loads were shed at 7.8 seconds, the frequency began to increase 

slowly, and then the propulsion load increased to 33.5 MW, so the frequency was 

maintained at 60 Hz in steady state, which is shown in Figure 3.5(b). At 11 seconds, the 

total load demand was decreased to 34 MW, and the loads were restored after 0.2 

second. In this period, the frequency changed in the range of 59.9 Hz to 60.0 Hz. The 

load management method began to work before the total load demand exceeded the 

generation capacity, which prevented the frequency of MTG from dropping. After 

shedding 2 MW of loads in zones, the total load demand in the system was decreased to 

about 36 MW, which satisfied the available power source capacity constraint. 
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Table 3.3 Load status with load management in Scenario I 

 
Time 0~7.8 s 7.8~8 s 8~11 s 11~11.2 s 11.2~15 s 

Load LDC11 served shed shed shed served 
Load LDC12 served served served served served 
Load LAC13 served shed shed shed served 
Load LDC14 served shed shed shed served 
Load LDC21 served shed shed shed served 
Load LDC22 served served served served served 
Load LAC23 served shed shed shed served 
Load LDC24 not served not served not served not served not served 
Pulse Load not served not served not served not served not served 

Propulsion Load 31.5 MW 31.5 MW 33.5 MW 31.5 MW 31.5 MW 
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(a) Total load demand in Scenario I 
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(b) MTG frequency in Scenario I 
 
Figure 3.5 Dynamic performance of the all-electric ship power system with load management in Scenario 
I 
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3.4.2 Scenario II 

 In this scenario, the PCM4 capacity constraint was studied to show that the real-

time load management approach ensured that PCM4 capacity constraints were satisfied. 

The decision time step was chosen as 0.2 second. It was assumed that the propulsion 

load demand was 25 MW. The total capacity of the system was 40 MW by assuming that 

the MTG generator and the ATG generator were both available. Thus, the system could 

serve another 15 MW of loads without violating the available power source capacity 

constraint. If the PCM4 capacity constraint was not considered, all loads in the zones 

could be served, since the total power demand in zones was 4.1 MW. 

 If the real-time load management was not used, all loads in zones were connected 

to the system. The two vital loads were connected to the port side DC distribution buses, 

and other loads were connected to the starboard side DC distribution buses. The load 

status of the system is shown in Table 3.4. The input powers to PCM4-1 and PCM4-2 

are shown in Figure 3.6(a) and Figure 3.6(b), respectively. The input power to PCM4-1 

did not exceed the capacity of PCM4. On the other hand, the input power to PCM4-2 

exceeded the capacity of PCM4, which means that the PCM4 capacity constraint was 

violated. 
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Table 3.4 Load status without load management in Scenario II 

 
Time 0~2 s 2~5s 

Load LDC11 served served 
Load LDC12 served served 
Load LAC13 served served 
Load LDC14 served served 
Load LDC21 served served 
Load LDC22 served served 
Load LAC23 served served 
Load LDC24 served served 
Pulse Load not served not served 

Propulsion Load 25 MW 25 MW 
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(a) Input power to PCM4-1 in Scenario II 
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(b) Input power to PCM4-2 in Scenario II 
 
Figure 3.6 Power inputs to PCM4s without load management in Scenario II 
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 In order to handle this problem, the load management approach was applied to 

the system. 
24DCL  was a non-vital load and had the lowest priority. Thus, 

24DCL  was shed 

at 2 seconds to reduce the input power to PCM4-2 and to make the objective function 

optimal. The load status of the system is shown in Table 3.5. Figure 3.7 shows that the 

PCM4 capacity constraint is satisfied after shedding 
24DCL . The nonlinear dynamics of 

the DC-DC converter in PCM1 caused the transients from 2 to 2.5 seconds. 

 
 

Table 3.5 Load status with load management in Scenario II 
 

Time 0~2 s 2~5s 
Load LDC11 served served 
Load LDC12 served served 
Load LAC13 served served 
Load LDC14 served served 
Load LDC21 served served 
Load LDC22 served served 
Load LAC23 served served 
Load LDC24 served shed 
Pulse Load not served not served 

Propulsion Load 25 MW 25 MW 
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Figure 3.7 Input power to PCM4-2 with load management in Scenario II 
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3.4.3 Scenario III 

 In the last scenario, the impact of a pulse load on the power quality of the all-

electric ship power system was studied. The real-time load management concept was 

applied to regulate the power demand of a propulsion load to compensate for the impact 

of the pulse load on the dynamics of the all-electric ship power system. It was assumed 

that the pulse load was connected to the MTG bus and had a 10 MW magnitude with a 2 

seconds pulse width. The load demand in the DC zone system was 3.9 MW. The 

propulsion load was driven by the propulsion converter, and the power demand of the 

propulsion load could be regulated by the power controller of the marine propulsion 

system. The decision time step of the propulsion load was chosen as 10 milliseconds. 

Both the MTG and ATG generators were in service, so the generation capacity was 40 

MW.  

 Initially, the ship was operated in cruise mode. Then the operating mode was 

changed from cruise mode to battle mode at 30 sec. In the battle mode, the pulse load 

has a higher priority than the propulsion load. At 30 sec, the marine propulsion system 

controller was switched from speed control mode to power control mode to reduce the 

impact of the pulse load on the power quality of the all-electric ship power system. The 

ship speed and the propulsion load demand could not be controlled at the same time by 

the marine propulsion controller; thus, the marine propulsion system could only operate 

in speed control mode or power control mode. 

 The ship speed was increased from 0 to 27 knots in 20 seconds, as shown in 

Figure 3.8. When the pulse load was served at 40 seconds as shown in Figure 3.9, the 
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load demand of the propulsion load was regulated to compensate for the impact of the 

pulse load by using the real-time load management approach. The propulsion load 

demand is shown in Figure 3.10. When the pulse load was served, the propulsion load 

demand was decreased quickly to maintain the total load demand at certain value to 

reduce the frequency oscillation. When the propulsion load was disturbed, the ship speed 

decreased slowly, as shown in Figure 3.11. Due to the large inertia and mass of the ship, 

the ship speed drop during this disturbance was small, which was around 0.7 knots. The 

total generation power of the system is shown in Figure 3.12. When the pulse load was 

served, the total generation power was nearly constant except two spikes caused by 

sudden load changes. The dynamic behaviors of the MTG generator frequency with and 

without the application of the real-time load management approach are shown in Figure 

3.13. Without real-time load management, the maximum frequency deviation of the 

MTG generator was more than 1 Hz, which was much larger than the frequency 

deviation with real-time load management.  
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Figure 3.8 Ship speed for Scenario III 
 
 



 

 

78

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

time (sec)

Pu
ls

ed
 p

ow
er

 (M
W

)

 
 

Figure 3.9 Pulse load demand for Scenario III 
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Figure 3.10 Propulsion load demand for Scenario III 
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Figure 3.11 Ship speed when pulse load is served for Scenario III 
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Figure 3.12 Total power generation with the disturbance of the pulse load in scenario III 
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Figure 3.13 Frequency behavior of the MTG generator with and without the application of real-time load 
management approach in Scenario III 
 
 
 
3.4.4 Summary real-time load management concept 

 In Scenario I, if the real-time load management was not applied in the system, 

the total load demand exceeded the generation capacity and the MTG generator 

frequency decreased from 60 Hz. After integrating the real-time load management 

approach, several lower priority loads were shed to satisfy the available power source 
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capacity constraint. The simulation results indicated that the system dynamic 

performance with load management was much better than its performance without load 

management. In Scenario II, the PCM4 capacity constraint was studied. If a PCM4 

served more than 2 MW loads, the PCM4 capacity constraint was violated. The real-time 

load management approach was applied and some non-vital load was shed to satisfy the 

constraint. In Scenario III, a pulse load was integrated into the system. When the pulse 

load was served, the total load demand was increased quickly, which caused significant 

system frequency oscillations. In order to serve the load demand, the real-time load 

management approach was applied and the power demand of the propulsion load was 

regulated to reduce the frequency oscillation caused by the pulse load. Simulation results 

indicated that the MTG frequency drop of the system with the application of the load 

management approach was much less than that without load management. 

 

3.5  Real-Time Load Management Problem Formulation 

 In this section, the real-time load management problem is formulated for all-

electric ship power systems to achieve real-time matching of load to generation while 

considering load priorities and system constraints in all-electric ship power systems. The 

real-time load management approach explores optimal switch status or set-point of each 

load in the all-electric ship power system while satisfying various operational constraints 

of the system, such as available power source capacity constraint, bus voltage 

constraints, steady state and dynamic state cable constraints, and load bus capacity 

constraints. Since the all-electric ship power system has faster dynamics and includes 
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large portions of dynamic loads and nonlinear loads, detail load and system dynamics 

also need to be included in the problem formulation. 

 In this dissertation, the multi-agent system technique is used to achieve the real-

time load management for all-electric ship power systems. The high-level diagram of the 

multi-agent system-based real-time load management approach is shown in Figure 3.14. 

The diagram consists of the multi-agent system-based real-time load management 

component and the all-electric ship power system model. The multi-agent system-based 

real-time load management component obtains real-time measurement from the all-

electric ship power system and makes decisions to control individual loads in the power 

system. The decision and measurement intervals are chosen as itΔ , which is on the order 

of milliseconds. itΔ  is determined based on the time-frame analysis of loads in all-

electric ship power systems. The simulation step size of the multi-agent system is chosen 

as itΔ , and the simulation step size of the all-electric ship power system model is chosen 

as τΔ , which is on the order of microseconds to promise the accuracy of the multi-agent 

system and the power system simulation. 
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Figure 3.14 High-level diagram of the multi-agent system-based real-time load management approach 
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3.5.1 Problem formulation 

 The real-time load management problem formulation for all-electric ship power 

systems is shown in (3-2)-(3-14). 

Objective:     [ ]∑
∈

⋅Δ⋅Δ
Lk

kikik WtstP )()(max                                          (3-2) 

               s.t.   Available power source capacity constraint: 

 
[ ] ∑∑

∈∈

Δ≤Δ+Δ⋅Δ
Sj

iGilosses
Lk

ikik tPtPtstP
j

)()()()(                              (3-3) 

                       Motor load voltage constraints: 

{ }motorimm NmtVV ,,2,1,)(min L∈∀Δ≤                                     (3-4) 

                       Cable constraints: 

1,)( BlItI Ampacity
lil ∈≤Δ                                               (3-5) 

                       Dynamic cable constraints: 

[ ] 21,))(sgn(15.0 BqTdtItIt

Tt
Ampacity
qiq ∈≤−Δ+⋅∫ −

                         (3-6) 

                       Load bus capacity constraints: 

max)(
pp LiL CtP ≤Δ                                                      (3-7) 

                       Load dynamic constraints: 

)()()( _ ikinikil tVtPtI ΔΔ=Δ                                            (3-8) 

)()()( _ tptVtP kikinik ⋅Δ=Δ                                               (3-9) 

)()( tqtp kk =&                                                       (3-10) 

)()( tutq Lkk =&                                                      (3-11) 
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)()/()()/()()/1()( 2212 ikkkkkkkkLk tuTKtqTTtpTtu Δ+−−=                  (3-12) 

)()()( _point_set ikinikik tVtPtu ΔΔ=Δ −                                     (3-13)
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                                   (3-14) 

The variables in the problem formulation are defined as follows. 

 L                        – load set in the power system 

 )( ik ts Δ               – switch status of load k ( 0=ks , disconnected; 1=ks , served) 

 )( ik tP Δ               – power demand of load k 

 kW                      – weight factor of load k 

 itΔ                      – decision time step for real-time load management 

 )( ilosses tP Δ          – total losses in the power system 

 )( iG tP
j

Δ             – capacity of generator j 

 S                        – set of generators in the power system 

 motorN                 – total number of motor load buses 

 Ampacity
lI               – amapacity of cable l 

 )( il tI Δ               – current through cable l 

 1T                      – constraint time for dynamic cable constraint 

 1B , 2B               – sets of cables in the power system 
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 )( iL tP
p

Δ            – consumed power by load bus p 

 max
pLC                  – power capacity of load bus p 

 1kT , 2kT , kK     – coefficients of load k 

 kp , kq              – state variables of load k 

 )(point_set ik tP Δ−   – power set-point of load k 

 )(_ ikin tV Δ          – input voltage of load k 

 max
NonP                  – the largest non-vital load 

 max
SemiP                  – the largest semi-vital load 

 In this problem formulation, the objective is to maximize the served loads in the 

all-electric ship power system considering load priorities, as shown in (3-2). the decision 

variables include the load switch status )( ik ts Δ  or power set-point of individual load 

)(point_set ik tP Δ− . The loads in the all-electric ship power system are classified into two 

types – fixed load and variable load. The fixed load can only be connected or 

disconnected from the power system, which means that the load can only operate with 

rated power or without power, such as some motor loads in the DC zone system of the 

all-electric ship power system; the variable load can be partially served based on the 

quantization method, which means that the consumed power of variable load can be 

changed from 0 to its rated power, such as propulsion loads. 

 In order to serve as many higher priority loads as possible during the system’s 

current operating mode, loads are designated as vital loads, semi-vital loads, and non-
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vital loads for specific operating modes. In the all-electric ship power system, vital loads 

include combat, mobility, fire, navigation, and communication systems. Semi-vital loads 

are important to ship operation and survivability but can be shed to prevent total loss of 

ship’s power. Non-vital loads are those that can be shed during an electrical casualty [7]. 

A technique was developed in earlier work [6], [7] for determining the weight factor of 

loads in shipboard power systems, as shown in (3-14). 

 In addition to achieve real-time matching of load to generation while considering 

load priorities, various operational constraints of the system should be satisfied in 

operational real time, such as available power source capacity constraint, voltage 

constraints, cable constraints, and load bus capacity constraints. 

 The first constraint is available power source capacity constraint, which is shown 

in (3-3). The sum of the total load demand and system losses of the power system should 

not be larger than the available power source capacity. If this constraint is violated, the 

total load demand will exceed the generation capacity, which will result in a frequency 

decline in the system. When the frequency drops below certain thresholds, the protection 

system begins to trip sensitive loads or generators in the system, which may cause 

system blackout. The system losses of the power system can be calculated using steady 

state method [68], which can be expressed as (3-15). 

( ) ( ))()()()()( 11
iDiG

TT
iDiGilosses tttttP Δ−ΔΔ−Δ=Δ −− PPGMBMBPP            (3-15) 

where, )( iG tΔP  and )( iD tΔP  are the generation and load vector on each bus of the 

system, G is the diagonal matrix of line conductances of the system, B is obtained from 
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the Y matrix of the system, and M is determined by the system topology. This method 

has been discussed in details in [68].  

 The voltage constraints are used to operate some motor loads within certain 

voltage limits, as shown in (3-4). Certain motor loads are sensitive to their input voltage 

levels. If the input voltage is too low, the load may not be able to operate normally. In 

this case, the load should be disconnected from the load bus or, if possible, the power 

demand of the load should be decreased to make the voltage constraint satisfied. 

 The cable constraints include steady state [6] and dynamic state constraints. 

Ampacity is the RMS current that a cable can continuously carry while remaining within 

its temperature rating. Thus, the line current should be less than or equal to its ampacity 

in steady state, as shown in Ampacity
lil ItI ≤Δ )( . The all-electric ship power system serves 

pulse loads, which draw a large amount of power in an intermittent way. When a pulse 

load is served, it draws a large current from the system for a short period of time, which 

may violate the cable ampacity constraint. In this case, the dynamic cable constraint, as 

shown in [ ] 1))(sgn(15.0 TdtItI
t

Tt

Ampacity
qiq ≤−Δ+⋅∫−

, is considered. Due to the thermal 

dynamics of cables, the temperature of the cable takes several seconds to minutes to 

exceed its temperature rating. Thus, the cable ampacity constraint can be violated for a 

certain amount of time before the cable temperature exceeds its rating. 

 The load bus capacity constraint is shown in (3-7), which means that the total 

loads on certain bus k should not exceed the power capacity of the bus.  

 The operating constraints for load dynamics are shown in (3-8)-(3-13). A 

dynamic load is modeled using a second-order dynamic system as shown in (3-10)-(3-
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13). The input current of the dynamic load can be determined using load dynamics, input 

voltage measurement, and switch status or set-point of the load. (3-10)-(3-11) are double 

integrator system, which model the load dynamics. (3-12) represents the transformation 

of the dynamic load model. (3-13) determines the set-point of the load model. 

3.5.2 Opertional decision time step of real-time load management 

 The time constants for various loads in all-electric ship power systems have been 

studied in chapter 2. To determine the decision time step of real-time load management 

for all-electric ship power systems, the time constants of various electrical components 

are summarized in Table 3.6. The DC-DC converter in PCM1 has the smallest time 

constant due to the local voltage regulator. The output voltage of each converter can 

reach steady state in half a second. The DC and AC motor loads in DC zones can reach 

the steady state in one second, after the power set-point of each load is regulated. The 

available power to the DC zone system may change significantly due to the load changes 

in the MVAC system, the load demand in the DC zone system needs to be regulated 

immediately to smoothly achieve the load and generation balancing. Thus, the decision 

time step of loads should be much smaller than the time constant of DC-DC converters 

and individual motor loads in DC zones.   

 
 

Table 3.6 Component time constant in all-electric ship power systems 
 

Component Time constant (sec) 
DC-DC converter 0.1-0.5 

AC motor in DC zones 0.5-1 
DC motor in DC zones 0.5-1 

Pulse load duration 0.1-25 
Propulsion load 1-5 
Ship run-up time 20-100 

Gas turbine generator 5-10 
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 Pulse load durations are in the range of 0.1 to 25 seconds [12], [13], [19], [24], 

[26]. When a pulse load is served in the system, the propulsion load needs to be 

regulated to reduce the impact of the pulse load on the power quality of the system. The 

time constants of propulsion loads are in the range of 1 to 5 seconds. In order to 

compensate the impact of the pulse load, the power set-point of the propulsion load 

should be regulated immediately when the pulse load is served. Thus, the decision time 

step should be small enough to achieve the coordination of the pulse load and propulsion 

load. 

 In this work, the operational decision time step of real-time load management for 

all-electric ship power systems was chosen as 10 milliseconds, which is much smaller 

than the time constant of electrical components in DC zones. Moreover, this decision 

time step is small enough to successfully coordinate the pulse load and propulsion load 

during the real-time load management for all-electric ship power systems. 

 

3.6  Summary 

 In this chapter, the operations of isolated power systems were discussed. The 

system operation was classified as primary control, secondary control, and tertiary 

control. The decision time step of primary controllers is on the order of microseconds to 

milliseconds, which ensures that system states can track their set-points quickly based on 

the local controller and local measurements. The secondary control is responsible for 

determining the set-points of primary controllers based on communication 

infrastructures to improve the dynamic performance of the system. The decision time 
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step of secondary controller is on the order of milliseconds to seconds. The tertiary 

control determines the optimal set-points for local controllers in steady state to operate 

the system normally and economically. The decision time step of tertiary controllers is 

on the order of seconds to minutes. 

 A literature review was also provided to discuss some existing load management 

methods for large power systems. Since the all-electric ship power system has fast 

dynamics and includes large portions of nonlinear loads and dynamics loads, the existing 

methods have difficulties in solving the real-time load management problem for all-

electric ship power systems. The shortcomings of existing methods were discussed to 

indicate that a new real-time load management approach is needed for all-electric ship 

power systems. The real-time load management concept was also illustrated to show 

advantages of a real-time load management approach. 

 Real-time load management should optimally determine the switch status or set-

point of each load in the system based on communication infrastructures to achieve the 

balance of load with generation while satisfying the operational constraints of the system 

and considering load priorities. In section 3.5, real-time load management for all-electric 

ship power systems was formulated to achieve the real-time matching of load to 

generation while considering load priorities and system constraints. The decision time 

step of real-time load management for the all-electric ship power system was also 

determined based on the time-frame analysis of individual electrical components in the 

system.  
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4. MULTI-AGENT SYSTEM FRAMEWORK FOR REAL-TIME LOAD 

MANAGEMENT IN ALL-ELECTRIC SHIP POWER SYSTEMS 

 

4.1  Introduction 

 This chapter discusses the multi-agent system framework for real-time load 

management in the all-electric ship power system. Three partitioning strategies for the 

DC zone system were studied to determine the multi-agent system topology required to 

represent the all-electric ship power system. The advantages and disadvantages of each 

partitioning strategy are discussed. Partitioning Strategy I partitioned the system based 

on the DC zone system topology and modeled each half of a zone as a homogeneous 

agent. For this strategy, the multi-agent system topology was very simple. Thus, it was 

easy to design cooperative controllers to achieve real-time load management for all-

electric ship power systems. However, the accuracy of the reduced-order model for each 

agent was low, since all loads in each agent were modeled as constant resistive loads and 

aggregated together. On the other hand, Partitioning Strategy III partitioned the system 

based on individual electrical components and modeled each electrical component in the 

DC zone system as a heterogeneous agent. Even though the heterogeneous multi-agent 

system topology was very complex, the detailed load and system dynamics were easily 

integrated into the multi-agent system, which significantly improved the accuracy of 

agent models. Moreover, various kinds of operational constraints of the system were 

integrated into the multi-agent system. Due to these reasons, a novel heterogeneous 
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multi-agent system framework was developed based on Partitioning Strategy III to 

achieve real-time load management for all-electric ship power systems. 

 Since the all-electric ship power system consists of the MVAC and DC zone 

systems, the heterogeneous multi-agent system was first designed for these two systems, 

respectively. Then the MVAC and DC zone multi-agent systems were coordinated by an 

AC-DC communication agent. In the MVAC multi-agent system, generator agents, 

propulsion load agents, pulse load agents, and a system losses agent were designed to 

coordinate propulsion loads and pulse loads while satisfying the operational constraints 

of the system. In the DC zone system, the converter-layer and load-layer multi-agent 

systems were developed to coordinate various priority loads and converters to achieve 

dynamic load balancing while satisfying the operational constraints of the system and 

considering load priorities. The AC-DC communication agent obtains information from 

the MVAC multi-agent system to calculate the available power to the DC zone system 

and provides the DC zone load demand information to the system losses agent to 

estimate total losses in the MVAC system. 

 The outline of this chapter is as follows. The bio-inspired multi-agent system 

concept and some applications are introduced in section 4.2. Three partitioning strategies 

with their advantages and disadvantages are discussed in section 4.3. In section 4.4, the 

heterogeneous multi-agent system framework for real-time load management in the all-

electric ship power system based on Partitioning Strategy III is presented. The 

heterogeneous multi-agent system cooperative controllers were developed based on 
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artificial potential functions and reduced-order agent models to achieve real-time load 

management. A summary is given in section 4.5. 

 

4.2  Applications of Bio-Inspired Multi-Agent Systems in Power Systems 

 A multi-agent system,  inspired by biological phenomena, such as bird flocking 

[69], fish schooling [70], and bacteria foraging, aims to cooperatively achieve group 

objectives that are difficult to reach by a single agent or centralized controller [71]. The 

multi-agent system cooperative controller is a decentralized controller, which has many 

advantages over a centralized controller. The design complexity of the cooperative 

controller for the multi-agent system is proportionally increased with an increase in the 

number of agents. On the other hand, the computation complexity of a centralized 

controller is increased exponentially with an increase in the number of agents.  

 The multi-agent dynamic system has been modeled as a single integrator system 

[72], double integrator system [73], coupled-phase oscillator system [74], and non-

holonomic agent system [75], for various system applications. The multi-agent system 

cooperative controller can coordinate a group of agents and cooperatively achieve their 

group goals in real time. The multi-agent system cooperative control techniques have 

been widely used in many engineering areas, such as formation control [76] and multi-

robotic system [77], as shown in Figure 4.1. Moreover, multi-agent systems are used to 

study the collective behaviors of biological systems, such as bird flocking, fish 

schooling, bacteria foraging, and synchronization of fire flies, as shown in Figure 4.2. 
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(a) Formation control                                                         (b) Multi-robotic system [78] 
 
Figure 4.1 Applications of the multi-agent dynamic system cooperative controller 
 
 
 

       
 
(a) Bird flocking                               (b) Fish schooling                             (c) Synchronization of fire flies 
 
Figure 4.2 Biological phenomena of swarms 
 
 
 
 Most existing cooperative controllers have been used for homogeneous multi-

agent systems, which means that each agent has an identical dynamic model. A widely 

used cooperative controller [73] for homogeneous multi-agent systems is shown as (4-1). 

))(()())(()( ref
p tktLtEt vvvxu −−⋅−−∇=                               (4-1) 
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where, )(tu  is the control vector of the multi-agent system; pE  is the artificial potential 

function of the multi-agent system; )(tx  and )(tv  are the state variable vectors of 

agents; refv  is the speed reference vector; k is a positive constant; and L is the graph 

Laplacian, which is determined by the communication topology of the multi-agent 

system. 

 Since power systems include various electrical components modeled by different 

dynamic systems, traditional homogeneous multi-agent system cooperative controllers 

have difficulties solving the real-time load management problem with heterogeneous 

component models. Researchers have proposed a cooperative controller for 

heterogeneous multi-agent systems [79], but this method is mainly used to solve 

problems in multi-vehicle systems. To solve the real-time load management problem for 

all-electric ship power systems, a heterogeneous multi-agent system cooperative 

controller is needed because the all-electric ship power system includes various electrical 

components with different dynamic models. 

 Multi-agent system techniques have been developed to solve challenging 

problems [80], [81] in power engineering over the past decade. Many of these research 

efforts have applied the multi-agent system technique to power system restoration [82], 

diagnosis [83], secondary voltage control [84], wide area control [85], and protection 

[86]. For all-electric ship power systems, multi-agent system techniques have been 

developed for applications including system restoration [87], and fault detection [88]. 

Since the multi-agent system technology has great potential for solving challenging 
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problems, this dissertation explores its utilization in real-time load management for all-

electric ship power systems. 

 

4.3  Three Partitioning Strategies for the DC Zone System of Notional All-Electric 

Ship Power Systems 

 The all-electric ship power system is a very complex dynamic system which is a 

very high-order nonlinear system, so it is difficult to solve the real-time load 

management problem using a single controller or traditional optimization methods. A 

multi-agent system aims to cooperatively achieve the group objectives which are 

difficult to reach by a single agent or centralized controller [71], [73]. Thus, a multi-

agent system cooperative controller was developed to cooperatively achieve the real-

time load management objective based on a group of dynamic agents. In order to apply 

the multi-agent system technique in a power system, the DC zone system needs to be 

first partitioned into smaller subsystems, which can be controlled using dynamic 

autonomous agents. The nature of the system, such as the system’s topology, indicates a 

logical way to partition the system which makes the multi-agent system more effective. 

 The three partitioning strategies studied to explore different multi-agent system 

cooperative controller design procedures are discussed in this section. In Partitioning 

Strategy I, two zones of the DC zone system of a notional all-electric ship power system 

were partitioned based on the topology of the system. The partitioned system included 

four agents, and each agent modeled half a zone, which included three DC-DC 

converters, switches, and a group of loads. In Partitioning Strategy II, the DC zone 
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system of a notional all-electric ship power system model was partitioned based on the 

DC-DC converters in PCM1s. Each agent included one DC-DC converter, switches, and 

various priority loads. In Partitioning Strategy III, the DC zone system of a notional all-

electric ship power system was partitioned based on its individual electrical components 

such as loads and power converters. The advantages and disadvantages of each 

partitioning strategy are also discussed. 

4.3.1 Partitioning Strategy I 

 In Partitioning Strategy I, each DC zone was partitioned into two agents as 

shown in Figure 4.3. Zones have similar topologies, and three voltage levels, 375 V DC, 

650 V DC, and 800 V DC, are available to serve various priority loads. The two zones of 

the DC zone system of the notional all-electric ship power system were partitioned into 

four agents. Each individual agent included one PCM1, cables, switches, and various 

priority loads as shown in Figure 4.4. 

 
 

 
 

Figure 4.3 Diagram of Partitioning Strategy I for two zones of the DC zone system of the notional all-
electric ship power system model 
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Figure 4.4 Single agent diagram for Partitioning Strategy I 
 
 
 

 The topology of the multi-agent system for Partitioning Strategy I is shown in 

Figure 4.5. The communication links and electrical couplings of the system were both 

available in the multi-agent system. The four agents in the multi-agent system 

constructed an all-to-all communication network. The partitioned system included four 

agents which had the same topology. Thus, each dynamic agent was modeled using an 

identical second-order nonlinear system. Moreover, only constant resistive loads were 

considered in the agent model. A group of load switches in the agent were aggregated 

into the control variable of the agent model. Through regulating the control variable of 

each agent based on the distributed controller, the load switch configuration was 

optimally adjusted to achieve the real-time load management objective. 

 In Partitioning Strategy I, the alternate supply paths of vital loads were not taken 

into consideration, which means that a vital load had only one supply path and the 

alternate supply path of the vital load was neglected. Vital loads are required to maintain 

the military effectiveness of navy ships. Loss of vital loads is unacceptable for all-

electric ship power systems. In this partitioning strategy, the alternate path of the vital 
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load was integrated into the multi-agent system by adding switch constraints on vital 

loads.  

 
 

 
 

Figure 4.5 Topology of the multi-agent system for Partition Strategy I 
 
 
 

 Advantages of Partitioning Strategy I: 

1) Partitioning Strategy I was based on the architecture of the notional all-

electric ship power system model. Each agent modeled half a zone, which 

included one PCM1 and a group of loads. This partitioning strategy made the 

topology of the multi-agent system simple. 

2) Using the partitioning strategy, all the agents were modeled using an identical 

dynamic agent model. The identical agent model simplified the cooperative 

controller design to achieve the real-time load management objective. 

Various cooperative controllers were systematically studied and used in 

vehicle formation [76], multi-robotic system [77], flocking [73], fish 

schooling [74], etc. These developed techniques can be easily extended to the 
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multi-agent system-based real-time load management for all-electric ship 

power systems. 

3) The propulsion load could be easily integrated into the multi-agent system 

through adding communication links between the propulsion load and other 

agents. Since the propulsion load had a different dynamic model than the 

model of the other agents, it could be modeled as a heterogeneous agent. 

 Disadvantages of Partitioning Strategy I: 

1) The alternate paths of vital loads were neglected in the multi-agent system. 

However, the alternate path of the vital load is critical to the survivability of 

navy ships. Without the alternate path, the vital load is not able to be 

switched to its alternate path to survive a fault on its normal path which is 

unacceptable. 

2) Each identical agent was modeled using a second-order nonlinear system. 

The parameters of the agent model were identified from simulation data of a 

simplified notional all-electric ship power system model in PSCAD/EMTDC 

software. Simulation results indicated that the reduced-order agent model 

could track the actual system very well in the steady state, but not in the 

transient state. 

3) A quantization method was used to convert the continuous agent control 

signal into the switch status signals of loads in each agent, which reduced the 

accuracy of the multi-agent system cooperative controller. If the rated power 
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of each load was very large (more than 150 kW), the quantization method 

would cause the cooperative controller to be unstable. 

4) Since loads in the agent were modeled as constant resistive loads without 

considering dynamics of DC and AC motors, the accuracy of the cooperative 

controller was low. 

 Although the partitioning strategy has some disadvantages, some improvements 

can be done to make the performance of this partitioning strategy better. The 

improvements are stated as follows. 

1) The alternate supply paths of vital loads can be integrated into the multi-

agent system by adding constraints to the switch status of vital loads. The 

load supply path switch status is shown in Figure 4.6. For a vital load, the bus 

transfer constraint is added, which is shown in (4-2). 

1)()(
1)()(

3313

3414

≤+
≤+

tt
tt

σσ
σσ

                                            (4-2) 

where, )(13 tσ , )(33 tσ , )(14 tσ , and )(34 tσ  are the switch statuses of the 

supply paths for the two vital loads. The constraint means that the two supply 

paths of one vital load cannot serve the load at the same time. 
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Figure 4.6 One DC zone with normal paths and alternate paths for vital loads 
 
 
 

2) To improve the accuracy of the reduced-order agent model, an adaptive 

reduced-order agent was developed. The adaptive reduced-order agent model 

updated its parameters in real-time based on the measurements of voltages 

and currents from the power system. The gradient method was used to update 

the parameters. 

3) A propulsion load can be integrated into the multi-agent system by adding 

communication links between the propulsion load and other agents. The 

priority of the propulsion load can be changed based on the operation mode 

of ships. For example, when the operation mode of a ship is changed from 

battle mode to cruise mode, the priority of propulsion load would be 

increased and the priority of pulse loads would be decreased. The propulsion 

load could be modeled using a second-order linear system [46]. The 
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propulsion load model is different from agent models in DC zones. The 

diagram of the multi-agent system topology with a propulsion load agent is 

shown in Figure 4.7. 

 
 

 
 

Figure 4.7 Topology of the multi-agent system with a propulsion load agent in Partitioning Strategy I 
 
 
 

4.3.2 Partitioning Strategy II 

 In Partitioning Strategy II, two DC zones of the DC zone system of the notional 

all-electric ship power system were partitioned based on DC-DC converters in PCM1s, 

as shown in Figure 4.8. Each agent included one DC-DC converter, switches, and 

various priority loads. This partitioning strategy also neglected the detail load dynamics 

and the alternate supply paths of vital loads. A group of loads were aggregated into an 

agent model, and the load switches were aggregated into a control variable of the agent. 

Thus, the control signal of each agent was also quantized based on the rated power of 

each load to control the load switch status, which reduced the accuracy of the 

cooperative controller. 
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Figure 4.8 Diagram of Partitioning Strategy II for half a zone 
 
 
 

 Each agent included only one DC-DC converter and loads served by the 

converter. The agent was modeled using a second-order nonlinear system. In Partitioning 

Strategy I, each individual agent included three DC-DC converters with different voltage 

levels. Thus, the agent model in Partitioning Strategy II was more accurate than the 

agent model in Partitioning Strategy I. The dynamic performance of the cooperative 

controller directly depended on the accuracy of the dynamic agent model. Thus, the 

dynamic performance of the developed cooperative controller based on Partitioning 

Strategy II would be better than the performance of Partitioning Strategy I. 

 The agents in DC zones were homogeneous agents, and the propulsion loads 

were defined as heterogeneous agents. All the homogeneous agents had an identical 

second-order nonlinear model. The heterogeneous agents had a different type of 

dynamic model, which was modeled using a second-order linear system. The generator 

agent was also included in the multi-agent system and was modeled using a second-order 

linear system. The diagram of the multi-agent system is shown in Figure 4.9. Since an 

all-to-all communication network would make the network topology too complex, a 
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communication agent was introduced to reduce the connectivity of the network. There 

was one communication agent for each PCM1. The agents served by the same PCM1 

only locally communicated with the communication agent. The communication agents 

and heterogeneous agents globally exchanged state information to achieve the group 

objective subject to the operating constraints of the system. 

 
 

 
 

Figure 4.9 Topology of the multi-agent system using Partitioning Strategy II 
 
 
 

 Advantages of Partitioning Strategy II: 

1) This partitioning strategy improved the accuracy of the reduced-order agent 

model. Each agent included one DC-DC converter, switches, and various 
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priority loads. The accuracy of the reduced-order agent model was better than 

that of the agent model in Partitioning Strategy I. 

2) The agents in DC zones were homogeneous agents. The existing multi-agent 

system cooperative control strategies can be easily applied to achieve the 

real-time load management objective for the all-electric ship power system. 

3) The propulsion loads were easily integrated into the multi-agent system, and 

were defined as heterogeneous agents due to their unique dynamic model. 

4) The objective and constraints of real-time load management could be easily 

integrated into the multi-agent system. 

 Disadvantages of Partitioning Strategy II: 

1) The topology of the multi-agent system in Partitioning Strategy II was more 

complex than the multi-agent system in Partitioning Strategy I. 

Communication agents were integrated in the multi-agent system to reduce 

the complexity of the communication network. 

2) This partitioning strategy is valid only when the topology of PCM1 is 

parallel, as shown in Figure 4.8. If the topology of PCM1 is serial, as shown 

in Figure 4.10, the partitioning strategy is invalid. 

3) The alternate path of the vital load was neglected. 

4) All the loads in the agents were modeled using resistors and aggregated 

together. The switch status control signals were generated based on the 

quantization of the agent control signal, which decreased the accuracy of the 

cooperative controller. 
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Figure 4.10 Serial topology of PCM1 
 
 
 

4.3.3 Partitioning Strategy III 

 In Partitioning Strategy III, the DC zone system of the notional all-electric ship 

power system model was partitioned based on individual electrical components, such as 

loads and power converters. The loads were modeled using load agents; transformers, 

cables, and power converters were modeled using interactive agents; generators were 

modeled using generator agents. The various agents used different types of dynamic 

models. As a result, the partitioned system is a heterogeneous multi-agent system. In 

each DC zone, the system was partitioned based on individual electrical components 

such as DC-DC converters and individual loads, as shown in Figure 4.11.  

 The topology of the multi-agent system in one DC zone is shown in Figure 4.12. 

Each DC zone consisted of two communication agents, six DC-DC converter agents, and 

a group of load agents. Communication agents were used to reduce the communication 

complexity of the multi-agent system. Each communication agent communicated with 
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three DC-DC converter agents in the same PCM1, and all of the communication agents 

in the system as an all-to-all communication network to achieve the real-time load 

management objective. Further each DC-DC converter agent communicated with the 

group of load agents connected to that converter as an all-to-all communication network, 

as shown in Figure 4.12. The alternate paths of vital loads were also integrated into the 

multi-agent system. 
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Figure 4.11 Diagram of a DC zone partitioning using Partition Strategy III 
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Figure 4.12 Topology of the multi-agent system in one DC zone using Partition Strategy III 
 
 
 

 The load agent was used to model loads such as constant power loads, DC 

motors, induction motors, propulsion loads, pulse loads, etc. A diagram of the load agent 

is shown in Figure 4.13. Induction motors served by PCM2 were also defined as a load 

agent, as shown in Figure 4.14. The constant power load agent was modeled using a 

linear circuit, as shown in Figure 4.15. Motor loads and propulsion loads were modeled 

using second-order systems. The charging circuit for pulse loads were also modeled 

using the linear circuit shown in Figure 4.15. 
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Figure 4.13 Diagram of the load agent for Partitioning Strategy III 
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Figure 4.14 Diagram of the induction motor with PCM2 for Partitioning Strategy III 
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Figure 4.15 Diagram of the equivalent circuit used to model a constant load agent for Partitioning 
Strategy III 

 
 
 

 The interactive agent was used to model transformers, DC-DC converters, etc. 

The diagram of the interactive agent is shown in Figure 4.16. Since PCM4 included a 

transformer and an uncontrolled rectifier, it was modeled using an interactive agent. The 

second-order linear circuit used to model the interactive agent is shown in Figure 4.17.  
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Figure 4.16 Diagram of the interactive agent for Partitioning Strategy III 
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Figure 4.17 Diagram of the equivalent circuit used to model the interactive agent for Partitioning Strategy 
III 

 
 
 

 Advantages of Partitioning Strategy III: 

1) The system was partitioned based on individual electrical components, which 

provided more flexibility to integrate system dynamics into the multi-agent 

system. The individual electrical components, such as loads, transformers, 

DC-DC converters, generators, cables, and propulsion loads, were modeled 

as agents. Each agent was modeled using different types of dynamic systems. 

Since the detail dynamics of individual loads were integrated into agent 

models, the accuracy of the multi-agent system was greatly improved. 

2) The alternate supply paths of vital loads were integrated into the multi-agent 

system. 
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3) Various operational constraints of the system were integrated into the multi-

agent system. 

4) Since loads were not aggregated in Partitioning Strategy III, the cooperative 

controller could ensure that vital loads were served before non-vital loads.  

 Disadvantages of Partitioning Strategy III: 

1) Since the heterogeneous cooperative control theory is not well developed in 

current literature, a cooperative controller for heterogeneous multi-agent 

systems for power systems needed to be designed and developed to achieve 

real-time load management for all-electric ship power systems. 

2) Since the topology of the heterogeneous multi-agent system was more 

complex than the multi-agent system topologies used in Partitioning 

Strategies I and II, the integration of the real-time load management 

objectives into the heterogeneous multi-agent system was very challenging. 

4.3.4 Summary of comparisons of the three partitioning strategies  

 A summary of the comparison of the three partitioning strategies discussed in the 

earlier sections is shown in Table 4.1 [89]. Partitioning Strategy III provided more 

flexibility to integrate various agents with different dynamic models in the multi-agent 

system, which improved the accuracy of the agent model and cooperative controller. 

Moreover, alternate supply paths of vital loads were integrated into this heterogeneous 

multi-agent system. Furthermore, various operational constraints of the system could be 

integrated into the multi-agent system to ensure that a feasible solution for real-time load 

management could be obtained. Due to these reasons, Partitioning Strategy III was 



 

 

112

selected as the partitioning strategy to design a heterogeneous multi-agent system 

framework to solve the real-time load management problem for all-electric ship power 

systems. The following section in this chapter provides details on a novel heterogeneous 

multi-agent system design for real-time load management in all-electric ship power 

systems. 

 
 

Table 4.1 Comparison of the three partitioning strategies 
 

Partitioning Strategy I II III 
Multi-agent system topology Homogeneous Homogeneous Heterogeneous 
Cooperative controller design Simple Simple Complex 
Alternate path of the vital load Neglected Neglected Included 

Loads in the agent model Aggregated Aggregated Included 
Load dynamics Neglected Neglected Included 

Agent model accuracy Low Medium High 
Computational Complexity Low Medium High 

Real-time step size Large Medium Small 
Steady state accuracy High High High 

Transient state accuracy Low Medium High 

 
 
 

4.4  Multi-Agent System Framework for the All-Electric Ship Power System 

 In this section, a heterogeneous multi-agent system framework developed for all-

electric ship power systems to achieve real-time load management is presented. A one-

line diagram of a simplified notional all-electric ship power system model is shown in 

Figure 4.18. The system consists of one MTG, one ATG, two transformers, one 

propulsion load, one pulse load, and two DC zones. The total generation capacity is 40 

MW. The component definitions are shown in Table 2.1. 
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Figure 4.18 One-line diagram of a simplified notional all-electric ship power system model for the multi-
agent system design 
 
 
 
4.4.1 Multi-agent system overview 

 The diagram of the multi-agent system distributed control concept for real-time 

load management in all-electric ship power systems is shown in Figure 4.19(a). An all-

electric ship power system is partitioned into a group of electrical subsystems; the switch 

status or set-point of loads in each electrical subsystem is controlled by a distributed 

controller. Each agent measures voltage, current, or power demand information from the 

corresponding electrical subsystem and communicates with other agents in the multi-

agent system. Based on the measured information and communication with other agents, 

a distributed controller can optimally determine the switch status or set-point of loads in 

the electrical subsystem. The simulation step size of the all-electric ship power system 

model is chosen as τΔ , and the simulation step size of the multi-agent system is itΔ ; the 

decision time step and measurement step size of each agent are itΔ ; the communication 

time step between different agents is also itΔ . 



 

 

114

 The multi-agent system for a 2-zone simplified notional all-electric ship power 

system, as shown in Figure 4.19(b), includes two subsystems – MVAC system and DC 

zone system. The MVAC and DC zone multi-agent systems were designed separately to 

simplify the real-time load management problem. To coordinate the MVAC and DC 

zone multi-agent systems, an AC-DC communication agent was designed to exchange 

information between the two multi-agent systems to achieve real-time load management. 

The AC-DC communication agent provides the available power information to the DC 

zone system and the load demand information of the DC zone system to a system losses 

agent.  

 
 

τΔ

itΔ

itΔ

itΔ

itΔ

 
 

(a) 
 

Figure 4.19 Diagrams of the multi-agent system distributed control concept. (a) Diagram of a general 
multi-agent distributed control system for real-time load management in all-electric ship power systems, 
(b) Diagram of a multi-agent system for a simplified 2-zone notional all-electric ship power system model 
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Figure 4.19 Continued 
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 In the MVAC multi-agent system, generator agents, propulsion load agents, pulse 

load agents, and a system losses agent were designed to coordinate propulsion loads and 

pulse loads in the MVAC multi-agent system to achieve real-time load management. The 

generator agent measures the generator output and obtains the generator capacity 

information. MTG agent also measures the MTG frequency, which is calculated by 

propulsion load agents to implement the frequency regulation. The propulsion load agent 

obtains: 1) the pulse load demand from the pulse load agent, 2) the propulsion load 

demand from other propulsion load agents, 3) input voltage of the propulsion load; 4) 

system frequency deviation from the MTG agent, and 5) the ship’s operation mode. In 

cruise mode, the speed controller of the marine propulsion system is used to drive the 

ship to its cruising speed smoothly; in battle mode, the power controller of the marine 

propulsion system is used to compensate for the impact of pulse loads, when utilized, on 

the power quality of the all-electric ship power system. The system losses agent obtains 

the propulsion load demand, pulse load demand, MTG and ATG power outputs, and DC 

zone load demand to calculate the total losses of the MVAC system based on the system 

topology. 

 In the DC zone multi-agent system, a 4-zone all-electric ship power system was 

partitioned using Partitioning Strategy III into a group of subsystems. The DC zone 

multi-agent system includes communication agents, converter agents, and load agents, 

which coordinately achieve the real-time load management objective for the DC zone 

system. Each DC zone includes six converter agents, two communication agents, and a 

group of load agents. The converter agents compose a converter-layer multi-agent 
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system, and each converter agent served a group of load agents, which compose a load-

layer multi-agent system. Each communication agent communicates with three converter 

agents served by the same DC distribution bus, and exchanges information with other 

communication agents. Each converter or load agent measures local information and 

communicates with other load, converter or communication agents to make decisions 

using a cooperative controller. The total available power to the DC zone multi-agent 

system is calculated by the AC-DC communication agent, which also obtains the 

generation capacity information, propulsion load demand, pulse load demand, and 

system losses from the MVAC multi-agent system.  

 Since the MVAC and DC zone multi-agent systems are separate subsystems, the 

two multi-agent systems are coordinated to achieve the real-time load management for 

an all-electric ship power system. The AC-DC communication agent is a bridge that 

connects the MVAC and DC zone multi-agent systems. The AC-DC communication 

agent communicates with the MVAC multi-agent system to calculate the available 

power to the DC zone multi-agent system. Moreover, the AC-DC communication agent 

provides the DC zone load demand information to the system losses agent in the MVAC 

multi-agent system.  

4.4.2 MVAC multi-agent system 

4.4.2.1 Overview of the MVAC multi-agent system 

 The objectives of the MVAC multi-agent system are summarized in (4-3)-(4-9). 

The goal of the objective function, as shown in (4-3), was to minimize the mismatch 

between generation and load. The voltage and frequency constraints were determined 
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based on the power quality requirements for shipboard power systems defined by IEEE-

STD-45 [17]. The frequency and voltage deviation tolerances were 3% and 5% in steady 

state, respectively; the frequency and voltage deviation tolerances were 4% and 16% in 

transient state, respectively; and the transient recovery time was 2 seconds. The first two 

constraints in (4-4) and (4-5) are steady state frequency and voltage constraints. The 

equations (4-6)-(4-9) are transient state frequency and voltage constraints, which mean 

that a sudden change in voltage or frequency that goes outside the steady state tolerance 

and returns to and remains within the limits within a recovery time [17].  

 The constraint shown in (4-9) is cable dynamic constraint. The dynamic cable 

constraint considers a time horizon T, and the total violation time of the cable ampacity 

constraint should be no larger than the maximum allowed time 1T , as shown in (4-9). 

When Ampacity
pulsepulse )( ItI i >Δ , )])(sgn(1[5.0 Ampacity

pulsepulse ItI i −Δ+⋅  is equal to 1. The value of 

the integral term, [ ]dtItI
t

Tt i∫−
−Δ+⋅ ))(sgn(15.0 Ampacity

pulsepulse , begins to increase. If the value 

of the integral term is larger than 1T , the pulse load needs to be disconnected 

immediately to satisfy the dynamic cable constraint. 

2

)()]()([)]([min ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
Δ+ΔΔ−Δ ∑∑

∈∈ Lj
ilossesiLij

Gk
iG tPtPtstP

jk
                      (4-3) 

%3)(t.s. ≤ΔΔ ij tω                                                     (4-4) 

%5)(%,5)( 2prop1prop ≤ΔΔ≤ΔΔ ijij
tVtV                                 (4-5) 

( )[ ] sec2%3)(sgn15.0 ≤−ΔΔ+⋅∫ −
dttt

Tt iω                                 (4-6) 
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( )[ ] sec2%5)(sgn15.0 1prop ≤−ΔΔ+⋅∫ −
dttVt

Tt i                              (4-7) 

( )[ ] sec2%5)(sgn15.0 2prop ≤−ΔΔ+⋅∫ −
dttVt

Tt i                              (4-8) 

[ ] 1
Ampacity
pulsepulse ))(sgn(15.0 TdtItI

t

Tt i ≤−Δ+⋅∫−
                             (4-9) 

where, )(sgn x  is a sign function (if x > 0, 1)(sgn =x ; if x = 0, 0)(sgn =x ; if x < 0, 

1)(sgn −=x ); T is an integral time, which is positive constant; itΔ  is the decision time 

step of the real-time load management; )( iG tP
k

Δ  is the output power of generator k; G is 

the generator set in the MVAC system; )( ij ts Δ  is the load switch status of load j; 

)( iL tP
j

Δ  is the power demand of load j; L is the load set in the system; )( ilosses tP Δ  is the 

total losses in the MVAC system, which is discussed in section 4.4.2.5, and the 

expression of system losses )( ilosses tP Δ  is shown in (4-19); ωΔ  is the frequency of the 

MTG generator; 1propVΔ  and 2propVΔ  are the input voltages of propulsion loads 1 and 2, 

respectively; )(pulse itI Δ  is the input current to the pulse load; Ampacity
pulseI  is the ampacity of 

the cable serving the pulse load; and 1T  is maximum allowed violation time of the cable 

amapcity constraint. In (4-3)-(4-9), 1propVΔ , 2propVΔ , )(pulse itI Δ , )( iG tP
k

Δ , and ωΔ  are 

measured from the all-electric ship power system; )( ilosses tP Δ  is calculated based on 

steady state method, as shown in (4-19). 

 The objective of the MVAC multi-agent system is to coordinate pulse loads and 

propulsion loads while satisfying the operational constraints of the system and 

considering load priorities. The diagram of the MVAC multi-agent system is shown in 
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Figure 4.20. The MVAC multi-agent system consists of MTG agents, ATG agents, 

propulsion load agents, a pulse load agent, and a system losses agent. This diagram 

illustrates that different agents exchange state information through communication links 

to achieve the group goal. Moreover, the operation mode of the ship is obtained by 

propulsion load agents and the pulse load agent to determine load priorities and to 

choose the appropriate controller (power or speed controller) to achieve the real-time 

load management objective. The MVAC system is a tightly coupled power system and 

the system frequency has nearly the same value at different locations; therefore, the 

frequency is measured by MTG agent 1 to implement the frequency regulation using 

propulsion load agents.  

 Since real-time load management aims to regulate load demand in a power 

system to achieve dynamic balancing while satisfying the operational constraints of the 

system, the power set-points of the generators are not control variables in the real-time 

load management problem. In the MVAC multi-agent system, MTG and ATG agents 

only measure local information and communicate with other agents, but do not make 

decisions to regulate generators; on the other hand, propulsion load agents and pulse 

load agents not only measure local information and communicate with other agents, but 

they also make decisions to control individual load demands. 
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Figure 4.20 Diagram of the MVAC multi-agent system for the notional all-electric ship power system 
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4.4.2.2 Generator agent in the MVAC multi-agent system 

 The generator agent measures its output power and obtains the generation 

capacity information from the individual generator. MTG agent 1 also measures the 

generator’s frequency, which is obtained by propulsion load agents and used to reduce 

the impact of pulse loads on the power quality of the system. The measurement interval 

for the generation output is 200 milliseconds, since the generation output is obtained by 

the system losses agent to calculate the system losses in steady state. The 

communication interval between generator agents and the system losses agent is 200 

milliseconds. The measurement interval for the MTG frequency is 10 milliseconds 

because this frequency signal is used to implement the propulsion load compensation. 

The generator agent sends the generation capacity information to the AC-DC 

communication agent which calculates the available power to the DC zone system, and 

this communication interval is also 10 milliseconds. As noted earlier, the MTG and ATG 

agents only measure local information and communicate with other agents; they do not 

regulate generator outputs in the real-time load management problem. The mathematical 

models of generator agents are discussed in Appendix A.1. 

4.4.2.3 Propulsion load agent in the MVAC multi-agent system 

 The goal of the propulsion load agent is to coordinate the propulsion load and 

pulse load in the MVAC system to reduce the frequency oscillations caused by pulse 

load changes. The frequency constraints of the system are shown as %3≤Δω  and 

( )[ ] sec2%3)(sgn15.0 ≤−ΔΔ+⋅∫ −
dttt

Tt iω . A frequency regulation controller was designed 

in a propulsion load agent to reduce the frequency oscillations in the MVAC system. 
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Moreover, the propulsion load agent integrates the propulsion load input voltage 

constraints, as shown in  (4-5), (4-7), and (4-8), to make the input voltage of each 

propulsion load in the normal range. 

 As shown in Figure 4.20, two propulsion loads are served by the notional all-

electric ship power system. The power set-point of propulsion load 1 is determined by 

propulsion load agent 1; the power set-point of propulsion load 2 is determined by 

propulsion load agent 2. The decision time step of the propulsion load agent is 10 

milliseconds. The communication time step between the propulsion load agent and 

system losses agent is 200 milliseconds; the communication time step between 

propulsion load agents and all other agents is 10 milliseconds. The measurement time 

step is also 10 milliseconds. 

 The diagram of the propulsion load agent 1 is shown in Figure 4.21. The inputs 

of the propulsion load agent included: 1) input voltage of the propulsion load, 2) ship 

operation mode, 3) ship speed reference )(ref tv , 4) actual ship speed )(ship tv , 5) the 

original power set-point of propulsion load 1 )(original
set_point1 tP , 6) pulse load demand )(pulse tP , 

7) the original power set-point of propulsion load 2 )(original
set_point2 tP , and 8) the frequency 

deviation of MTG 1 ωΔ . The output signal of the propulsion load agent is the new 

power set-point of propulsion load 1, which is used to regulate the power demand of the 

propulsion load. The mathematical model of the propulsion load agent 1 is discussed in 

Appendix A.2. The PI controllers 1 and 2 are also discussed in Appendix A.2. 
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Figure 4.21 Diagram of propulsion load agent 1 in the MVAC multi-agent system 
 
 
 

 In order to compensate for the load changes caused by pulse loads, propulsion 

loads are reduced temporarily to achieve the real-time balancing of the generation and 

load in the system. If the magnitude of the pulse load is less than the load demand of 

propulsion load 1, only propulsion load 1 is used to compensate for pulse load demand, 

and the power set-point of propulsion load 2 is not changed. If the magnitude of the 

pulse load is larger than the load demand of propulsion load 1, the power set-point of 

propulsion load 2 is reduced first, and then the propulsion load 1 is still used to 

compensate for the pulse load demand.  
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 In the MVAC multi-agent system, propulsion load agent 1 is responsible for the 

frequency regulation. The diagram of propulsion load agents 1 and 2 in MVAC multi-

agent system is shown in Figure 4.22. Propulsion load agents 1 and 2 exchange their 

original power set-points to determine whether propulsion load 2 needs to be disturbed 

while a pulse load is being served. The voltage controller in the propulsion load agent is 

activated to reduce the propulsion load demand when the input voltage of the propulsion 

load is less than 95% of the nominal value. When the input voltage is larger than 97% of 

the nominal value, the voltage controller is deactivated. The hysteresis component 

eliminates high frequency switching of the voltage controller.  

 In cruise mode, propulsion loads have the highest priority. If the power system 

does not have enough available power, non-vital service loads and pulse loads need to be 

disconnected from the system. The power set-point of the propulsion load is determined 

by the ship speed controller, and the ship speed is gradually regulated to the desired 

speed by the speed controller. The input signals of the ship speed controller are the ship 

speed reference )(ref tv  and the actual ship speed )(ship tv ; the output signal is the power 

set-point of the propulsion load.  
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Figure 4.22 Diagram of propulsion load agents 1 and 2 in the MVAC multi-agent system 
 
 
 

 In battle mode, pulse loads have the highest priority, and propulsion loads are 

reduced temporarily to compensate for the pulse load demand. When the ship’s 
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operation mode is changed from cruise mode to battle mode, the marine propulsion 

system is switched from speed control mode to power control mode, as shown in Figure 

4.21. The frequency regulation controller was implemented to compensate for the 

frequency oscillations caused by pulse loads. The frequency regulation controller is 

activated when the frequency deviation is more than 0.5% of the nominal value; the 

controller is deactivated when the frequency deviation is less than 0.1% of the nominal 

value. This hysteresis component eliminates the high frequency switching of the 

controller.  

4.4.2.4 Pulse load agent in the MVAC multi-agent system 

 The dynamic constraint of the cable serving the pulse load was included in the 

pulse load agent. Since a pulse load draws a large amount of current from the system in a 

short time frame, the cable ampacity constraint can be violated for a short period of time 

while serving a pulse load. The dynamic cable constraint considers a time horizon T, and 

the total violation time of the cable ampacity constraint should be no larger than the 

maximum allowed time 1T , as shown in [ ] 1
Ampacity
pulsepulse ))(sgn(15.0 TdtItI

t

Tt i ≤−Δ+⋅∫−
. If 

the total violation time is larger than 1T , the pulse load needs to be disconnected 

immediately to satisfy the dynamic cable constraint. 

 The diagram of a pulse load agent is shown in Figure 4.23. The inputs of the 

pulse load agent are the ship’s operation mode, power set-point of the pulse load, and 

input voltage and current of the pulse load. The outputs are the pulse load demand and 

the actual power set-point of the pulse load. In cruise mode, pulse loads have lower 

priorities than propulsion loads, which may not be served when the system does not have 
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enough available power. In battle mode, pulse loads have higher priorities than 

propulsion loads, and propulsion loads and service loads need to be decreased to 

mitigate frequency and voltage oscillations caused by pulse loads. The mathematical 

model of the pulse load agent is discussed in Appendix A.3. 
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Figure 4.23 Diagram of a pulse load agent in the MVAC multi-agent system 
 
 
 

 The pulse load agent measures the pulse load demand, which is sent to the 

propulsion load agent to reduce the impact of the pulse load on the power quality of the 

all-electric ship power system. The measurement time step is 10 milliseconds. The 

communication time step between pulse load agent and system losses agent is 200 

milliseconds; the communication time step with propulsion load agents and AC-DC 

communication agent is 10 milliseconds. 

4.4.2.5 System losses agent in the MVAC multi-agent system 

 In this section, the system losses agent for the MVAC system is introduced using 

a simplified all-electric ship power system, as shown in Figure 4.24. The simplified 

system includes one MTG, one ATG, two transformers, AC cables, a propulsion load, a 
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pulse load, and two partial DC zones. PCM4-1 serves port side DC distribution buses, 

and PCM4-2 serves starboard side DC distribution buses. The time step of power 

measurement is chosen as itΔ .  

 The system losses agent obtains MTG and ATG power outputs ( )(MTG itP Δ  and 

)(ATG itP Δ ), propulsion load demand ( )(prop itP Δ ), pulse load demand ( )(pulse itP Δ ),power 

demand at each PCM4 ( )(-1-PCM4 itP Δ  and )(-2-PCM4 itP Δ ), and the MVAC system topology 

information to calculate system losses in the MVAC system. It is assumed that the 

topology information is available for the system losses agent. The diagram of the system 

losses agent is shown in Figure 4.25. The communication interval between the system 

losses agent and other agents is chosen as 200 ms, since system losses are calculated 

based on a steady state method from [68]. The decision time step is also chosen as 200 

ms. 
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Figure 4.24 Diagram of a simplified MVAC system used for system losses calculation 
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Figure 4.25 Diagram of the system losses agent in the MVAC multi-agent system 
 
 
 

 The total losses in the MVAC system are calculated using a DC power flow 

method. It is assumed that all the bus voltages are at nominal values. The line losses can 

be expressed as (4-10). 

2)( jiijL GP
ij

δδ −≈                                                 (4-10) 

where, ijG  is the conductance of line i-j; iδ  and jδ  are voltage angles of bus i and j, 

respectively; 
ijLP  is the losses on line i-j. In the simplified MVAC system, bus 1 is 

chosen as slack bus, so the voltage angle of bus 1 is equal to 0. The angle difference 

across a line is computed as (4-11). 

Mδψ =                                                         (4-11) 

where, T],,,[ 832 δδδ L=δ  is the bus angle vector, ψ  is the vector of angle differences 

across lines, and M is the line-bus incidence matrix, which is shown as (4-12). 
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Thus, the vector of angle differences across lines is expressed as (4-13). 
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 The diagonal matrix of line conductances of the simplified MVAC system is 

determined by (4-14). 
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 The total line losses [68] can be expressed as (4-15). 
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 In order to compute the bus angle vector, )( itΔδ , at time interval itΔ , explicitly, 

a DC power flow analysis method [45], [68] is used to calculate the bus angle vector, 

which is expressed in (4-16). 

( ))()()( 1
iDiGi ttt Δ−Δ=Δ − PPBδ                                      (4-16) 

where, )( iG tΔP  is the generation power vector of the simplified MVAC system, which is 

defined as T
itP ]000000)([ ATG Δ ; )( iD tΔP  is the load demand vector of the 

simplified MVAC system, which is defined as )()()(0[ 14PCMpulseprop iii tPtPtP Δ−Δ−Δ− −  

T
itP ]00)(24PCM Δ− − ; B matrix is the susceptance matrix, which is the imaginary part of 

the admittance matrix Y of the system. By using (4-11) and (4-16), the total system 

losses at time interval itΔ  can be expressed as (4-17). 
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GMδMδGψψ
            (4-17) 

 The real power injection vector )()( iDiG tt Δ−Δ PP  is expressed as (4-18). 

T
iiiiiiDiG tPtPtPtPtPtt ]00)()()()()([)()( 24PCM14PCMpulsepropATG Δ−Δ−Δ−Δ−Δ=Δ−Δ −−PP  (4-18) 

where, )(ATG itP Δ  is the ATG output power, )(prop itP Δ  is the propulsion load demand, 

)(pulse itP Δ  is the pulse load demand, and )(14PCM itP Δ−  and )(24PCM itP Δ−  are the input 

powers to PCM4-1 and PCM4-2, respectively.  

4.4.2.6 Cooperation and coordination of agents in the MVAC multi-agent system 

 In the MVAC multi-agent system, decision variables for the real-time load 

management problem include power set-points of two propulsion loads, power set-points 
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of pulse loads, and the available power to the DC zone system. Power set-points of 

propulsion loads are determined by propulsion load agents; power set-points of pulse 

loads are determined by pulse load agents; and the available power to the DC zone 

system is determined by the AC-DC communication agent, which will be discussed later 

in section 4.4.4. MTG and ATG agents only communicate their power outputs with other 

agents, but do not regulate power outputs of the generators. The system losses agent 

calculates system losses in the MVAC system based on measurements communicated by 

other agents and sends the system losses information to the AC-DC communication 

agent. Thus, generator agents and the system losses agent do not control electrical 

components in the system.  

 A diagram illustrating the cooperation of agents in the MVAC multi-agent 

system via communication links is shown in Figure 4.26. The diagram indicates that the 

pulse load agent and propulsion load agents make decisions to control pulse load and 

propulsion loads based on communicated data and local measurements. The propulsion 

load agents decrease the set-points of propulsion loads when a pulse load is served in the 

system; the propulsion load agents increase the set-points of propulsion loads when a 

pulse load is disconnected from the system. The AC-DC communication agent calculates 

the available power to the DC zone system based on the information from the MVAC 

multi-agent system. 
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Figure 4.26 Diagram illustrating cooperation of agents in the MVAC multi-agent system 
 
 
 

4.4.3 DC zone multi-agent system 

4.4.3.1 Overview of the DC zone multi-agent system 

 The objective of the DC zone multi-agent system can be summarized in (4-19)-

(4-25). The DC zone multi-agent system was designed based on the continuous dynamic 

system. The objective of the DC zone multi-agent system is to maximize the served 

loads considering load priorities, as shown in (4-19). Constraints include available power 

capacity constraints, as shown in (4-20), PCM4 capacity constraints, as shown in (4-21), 

and motor load voltage constraints, as shown in (4-22). (4-23)-(4-25) are system 
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constraints, which calculate the input power of each PCM4, input current of each 

converter agent, and input current of each load agent. The power losses of the cables in 

the DC zone system are neglected. 

Objective:     [ ]∑
∈

⋅Δ⋅Δ
Lk

kikik WtstP )()(max                                         (4-19) 

        s.t.   Available power source capacity constraint in DC zone multi-agent system: 

[ ] )()()(t.s. iTotal
Lk

ikik tPtstP Δ≤Δ⋅Δ∑
∈

                                 (4-20) 

                PCM4 capacity constraints: 

4and ,3,2,1,)( Capacity
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                Motor load voltage constraints: 
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where, )( ik tP Δ , )( ik ts Δ , and kW  are the power demand, switch status, and weight-factor 

of load k in the DC zone system, respectively; L is the load set of the system; )( iTotal tP Δ  

is the available power to the DC zone system, which is calculated based on the 

generation capacity, load demand in the MVAC system, and system losses; jP −4PCM  and
 

Capacity
4PCM jP −  are the input power and power capacity of PCM4- j, respectively; )( im tV Δ  and 

min
mV  are the input voltage and the minimum allowed voltage of motor load m, 

respectively; motorN  is the number of motor loads in the DC zone system; iinV −  and )(txi  

are the input voltage and current of ith DC-DC converter; and ix̂ , iŷ , and iouti −
ˆ  are 

estimated values of the ith converter agent; and lz  is the input current of load l, which is 

determined by (4-48). The input and output signals of the DC zone multi-agent system 

are updated every itΔ .  

 The notional DC zone system model was partitioned based on DC-DC converters 

in PCM1s and individual loads in DC zones. A diagram of the architecture of the DC 

zone multi-agent system and some MVAC components are shown in Figure 4.27. Each 

converter serves a group of constant loads and dynamic loads with various priorities. 

DC-DC converters are modeled as converter agents; and loads are modeled as load 

agents. The AC-DC communication agent communicates with communication agents 

and agents in MVAC multi-agent system. The diagram of the multi-agent system 

topology for the DC zone system is shown in Figure 4.28. In the 4-zone system, each DC 

zone includes six converter agents, two communication agents, and a group of load 

agents. The AC-DC communication agent is included in multi-agent system, which 
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coordinates the DC zone and MVAC multi-agent systems. The converter agents 

compose a converter-layer multi-agent system, and each converter agent serves a group 

of load agents, which compose a load-layer multi-agent system. Each communication 

agent communicates with three converter agents served by the same DC distribution bus, 

and exchanges information with other communication agents. Each converter or load 

agent measures local information and communicates with other load, converter or 

communication agents to make decisions using a cooperative controller.  

 The converter-layer multi-agent system topology of a 4-zone all-electric ship 

power system model is shown in Figure 4.29. The communication agents are defined to 

reduce the complexity of the communication network in the system. Each 

communication agent communicates with three converter agents in the same PCM1, and 

the eight communication agents compose an all-to-all communication network, which 

can communicate with each other. Using information passed via the communication 

links and local measurements, each converter agent makes decision to achieve the group 

goals. To increase the accuracy of the DC zone multi-agent system, the dynamics of 

loads in zones are included in DC zone multi-agent system.  

 A diagram of the ith converter agent and load-layer multi-agent system is shown 

in Figure 4.30. Converter agent i serves a group of load agents. The total number of load 

agents in the ith load-layer multi-agent system is iN . The converter agent and its load 

agents compose an all-to-all communication network. 
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Figure 4.27 Diagram of the DC zone multi-agent system and some MVAC components 
 



 

 

139 

L

L

1N 2N 3N

4N 5N 6N

M M M

M M M

19N 20N 21N

22N 23N 24N

M M M

M M M

M

M
M

M

M
M

 
 

Figure 4.28 Diagram of the multi-agent system topology for the DC zone system of an all-electric ship power system 
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Figure 4.29 Diagram of the converter-layer multi-agent system topology for the DC zone system 
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Figure 4.30 Diagram of the ith converter agent and load-layer multi-agent system topology for the DC 
zone system 
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4.4.3.2 Converter agent model in the converter-layer multi-agent system 

 A diagram of the DC-DC converter model is shown in Figure 4.31. The DC-DC 

converter includes a switch, a diode, a capacitor, an inductor, and a lump load. The loads 

served by the converter can be constant resistive loads, DC motors, or inverter-interfaced 

AC loads. The output voltage of the converter is controlled by a PI controller, and the 

continuous control signal is converted into a discrete signal using a pulse-width 

modulator to control the switch status of the switching device. To simplify the 

cooperative controller design, a simplified DC-DC converter model was used. In the 

simplified model, the PI controller and nonlinear parts of the DC-DC converter were 

neglected. The circuit diagram of the simplified DC-DC converter model used in this 

work is shown in Figure 4.32. The simplified converter model includes an ideal DC 

transformer, a capacitor, an inductor, and a lump load representing the loads served by 

the converter. The models and parameters of DC-DC converter agents are discussed in 

Appendix A.4. 
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Figure 4.31 Diagram of DC-DC converter model with a voltage regulator 
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Figure 4.32 Diagram of the simplified DC-DC converter model 
 
 
 
 The state space equation of the ith simplified converter agent model is expressed 

in (4-26). 
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where, iinV −  and )(ti iin−  are the input voltage and current of the ith converter agent, 

respectively; )(tv iC−  and )(ti iout−  are the output voltage and current of the converter 

agent, respectively; id  is the duty ratio of the switch of the DC-DC converter; iL  and iC  

are the inductor and the capacitor of the converter agent, respectively. iinV −  is the input 

voltage of PCM1, which is equal to the output voltage of PCM4. PCM4 is a rectifier 

with 1000 V DC output voltage. Therefore, the input voltage of each converter agent is 

approximately 1000 V DC. To transform the converter agent model into a double 

integrator system, a coordinate transformation is defined as (4-27). 
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The simplified converter agent model was transformed into (4-28). 
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where, )()()( ti
CL

d
CL
txtu iout

ii

i

ii

i
iC −− ⋅+−= . The parameters iL  and iC  in the agent model 

are obtained from the DC-DC converter circuit model. 

4.4.3.3 Converter-layer multi-agent system model 

 In a 4-zone system, twenty-four DC-DC converters serve various priority loads. 

The dynamic model of the converter-layer multi-agent system can be expressed as (4-

29). 
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where, Txxx ],,,[ 2421 L=x , Tyyy ],,,[ 2421 L=y , and =Cu T
CCC uuu ],,,[ 2421 L . The 

control variable of the ith converter agent Ciu , determined by a cooperative controller, is 

used to calculate the available current of the ith converter agent )(ti iout−  by using 

( ) iiCiiiiout dtxtuCLti )()()( +⋅=− . Based on the definition in (4-27), the state variable ix  

is the input current to the ith DC-DC converter. The input power to the converter is 

shown in (4-30). 

iiniiin VtxtP −− ⋅= )()(                                                   (4-30) 

where, iinV −  is the input voltage to the ith DC-DC converter. 
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4.4.3.4 Objective of the converter-layer multi-agent system  

 The objective of the converter-layer multi-agent system is to maximize the 

number of loads served in the 4-zone system while satisfying the available power 

capacity constraints and PCM4 capacity constraints. The power losses of the cables in 

the DC zone system are neglected in the multi-agent system design. The objective of the 

converter-layer multi-agent system is expressed in (4-31). )(3

1
txV
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i iiin txV  represents the total power demand in the DC zone multi-agent system. 
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where, TotalP  is the available power to the 4-zone all-electric ship power system, which is 

determined by the AC-DC communication agent; Capacity
1PCM4−P , Capacity

2PCM4−P , Capacity
3PCM4−P , and 

Capacity
4PCM4−P  are power capacities of PCM4-1, PCM4-2, PCM4-3, and PCM4-4, respectively; 
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lz  is the input current of load agent l in the ith load-layer multi-agent system; iN  is the 

number of load agents in the ith load-layer multi-agent system; and ix̂ , iŷ , and iouti −
ˆ  are 

estimated values of the ith converter agent. The differential algebraic equations (DAEs) 

of the converter agent in (4-31) are used to estimate the input current of each converter 

agent. The dynamic system of converter agent is a second order system, and the output 

current of the converter iouti −
ˆ  is calculated using input current of load agent lz . 

4.4.3.5 Artificial potential function of the converter-layer multi-agent system  

 In a multi-agent system, an artificial potential function is used to integrate the 

objective and constraints of a multi-agent system, which corresponds to an attractor term 

and repulsor term [73], [90]. The attractor term increases monotonically with the 

increase of the mismatch between the system state and desired state, which drives the 

system to the desired state. On the other hand, the repulsor term decreases when the 

system state leaves constraint regions. The artificial potential function reaches its 

minimum point when the system state reaches the desired state. 

 The artificial potential function, )(tEC , of the converter-layer multi-agent system 

is designed based on the objective and constraints of the converter-layer multi-agent 

system as shown in (4-32). 

)()()()()()( 4PCM43PCM42PCM41PCM4 tEtEtEtEtEtE AC −−−− ++++=                (4-32) 

The artificial potential function includes attractor term, )(tEA , which drives the system 

state to the desired state and repulsor term, )()()( 3PCM42PCM41PCM4 tEtEtE −−− ++  

)(4PCM4 tE −+ , which repulses the system state from constraint regions. The attractor term, 
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)(tEA , is expressed as (4-33). )(tEA  ensures that the converter-layer multi-agent system 

maximizes the number of loads served in the DC zone system while satisfying the 

available power capacity constraint. If the total load demand in the DC zone system 

exceeds the available power, the exponential term increases monotonically to reduce the 

load demand by using a cooperative controller; if the total load demand in the DC zone 

system is less than the available power, the first term, ∑ = −⋅− 24
11 )(i iiin txVC , makes )(tEA  

increase to increase the load demand in the DC zone system by using a cooperative 

controller.  

( ) ( )( )Totali iiini iiinA PtxVCCCtxVCtE −⋅+⋅−= ∑∑ = −= −
24

1221
24

11 )(exp)()(             (4-33) 

where, 1C  and 2C  are two positive constants; iinV −  and )(txi  are the input voltage and 

current to the ith DC-DC converter, respectively; and TotalP  is the available power to the 

4-zone all-electric ship power system. )(1PCM4 tE − , )(2PCM4 tE − , )(3PCM4 tE − , and 

)(4PCM4 tE −  are expressed in (4-34). )(1PCM4 tE − , )(2PCM4 tE − , )(3PCM4 tE − , and )(4PCM4 tE −  

ensure that the PCM4 power capacity constraints are satisfied. If the power input of a 

PCM4 is no larger than its power capacity, the energy function is equal to 0; otherwise, 

the energy function has a positive value to drive the power input less than the power 

capacity using a cooperative controller. 
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                (4-34) 

where, 1K , 2K , 3K , and 4K  are positive constants; jinV −  and )(tx j  are the input voltage 

and current to the jth DC-DC converter, respectively; and Capacity
1PCM4−P , Capacity

2PCM4−P , Capacity
3PCM4−P , and 

Capacity
4PCM4−P  are power capacities of PCM4-1, PCM4-2, PCM4-3, and PCM4-4, respectively. 

4.4.3.6 Cooperative controller for the converter-layer multi-agent system 

 In order to achieve the real-time load management objectives, cooperative 

controllers are developed based on artificial potential functions of converter-layer multi-

agent system, CE , and load-layer multi-agent systems, LE . In this work, the cooperative 

controllers are developed based on the flocking algorithm [73]. However, the objective 

of the DC zone multi-agent system is different from bird flocking. The objective of bird 

flocking is to achieve consensus and cooperation through communication and distributed 

control of multiple agents, which ensures that all agents in the group move to the same 

direction and maintain certain formations; on the other hand, the objective of the DC 

zone multi-agent system is to achieve consensus and cooperation through 
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communication and distributed control of multiple load and converter agents. The DC 

zone multi-agent system dynamically determines the control switch status or set-point of 

individual loads to achieve dynamic balancing subject to the operational constraints of 

the system. 

 The cooperative controller for the converter-layer multi-agent system is shown in 

(4-35). 

))(()(
)(
)()( 1

refC
C tkt

t
tEt yyLy

x
u −−−

∂
∂

−=                                        (4-35) 

where, 1k  is a positive constant; x(t), y(t), and )(tCu  are vectors as given in (4-29); refy  

is a reference signal for vector y(t), which is chosen as 0 because y(t) equals to 0 in 

steady state; and L is the graph Laplacian, which is determined based on the topology of 

the converter-layer multi-agent system, as shown in Figure 4.29. The graph of the 

converter layer multi-agent system uses an all-to-all communication topology. 

 The graph Laplacian [91] is defined as (4-36).  

ADL −=                                                       (4-36) 

where, A and D are adjacency and diagonal matrices of the graph, respectively. The 

adjacency matrix [72], A, is defined as (4-37). 

nn
ija ×∈= RA ][                                                   (4-37) 

where, 1=ija , if iNbj ∈ , and 0=ija , otherwise. iNb  is the set of neighbor agents of 

agent i, and n is the total agent number in the group. The degree matrix, D, of the graph 

is defined as (4-38). 
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The Laplacian matrix L is a positive semidefinite matrix and always has a right 

eigenvector of T
n 1],1,[1, L=1  associated with eigenvalue 01 =λ . More details about 

the Laplacian matrix are given in [72], [91]. 

 For the ith DC-DC converter agent, the cooperative controller is expressed as (4-

39). This control signal is the ith element of the cooperative control vector, )(tCu , as 

given in (4-35). The partial derivative terms are gradient terms; yL irow _−  is the 

consensus term; and )(1
ref
ii yyk −−  is the navigational feedback term. 
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    (4-39) 

where, ref
iy  is the reference signal for the ith converter agent model, which is equal to 0;  

and irow _L  is a row vector, which is the ith row of the graph Laplacian.  

 The partial derivatives of AE , 1PCM4−E , 2PCM4−E , 3PCM4−E , 4PCM4−E , and iE  to ix  

are expressed in (4-40). The expressions of partial derivatives are used to implement the 

cooperative controller for the ith DC-DC converter agent. 
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(4-40) 

 Since the cooperative controller was designed based on the double integrator 

system, the signal was transformed into the original control signal to control the original 

converter agent model. Using (4-39), the cooperative controller for the original converter 

agent model is given in (4-41).  

( ) iiiiCiiiiiout dtxtuCLti ))(()()( Δ+Δ⋅=Δ−                                    (4-41) 
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where, iL  and iC  are the inductor and capacitor of the converter agent model, id  is the 

duty ratio of the converter, and iouti −  is the available current of the ith DC-DC converter 

agent.  

4.4.3.7 Load agent model in the load-layer multi-agent system 

 DC zones include three different kinds of loads: constant impedance loads, DC 

motor loads, and AC motor loads. DC zones include two types of loads – variable-type 

loads and fixed-type loads [6]. For the variable-type loads, the loads can be served from 

0 to their maximum power rating. The variable-type loads represent a lump load in a 

panel consisting of groups of loads, which can be on and off independently. For the 

fixed-type loads, the loads can be either served at their maximum power rating or cannot 

be served at all. In the DC zone multi-agent system, all of the constant loads are modeled 

as variable-type loads; and all of the DC and AC motors are modeled as fixed-type 

loads.  

 In the cooperative controller for a load layer multi-agent system, the constant 

impedance loads are modeled using a second-order dynamic system, as shown in Figure 

4.33. The constant impedance AC loads are served by PCM2, which is an inverter 

connecting to the 800 V DC voltage level. Thus, the constant impedance AC loads are 

modeled using the same dynamic model, as shown in Figure 4.33. The state space 

equation of the constant load j is expressed as (4-42). 
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where, 
jinLv

1
 and )(

1
ti

jL  are the input voltage and current of the jth constant load agent; 

jLC
1

 and 
jLL

1
 are the equivalent capacitor and inductor of the load agent; )(ˆ

1 iL tu
j

Δ  is the 

control variable of the load agent, which is equal to 
jLR

1
1 . )(ˆ

1 iL tu
j

Δ  is determined by a 

cooperative controller in the load-layer multi-agent system.  

 The control variable of the constant impedance load agent is defined as 

)(/1)(ˆ
11 iLiL tRtu

jj
Δ=Δ ; where, )(

1 iL tR
j

Δ  is the equivalent resistor of the constant load j. 

Since the constant impedance load is a variable-type load consisting a group of loads, the 

control variable of this load agent should be quantized based on the current ratings of 

these loads. In this dissertation, it is assumed that each constant load consists a group of 

identical loads which have 10 amperes of current rating. 

 The constant load agent model is a second-order nonlinear system, which was 

converted into a double integrator system using feedback linearization [92]. The constant 

load agent j is shown as (4-43). 
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where, ( ) )(ˆ)()()()()(
11111111 11 iLLLjLinLLLjL tuCLtqLvCLtztu

jjjjjjjj
Δ⋅⋅−+−= , jj inLLj vLtq

11
(/1)(1 ⋅=  

))(
1

tv
jcL− , )()( 11 titz jj = , and 1iM  is the total number of constant load agents in the ith 

load-layer multi-agent system. Since 
jinLv

1
 is the input voltage of the constant load, 

which is well controlled by the PI controller in the DC-DC converter, it is assumed that 
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jinLv
1

 is constant in the load agent model. The models and parameters of constant load 

agents are discussed in Appendix A.5. 
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Figure 4.33 Diagram of a constant load agent model in DC zones 
 

 
 
 The diagrams of the DC motor and AC motor models are shown in Figure 4.34 

and Figure 4.35, respectively. AC motors and DC motors are driven by machine drive 

systems, which regulate the power demands of dynamic loads. The dynamic load [46] is 

modeled using (4-44). The second order linear system is used to model the dynamic 

behavior of motor loads. 

)(
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sTsT

KsP d
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=                                 (4-44) 

where, dK , 1T , and 2T  are the coefficients of the dynamic load model; pointset−P  is the 

power demand set-point of the dynamic load; and dP  is the actual power demand of the 

dynamic load. 
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Figure 4.34 Diagram of a DC motor model used in the DC zone multi-agent system 
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Figure 4.35 Diagram of an AC motor model used in the DC zone multi-agent system 
 
 
 
 The state space equation of the DC motor load agent model is expressed in (4-

45). 
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where, 
kk inLdk vtPtz

22
)()(2 = , 

kinLv
2

 is the input voltage of the DC motor load agent, 
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and 2iM  is the total number of DC motor load agents in the ith load-layer multi-agent 

system. The models and parameters of DC motor agents are discussed in Appendix A.6. 

 The state space equation of the AC motor load agent model is expressed in (4-

46).  
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where, 
ll inLdl vtPtz

33
)()(3 = , 

linLv
3

 is the input voltage of the AC motor load agent, 
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and 3iM  is the total number of AC motor load agents in the load-layer multi-agent 

system. The models and parameters of DC motor agents are discussed in Appendix A.7. 

 Since all of the motors are fixed-type loads which can be either served at the 

maximum power rating or cannot be served at all, the power set-point of each motor is 

either full rated power or 0, which means that the set-point of the motor agent can only 

be chosen as its power rating or 0. Genetic algorithms [93], [94] were used to identify 

the unknown parameters of agent models based on the data from the all-electric ship 

power system. The parameters of DC-DC converter agent models and load agent models 

are shown in Appendix A.4, Appendix A.6, and Appendix A.7. 

 
 

Table 4.2 Load definitions in a typical DC zone with sample loads 
 

Component name Priority Rating (kW) Voltage (V) Switch Board Load type 
constant load 1 semi-vital 115.4 375 port variable 
constant load 2 non-vital 72 375 port variable 

DC motor 1 non-vital 36 375 port fixed 
constant load 3 vital 151.4 375 starboard variable 
constant load 4 semi-vital 70 375 starboard variable 

DC motor 2 semi-vital 115.4 375 starboard fixed 
DC motor 3 semi-vital 115.4 650 port fixed 
DC motor 4 non-vital 36 650 port fixed 

constant load 5 semi-vital 115.4 650 port variable 
DC motor 5 semi-vital 115.4 650 starboard fixed 
DC motor 6 semi-vital 47.6 650 starboard fixed 

constant load 6 semi-vital 22 650 starboard variable 
constant load 7 non-vital 199 650 starboard variable 

AC motor 1 vital 181 450 port fixed 
constant load 8 vital 42.6 450 port variable 

AC motor 2 semi-vital 79.4 450 port fixed 
constant load 9 semi-vital 40 450 port variable 

constant load 10 non-vital 85 450 port variable 
constant load 11 semi-vital 119.6 450 starboard variable 
constant load 12 non-vital 177 450 starboard variable 

AC motor 3 non-vital 192.6 450 starboard fixed 
AC motor 4 non-vital 115.4 450 starboard fixed 
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 The load definitions of a typical DC zone with sample loads are shown in Table 

4.2. Each DC zone includes various priority loads with different ratings and voltage 

levels. Only 800 V DC-DC converters serve AC loads. Some loads are served by port 

side DC distribution bus, and other loads are served by starboard DC distribution bus. 

The diagram of a typical DC zone with sample loads is shown in Figure 4.36.  
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Figure 4.36 Diagram of a typical DC zone with sample loads 
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4.4.3.8 Load-layer multi-agent system model 

 The dynamic model for the ith load-layer multi-agent system is expressed in (4-

47). 
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⎨
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where, T
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uu ],,
3332

L ; 1iM  , 2iM , and 3iM  are the total number of constant loads, DC motor 

loads, and AC motor loads in the ith load-layer multi-agent system, respectively; and the 

total number of agents in the ith load-layer multi-agent system is defined as iN , which is 

equal to 321 iii MMM ++ . 

4.4.3.9 Objective of the load-layer multi-agent system 

 The objective of the load-layer multi-agent system is to maximize the loads 

served by the ith DC-DC converter considering the load priorities while satisfying 

available power capacity constraints and motor input voltage constraints. The objective 

of the ith load-layer multi-agent system is expressed as (4-48). The dynamic equations 

are used to estimate the input currents of constant loads, DC motor loads and AC motor 

loads in the load layer multi-agent system. 



 

 

158

321

332211

2321323

33

2221222

22

111

11

33
min

3

22
min

2

1 1 331 2211

1 1 3331 222111

,,1;,,1;,,1

)(ˆ)();(ˆ)();(ˆ)(

)(ˆ)/()(ˆ)/()(ˆ)/1()(ˆ

)(ˆ)(ˆ

)(ˆ)/()(ˆ)/()(ˆ)/1()(ˆ

)(ˆ)(ˆ

)(ˆ)/())(ˆ()/()(ˆ)(ˆ

)(ˆ)(ˆ

,,2,1)(

,,2,1)(

)())()(())()(())()((s.t.

))]()(())()(())()(([min

333333

222222

1111111

1 32

1 32

iii

llkkjj

iLdlll

ll

iLdkkk

kk

iLLLjLinLLLjj

jj

ill

ikk

iiout
M

j

M

l ill
M

k ikkijj

M

j

M

l illl
M

k ikkkijjj

MlMkMj

tztztztztztz

tuTKtqTTtzTtq

tqtz

tuTKtqTTtzTtq

tqtz

tuCLtqLvCLtztq

tqtz

MltVV

MktVV

titstztstztstz

tsWtztsWtztsWtz

llllll

kkkkkk

jjjjjjj

i ii

i ii

LLL

&

&

&

&

&

&

L

L

===

===

Δ+−−=

=

Δ+−−=

=

Δ⋅⋅−+−=

=

=≤

=≤

Δ=Δ⋅+Δ⋅+Δ⋅

Δ⋅⋅+Δ⋅⋅+Δ⋅⋅−

−= ==

= ==

∑ ∑∑
∑ ∑∑

    (4-48) 

where, jW1 , kW2 , and lW3  are the weight factors of constant load agent j, DC motor load 

agent k, and AC motor load agent l in the ith multi-agent system, respectively; )(1 ij ts Δ , 

)(2 ik ts Δ , and )(3 il ts Δ  are the switch statuses of constant load agent j, DC motor load 

agent k, and AC motor load agent l in the ith load-layer multi-agent system, respectively; 

)(1 tz j , )(2 tz k , and )(3 tz l  are the input currents of constant load agent j, DC motor load 

agent k, and AC motor load agent l, respectively; )(2 tV k  and )(3 tV l  are the input bus 

voltages of DC motor load agent k and AC motor load agent l; min
2kV  and min

3lV  are the 

minimum allowed bus voltages for DC motor load agent k and AC motor load agent l; 

)( iiout ti Δ−  is the available output current of the ith converter, which is obtained from the 

converter-layer cooperative controller, as shown in (4-41); and )(ˆ1 tz j , )(ˆ1 tq j , )(ˆ2 tz k , 
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)(ˆ2 tq k , )(ˆ3 tz l , and )(ˆ3 tq l  are estimated values of load agents. The DAEs of load agents 

are used to estimate the input current of each load agent by using the input voltage and 

switch status or power set-point of each load. 

4.4.3.10 Artificial potential function of the load-layer multi-agent system  

 The artificial potential function of the load-layer multi-agent system is shown as 

(4-49). 

)()( tEtE LattractorL =                                                   (4-49) 

The attractor term, as shown in (4-50), is monotonically decreasing with the decrease of 

the mismatch between the system state and the desired state, which drives the system 

state to the desired state. The first term of )(tELattractor  is used to match the load current 

to the available current of the ith load-layer multi-agent system; the second term of 

)(tELattractor  is used to maximize the served loads in the ith load-layer multi-agent system 

considering load priorities.   
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where, 5K  is a positive constant, which determines the convergence speed of the 

cooperative controller; the definitions of other variables are the same as (4-48).  

 The repulsor term, )(tELrepulsor , as shown in (4-51), is used to drive the input bus 

voltage of a motor load larger than its minimum allowed voltage. If the input bus voltage 

of a motor load is larger than its minimum allowed voltage, the value of )(tELrepulsor  is 0; 



 

 

160

otherwise, the value of )(tELrepulsor  is a positive value. This replusor term only includes 

load input voltage variables, but does not include load input current variables.   
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where, k2γ  and l3γ  are positive constants; )(2 tE k
Lrepulsor  and )(3 tE l

Lrepulsor  are repulsor 

functions for DC motor k and AC motor l, respectively. 

4.4.3.11 Cooperative controller for the load-layer multi-agent system 

 One challenge of the real-time load management problem is that the control 

variables include both continuous and binary variables, which means that this problem is 

a hybrid control problem. For the variable-type load, the load demand can be regulated 

from 0 to its maximum power rating at specified value; for the fixed-type load, the 

control variable is the switch status of the load, which is a binary variable. Since the 

cooperative controller is developed based on continuous system theory, the binary 

control variable will introduce errors in the multi-agent system. Thus, the parameters of 

the cooperative controller were determined carefully to ensure the stability of the 

cooperative controller. 

 The cooperative controller for the load-layer multi-agent system was designed 

based on the artificial potential function (4-49) through (4-51), which is shown as (4-52). 

This cooperative controller includes a gradient term, a consensus term, and a 
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navigational feedback term. The gradient term includes the partial derivative of 

)(tELattractor  with respect to )(tz  and the partial derivative of )(tELrepulsor  with respect to 

)(tV . This control vector, )( iL tΔu , includes the control signals for constant loads, DC 

motors, and AC motors, which are shown in (4-55), (4-58), and (4-61), respectively. 

))(()(
)(

)(
)(

)()( 2
refLrepulsorLattractor

iL tkt
t

tE
t

tEt qqLq
Vz

u −−−
∂

∂
+

∂
∂

−=Δ                  (4-52) 

where, 2k  is a positive constant; V  is the voltage vector for all the load agents, which is 

equal to T
MMM iii

VVVVVVVVV ],,,,,,,,,,,[
321 332312222111211 LLL=V ; z is the input current 

vector for all the load agents, which is equal to ,,,,,[ 2111211 1
zzzz

iML=z  

T
MM ii

zzzzz ],,,,,,
32 33231222 LL ; refq  is the reference signal, which is equal to 0 because q 

equals to 0 in steady state; L is the graph Laplacian, which is defined as (4-36). The 

adjacency matrix of the graph Laplacian is defined as (4-53). 

ii NN
ija ×∈= RA ][                                                   (4-53) 

where, 1=ija , if kNbj ∈ , and 0=ija , otherwise. kNb  is the set of neighbor agents of 

agent k, and iN  is the total agent number in the ith load-layer multi-agent system. The 

degree matrix of the graph is defined as (4-54). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

∈∈ iNNbj
nj

Nbj
j aa ,,diag

1
1 LD                                      (4-54) 

Since the load-layer multi-agent system is an all-to-all communication network, all of 

the off-diagonal elements of the Laplacian have a value of -1 and all of the diagonal 

elements have a value of 1−iN .  
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 For the constant load agent j, the cooperative controller can be expressed as (4-

55). This controller includes a gradient term, a consensus term, and a navigational 

feedback term. This expression is used to control constant load j in the load layer multi-

agent system. 
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where, ref
jq1  is the reference signal for the jth constant load agent model, which is equal 

to 0; and jrowL _  is the jth row of the graph Laplacian. The partial derivatives of 

)(tELattractor  to )(1 tz j  is expressed as (4-56). 
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           (4-56) 

 Since the cooperative controller was designed based on the double integrator 

system, the signal should be transformed into the control signal to control the constant 

load agent model. Using (4-55), the cooperative controller for the constant load agent 

model is shown in (4-57).  

111 ,,2,1))(/())()(()(ˆ
111111 iijLinLijiLLLiL MjtqLvtztuCLtu

jjjjjj
L=Δ⋅−Δ+Δ⋅=Δ    (4-57) 

where, 
jLL

1
 and 

jLC
1

 are the inductor and capacitor of the jth constant load agent model, 

and 
jinLv

1
 is the input voltage of the jth constant load agent model. 
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 For the DC motor load agent k, the cooperative controller can be expressed as (4-

58). This controller includes gradient term, consensus term, and navigational feedback 

term. This expression is used to control DC motors in the load layer multi-agent system. 
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where, ref
kq2  is the reference signal for the kth DC motor load agent model, which is equal 

to 0; and 
1_ iMkrow +L  is the 1iMk +  row of the graph Laplacian. The partial derivatives of 

)(tELattractor  and )(tELrepulsor  are expressed as (4-59). 
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(4-59) 

 Using (4-58), the cooperative controller for the DC motor load agent model is 

shown in (4-60).  

22122 ,,2,1/))()(()(ˆ
22222 idikkiLiL MkKtqTztuTtu

kkkkk
L=Δ++Δ=Δ           (4-60) 

where, 
k

T
21 , 

k
T

22 , and 
kdK

2
 are the coefficients of the kth DC motor load agent model. 

 For the AC motor load agent l, the cooperative controller can be expressed as (4-

61). This controller includes gradient term, consensus term, and navigational feedback 

term. This expression is used to control AC motors in the load layer multi-agent system. 
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where, ref
lq3  is the reference signal for the lth AC motor load agent model, which is equal 

to 0; and 
21_ ii MMlrow ++L  is the 21 ii MMl ++  row of the graph Laplacian. The partial 

derivatives of LattractorE  and LrepulsorE  are expressed as (4-62). 
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(4-62) 

 Using (4-61), the cooperative controller for the AC motor load agent model is 

shown in (4-63).  

33132 ,,2,1/))()()(()(ˆ
33333 idililiLiL MlKtqTtztuTtu

lllll
L=Δ+Δ+Δ=Δ         (4-63) 

where, 
l

T
31 , 

l
T

32 , and 
ldK

3
 are the coefficients of the lth AC motor load agent model. 

 Since each motor is a fixed-type load, the motor can either be served at full 

power or not served at all, which means that switch status is the only control variable for 

motors. In this dissertation, if  )(ˆ
2 iL tu

k
Δ  (or )(ˆ

3 iL tu
l

Δ ) is greater than 90% of its 

maximum value 
kinLk vP

22rating−  (
linLl vP

33rating− ), the DC motor k (or AC motor l) is 

connected and the switch of the DC motor k, )(2 ik ts Δ , (or AC motor l, )(3 il ts Δ ) is ‘1’; if 

)(ˆ
2 iL tu

k
Δ  (or )(ˆ

3 iL tu
l

Δ ) is less than 10% of its maximum value, the motor is 
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disconnected and the switch of the DC motor k, )(2 ik ts Δ , (or AC motor l, )(3 il ts Δ ) is 

‘0’. kP 2rating−  and lP 3rating−  are power ratings of DC motor k and AC motor l, respectively. 

4.4.4 Coordination of MVAC and DC zone multi-agent systems 

 The AC-DC communication agent was developed to coordinate the MVAC and 

DC zone multi-agent systems. This agent calculates the power available to the DC zone 

multi-agent system, and provides the DC zone load demand information at each time 

step to the system losses agent, which connects the MVAC and DC zone multi-agent 

systems to achieve real-time load management for the all-electric ship power system. 

Generator agents, propulsion load agents, pulse load agents, a system losses agent, and 

communication agents in DC zones communicate with the AC-DC communication agent 

to calculate the power available to the DC zone multi-agent system, as shown in Figure 

4.37.  
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Figure 4.37 Block diagram of AC-DC communication agent which coordinates the MVAC and DC zone 
multi-agent systems  
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 A low pass filter was designed to filter noise of the available power signal 

)( iTotal tP Δ  of the DC zone system. The time constant, 1T , of the filter is a positive 

constant with a value of 0.1. The AC-DC communication agent also obtains the input 

power to each PCM4, )(14PCM itP Δ− , )(24PCM itP Δ− , )(34PCM itP Δ− , )(44PCM itP Δ− , based on 

the DC zone system topology and data from the communication agents in the DC zone 

multi-agent system, which is shown in (4-64). The input power of each PCM4 is 

calculated using the following equation.  
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                                  (4-64) 

where, )(]1[
iComm tP Δ  to )(]8[

iComm tP Δ  are the input power of PCM1-1 to PCM1-8, 

respectively. The AC-DC communication agent provides the load demand information 

of the DC zone system to the system losses agent to calculate system losses in the 

MVAC system as described in section 4.4.2.5.  

 The communication time step between the AC-DC communication agent and 

other agents was chosen as 10 milliseconds. The decision time step of the AC-DC 

communication agent was chosen as 10 milliseconds. 

 

4.5  Summary 

 In this chapter, the bio-inspired multi-agent system concept and its applications 

in power system areas were discussed. Since a multi-agent system aims to cooperatively 
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achieve group objectives that are difficult to reach by a single agent or centralized 

controller, this technique has potential to solve complex problems in many engineering 

areas. To apply the load management multi-agent system technique to all-electric ship 

power systems, three different partitioning strategies for the DC zone system of the all-

electric ship power system were studied to compare the advantages and disadvantages of 

each strategy. Partitioning Strategy III was chosen to use in the design of the multi-agent 

system cooperative controller for the DC zone system. This strategy partitioned the 

system based on the individual electrical components in the DC zone system with 

different types of dynamic models which, therefore, is a heterogeneous multi-agent 

system. 

 Since the all-electric ship power system consists of a MVAC system and a DC 

zone system, a separate MVAC and DC zone multi-agent system was developed. An 

AC-DC communication agent was developed to coordinate the two multi-agent systems 

to achieve real-time load management for the all-electric ship power system. In the 

MVAC system, generator agents, propulsion load agents, pulse load agents, and a 

system losses agent were developed to cooperatively coordinate propulsion loads and 

pulse loads in the MVAC system. In the DC zone system, a 4-zone system was 

partitioned based on DC-DC converters and individual loads. Communication agents 

were developed to reduce the complexity of the communication network of the two 

multi-agent systems. Each DC zone consists of two communication agents, six DC-DC 

converter agents, and a group of load agents. A converter-layer multi-agent system was 

developed to coordinate all of the DC-DC converters in the DC zone system and to 
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provide the available current information to the load-layer multi-agent system served by 

each DC-DC converter. The cooperative controllers were developed for the DC zone 

system based on artificial potential functions and reduced-order agent models to achieve 

the real-time load management objectives.  

 In the next chapter, the novel heterogeneous multi-agent system and the notional 

all-electric ship power system implemented in PSCAD software will be discussed. Case 

studies and performance analysis results will be discussed. 
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5. PSCAD SIMULATION OF MULTI-AGENT SYSTEM AND SIMULATION 

RESULTS 

 

5.1  Introduction 

 This chapter discusses the implementation of the novel heterogeneous multi-

agent system framework and a computer model of a notional 2-zone all-electric ship 

power system in the PSCAD/EMTDC dynamic simulation software. Simulation results 

of case studies and performance analysis are also discussed. The heterogeneous multi-

agent system consists of a MVAC multi-agent system and a DC zone multi-agent 

system. These two multi-agent systems were designed separately and coordinated using 

an AC-DC communication agent. Thus, the MVAC and DC zone multi-agent systems 

were studied separately in case studies. Further the coordination of the two systems was 

studied to evaluate the dynamic performance of the real-time load management applied 

to the all-electric ship power system computer model.  

 In section 5.2, the computer model of a notional 2-zone all-electric ship power 

system for case studies and performance analysis is introduced. The simulation 

environment for the multi-agent system and power system model is also discussed. In 

section 5.3, case studies for the MVAC multi-agent system, DC zone multi-agent 

system, and coordination of the two multi-agent systems are presented to illustrate the 

dynamic performance of the new real-time load management technique. In section 5.4, 

results of performance analysis which evaluate the dynamic performance of the new 

technique for the MVAC and DC zone multi-agent systems are discussed. In section 5.5, 
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a summary of case studies and performance analysis is provided. Lastly, a summary is 

given in section 5.6. 

 

5.2  PSCAD Simulation of All-Electric Ship Power System Computer Model and 

Simulation Environment  

 The one-line diagram of a notional 2-zone all-electric ship power system model 

is shown in Figure 5.1. The MVAC system consists of one MTG, one ATG, one 

propulsion load with 36.5 MW power rating, one pulse load, and two DC zones. The 

notional 2-zone all-electric ship power system model was implemented in PSCAD as a 

test system to validate the methodology and analyze the dynamic performance of the 

new real-time load management approach. The parameters of the electrical components 

in the all-electric ship power system are shown in Appendix B.1. 

 The PSCAD simulation environment of the multi-agent systems and all-electric 

ship power system model is shown in Figure 5.2. The multi-agent system measures the 

power demand and input voltage of individual loads from the electrical system and 

makes decisions to control switch status or power set-point of individual loads in 

operational real time itΔ . The simulation time step of the multi-agent system is chosen 

as itΔ , and the simulation time step of all-electric ship power system model is chosen as 

τΔ . In this dissertation, the decision time step and measurement time step itΔ  are 

chosen as 10 milliseconds. 
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Figure 5.1 One-line diagram of a notional 2-zone all-electric ship power system computer model simulated in PSCAD software for case studies and 
performance analysis 
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Figure 5.2 PSCAD simulation environment of the multi-agent system and all-electric ship power system 
model 

 
 
 

5.3  Case Studies  

 In this section, various case studies are presented to illustrate the dynamic 

performance of the novel multi-agent system framework for real-time load management 

of all-electric ship power systems. In section 5.3.1, MVAC multi-agent system studies 

are presented to show the coordination of the propulsion load and pulse load to achieve 

real-time load management for the MVAC system. Three case studies with different 

pulse load characteristics are shown to illustrate the effectiveness of the MVAC multi-

agent system to mitigate the frequency and voltage oscillations caused by pulse loads. In 

section 5.3.2, the DC zone multi-agent system studies are presented to show the 

coordination and cooperation of loads in DC zones to achieve real-time load 

management for the DC zone system. Two case studies are shown to illustrate the 

effectiveness of the DC zone multi-agent system. Further the coordination of the two 

multi-agent systems is discussed in section 5.3.3. A case study is presented to show the 

effectiveness of the novel multi-agent system framework to solve real-time load 

management for all-electric ship power systems. 
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5.3.1 MVAC multi-agent system case studies 

 In the MVAC multi-agent system studies, the diagram of the simplified notional 

all-electric ship power system simulation model for MVAC multi-agent system is shown 

in Figure 5.3, and the simulation step size τΔ  was chosen as 40 microseconds in the 

PSCAD simulation. DC zone details were neglected and the DC zones were represented 

by constant lump loads. The MTG and ATG generators were in service. The total power 

generation capacity was 40 MW. It was assumed that the ship operated in cruise mode 

from 0 to 30 seconds at a cruising speed of 27 knots. The propulsion load demand at this 

cruising speed was 21 MW. At 30 seconds, the operation mode was switched from 

cruise mode to battle mode until the end of the simulation.  

 
 

 
 

Figure 5.3 Diagram of a simplified notional all-electric ship power system simulation model for MVAC 
multi-agent system 
 
 
 
 The operational constraints of the MVAC multi-agent system included the 

propulsion load voltage constraint, MTG frequency constraint, and dynamic cable 
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ampacity constraint for the pulse load as discussed in section 4.4.2.1, which are shown in 

(5-1)-(5-5).
  

%3)( ≤ΔΔ itω                                                    (5-1) 
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where, ωΔ  is the MTG generator frequency deviation, propVΔ  is the propulsion load 

voltage deviation, Ampacity
pulseI  is the ampacity of the cable serving the pulse load, and pulseI  

is the input current of the pulse load. The constraints (5-1) and (5-2) are steady state 

frequency and voltage constraints, which mean that the frequency and voltage deviation 

should be no larger than 3% and 5% of nominal values in steady state, respectively [17]; 

and the constraints (5-3)-(5-5) are dynamic constraints, which mean that the system 

states can violate the steady state limits for a short period of time and return to and 

remain within the limits within a recovery time. The maximum allowed frequency and 

voltage transient recovery times were 2 seconds as given in [17]. 

 The notional all-electric ship power system used to study the MVAC multi-agent 

system is discussed in detail in Appendix B.2. The parameters and mathematical models 

of the MTG and ATG agents, propulsion load agent, and pulse load agent are given in 

Appendices A.1-3. Since the system losses agent is only used to calculate the available 
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power for the DC zone system, the system losses agent was not included in the MVAC 

multi-agent system case studies. 

 In the case studies, the pulse loads had different ramp rates, pulse widths, and 

pulse magnitudes for each case study. Figure 5.4 shows a typical pulse load waveform. 

The ramp rate of a pulse load is defined as (5-6). 

tP Δ= /load pulse of rateramp pulse                                         (5-6) 

where, pulseP  is the pulse load power rating, and tΔ  is the increase time of the pulse. 

 
 

pulseP

pulseT

tΔ  
 

Figure 5.4 Diagram of a typical pulse load waveform 
 
 
 

5.3.1.1 MVAC multi-agent system – case study I 

 In this case study, a pulse load with a 15 MW power magnitude and 2 seconds 

pulse width was used, and the ramp rate of the pulse load was 150 MW/sec. The pulse 

load was served at 30 seconds and the propulsion load demand was 21 MW. The steady 

state and dynamic state voltage constraints for the propulsion load and frequency 

constraints for the MTG generator were used to evaluate the performance of the new 

real-time load management technique. 
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 The pulse load demand is shown in Figure 5.5. The actual power demand of the 

pulse load tracked the desired power demand very well. The cruising speed of the ship 

was 27 knots. The ship speed was increased from 0 to 27 knots in the first 20 seconds of 

the simulation with full propulsion power to accelerate the ship, which is shown in 

Figure 5.6. The ship speed reached steady state at 20 seconds. The ship speed decrease 

caused by the pulse load demand at 30 seconds is shown in Figure 5.7. The ship speed 

decrease was only 1.1 knots. 

 When the pulse load was served at 30 seconds, the ship speed was decreased 

because the propulsion load demand was reduced to compensate for the impact of the 

pulse load on the power quality of the all-electric ship power system. The power demand 

and set-point of the propulsion load are shown in Figure 5.8. From 0 to 20 seconds, the 

propulsion load demand was 35.5 MW to drive the ship speed to the desired speed 

quickly, and then the propulsion load demand decreased to 21 MW to maintain the 

ship’s speed at 27 knots in steady state. When the pulse load was served at 30 seconds, 

the propulsion load was decreased to reduce the frequency and voltage oscillations 

caused by the pulse load. The output powers of the MTG and ATG generators are shown 

in Figure 5.9. The spikes in the output power signals were caused by disturbances of the 

pulse load, which caused small frequency oscillations. Due to the compensation of the 

propulsion load, the generator output powers were kept constant expect some transient 

times.  

 The frequency behavior of the MTG generator is shown in Figure 5.10. The 

frequency changes from 20 to 25 seconds were caused by the decrease of the propulsion 
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load demand. When the propulsion load reached steady state, the frequency gradually 

converged to 60 Hz. The maximum frequency deviation caused by the pulse load was 

0.7 Hz, which was much less than the steady state frequency tolerance 1.8 Hz (3% of the 

nominal value). The output voltages of the MTG and ATG generators are shown in 

Figure 5.11. The maximum output voltage deviations of MTG and ATG generators were 

much less than the steady state voltage tolerance, which is 5% of the nominal value. The 

input voltage of the propulsion load is shown in Figure 5.12. The propulsion load input 

voltage was disturbed at 30 seconds due to the propulsion load compensation. The input 

voltage deviation of the propulsion load was less than the steady state voltage tolerance.  

 
 

0 10 20 30 40 50 60
0

5

10

15

20

time (sec)

Pu
ls

e 
lo

ad
 d

em
an

d 
(M

W
)  

 

 

Desired pulse load demand
Actual pulse load demand

32

  
 

Figure 5.5 Desired and actual power demands of the pulse load in MVAC multi-agent system – case study 
I 
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Figure 5.6 Desired ship speed and actual ship speed in MVAC multi-agent system – case study I 
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Figure 5.7 Ship speed decrease due to the pulse load in MVAC multi-agent system – case study I 
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Figure 5.8 Power demand and set-point of the propulsion load in MVAC multi-agent system – case study 
I 
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Figure 5.9 MTG and ATG output powers in MVAC multi-agent system – case study I 
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Figure 5.10 Frequency behavior of the MTG generator in MVAC multi-agent system – case study I 
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Figure 5.11 MTG and ATG output voltages in MVAC multi-agent system – case study I 
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Figure 5.12 Propulsion load input voltage in MVAC multi-agent system – case study I 
 
 
 

 To show the advantages of the MVAC multi-agent system, the dynamic 

performance of the frequency of the MVAC system without the application of real-time 

load management was also studied. The frequency behavior of the MTG generator with 

and without real-time load management is shown in Figure 5.13. The maximum 

frequency deviation of the MTG generator without real-time load management was 2 

Hz, which was larger than the steady state frequency tolerance 1.8 Hz. The steady state 

frequency constraint was violated if the real-time load management technique was not 

applied. The maximum frequency deviation of the MTG generator with real-time load 

management was much less than the deviation without real-time load management, 

which means that the new real-time load management technique reduced the frequency 

deviation when a pulse load was served.  
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Figure 5.13 Frequency behavior of the MTG generator with and without the application of real-time load 
management in MVAC multi-agent system – case study I 

 
 
 

 In this case study, a pulse load with 15 MW pulse magnitude and 2 seconds pulse 

width was used to study the effectiveness of the new real-time load management 

technique. The propulsion load demand was 21 MW, which was larger than the pulse 

load demand. Thus, load changes caused by the pulse load were fully compensated by 

the propulsion load. The frequency deviation of the MTG generator and the voltage 

deviation of the propulsion load were less than the steady state tolerances. The 

simulation results indicated that the dynamic performance of the MVAC system was 

significantly improved by using this real-time load management technique. 

5.3.1.2 MVAC multi-agent system – case study II 

 In this case study, another pulse load with a 35 MW rated power and 2 seconds 

pulse width was studied, and the ramp rate of the pulse load was 350 MW/sec. The pulse 

load was served at 30 seconds and the propulsion load demand was 21 MW. The 

cruising speed of the ship was 27 knots. The steady state and dynamic state voltage 
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constraints for the propulsion load and frequency constraints for the MTG generator 

were used to evaluate the performance of the new real-time load management technique. 

 The pulse load demand is shown in Figure 5.14. The actual pulse load demand 

tracked the desired value very well. The speed behavior of the ship is shown in Figure 

5.15. The ship speed decrease at 30 seconds caused by the pulse load is shown in Figure 

5.16. The ship speed decrease was 3.0 knots, which was greater than the speed decrease 

in MVAC multi-agent system – case study I. 

 The propulsion load demand is shown in Figure 5.17. When the pulse load was 

connected to the system at 30 seconds, the power set-point of the propulsion load was 

decreased quickly to decrease the propulsion load demand. When the pulse load was 

disconnected from the system at 32 seconds, the power set-point of the propulsion load 

was increased quickly to increase the propulsion load demand. The oscillations in the 

propulsion load demand were caused by the frequency regulation controller in the 

propulsion load agent, which could drive the system frequency to 60 Hz quickly. 

 The propulsion load demand in steady state was 21 MW, which was less than the 

rated power of the pulse load. Thus, the propulsion load could not fully compensate for 

the load changes caused by the pulse load, which caused significant frequency 

oscillations, as shown in Figure 5.18. The maximum frequency deviation caused by this 

pulse load was 2.4 Hz, which was much greater than the maximum frequency deviation 

of 0.7 Hz in MVAC system in the case study I. The frequency deviation of the MTG 

generator violated the steady state frequency tolerance 1.8 Hz, but the recovery time was 
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less than 0.3 second, which was less than the maximum allowed transient recovery time 

2 seconds. Thus, the behavior of the MTG frequency was acceptable in this case. 

 The input voltage of the propulsion load is shown in Figure 5.19. The propulsion 

load input voltage was disturbed at 30 seconds due to the propulsion load compensation. 

The maximum voltage deviation was 7%, which was larger than the steady state voltage 

tolerance. The maximum voltage deviation was less than the transient voltage tolerance, 

which was equal to 16% of the nominal value. And the recovery time of the propulsion 

load voltage was 0.2 seconds, which was less than the maximum allowed transient 

recovery time 2 seconds. Thus, the behavior of the input voltage of the propulsion load 

was acceptable in this case. 

 Simulation results indicated that if the propulsion load demand was less than the 

power rating of the pulse load, the MVAC multi-agent system had limitations to mitigate 

frequency oscillations caused by the pulse load. The steady state tolerances of the 

propulsion load voltage and the MTG generator frequency were violated in this case, but 

the propulsion load voltage and the MTG generator frequency returned to and remained 

within the tolerances within a maximum allowed transient recovery time (2 seconds). In 

this case, the dynamic performance of the MVAC multi-agent system was still 

acceptable based on the power quality requirements for shipboard power systems in the 

IEEE-STD-45 [17]. 
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Figure 5.14 Desired and actual power demands of the pulse load in MVAC multi-agent system – case 
study II 
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Figure 5.15 Desired ship speed and actual ship speed in MVAC multi-agent system – case study II 
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Figure 5.16 Ship speed decrease due to the pulse load in MVAC multi-agent system – case study II 

3 knots 



 

 

185

0 10 20 30 40 50 60
0

10

20

30

40

50

time (sec)

Pr
op

ul
si

on
 lo

ad
 d

em
an

d 
(M

W
)

 

 

Power set-point of propulsion load

Propulsion load demand

32

 
 

Figure 5.17 Power set-point and actual power demand of the propulsion load in MVAC multi-agent 
system – case study II 
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Figure 5.18 Frequency behavior of the MTG generator in MVAC multi-agent system – case studies I and 
II 
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Figure 5.19 Propulsion load input voltage in MVAC multi-agent system – case study II 
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5.3.1.3 MVAC multi-agent system – case study III 

 In this case study, the behavior of the MVAC multi-agent system for the dynamic 

cable constraint for the pulse load is illustrated. The AC cable connecting the MTG 

generator bus and the pulse load is shown in Figure 5.3. It was assumed that the pulse 

load had two pulses, and the pulse magnitude was 35 MW with 8 seconds pulse width. 

The first pulse was from 30 to 38 seconds, and the second pulse was from 50 to 58 

seconds. The ramp rate of the pulse load was 350 MW/sec.  

 The dynamic cable constraint that was used is shown in (5-7). The dynamic cable 

constraint considers a time horizon T, and the total violation time of the cable ampacity 

constraint should be no larger than the maximum allowed time 1T . If the total violation 

time is larger than 1T , the pulse load needs to be disconnected immediately to satisfy the 

dynamic cable constraint. 

[ ] 1
Ampacity
pulsepulse ))(sgn(15.0 TdtItIt

Tt i ≤−Δ+⋅∫ −
                              (5-7) 

where, T was chosen as 10 seconds; 1T  was chosen as 5 seconds; Ampacity
pulseI  was chosen as 

500 A; and )(pulse itI Δ  was the current on the cable. If the dynamic constraint was 

violated, the switch to the pulse load would set open to satisfy the dynamic cable 

constraint.  

 For the case study, when the pulse load was served in the MVAC system at 30 

seconds, the cable current was greater than 500 A. Thus, the pulse load could only be 

served for 5 seconds, as shown in Figure 5.20. At 35 seconds, the switch to the pulse 

load was set to open to satisfy the dynamic cable constraint. The second pulse happened 
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at 50 seconds. And the switch to the pulse load was set to open at 55 seconds to satisfy 

the dynamic cable constraint, as shown in Figure 5.20.  

 The dynamic cable constraint is illustrated in Figure 5.21. When the pulse load 

was served at 30 seconds, the value of [ ]dtItIt

Tt i∫ −
−Δ+⋅ ))(sgn(15.0 Ampacity

pulsepulse  began to 

increase from 0 and the value hit the limit at 35 seconds, which caused the pulse load to 

be disconnected from the system. From 35 to 40 seconds, the pulse load was not allowed 

to be served. At 40 seconds, the value of [ ]dtItIt

Tt i∫ −
−Δ+⋅ ))(sgn(15.0 Ampacity

pulsepulse  began 

to decrease from 5 and the value reached 0 at 45 seconds. The second pulse happened at 

50 seconds, and the behavior of the second pulse was the same as the first one. 

 The propulsion load demand is shown in Figure 5.22. When the pulse load was 

connected to the system, the propulsion load demand was decreased to compensate for 

the power demand of the pulse load. In this case, the rated power of the pulse load was 

greater than the propulsion load demand. When the pulse load was served in the system, 

the propulsion load demand was decreased to 0 to compensate for the pulse load 

demand.  

 The frequency behavior of the MTG generator is shown in Figure 5.23. The 

frequency decrease caused by the connection of the pulse load was 1.3 Hz, as shown in 

Figure 5.23. This frequency decrease was less than the steady state frequency tolerance. 

When the switch to the pulse load was opened, the maximum frequency deviation was 

2.1 Hz, as shown in Figure 5.23. The frequency deviation was greater than the steady 

state frequency tolerance, but the transient recovery time of the MTG generator 
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frequency was 0.2 seconds, which was less than the maximum allowed transient 

recovery time. Thus, the performance of the MTG frequency was acceptable in this case.  

 The input voltage of the propulsion load is shown in Figure 5.24. The maximum 

voltage deviation was 5.45% of the nominal value, which was greater than the steady 

state voltage tolerance. However, the recovery time of the voltage was 0.1 second, which 

was much less than the maximum allowed transient recovery time 2 seconds. Thus, the 

dynamic behavior of the propulsion load input voltage was acceptable in this case. 

 The ship speed is shown in Figure 5.25. Even though the propulsion load demand 

was decreased to 0 when the pulse load was served, the ship speed was decreased slowly 

due to the large inertia of the ship. When the pulse load was served from 30 to 35 

seconds, the ship speed was decreased from 27 to 20 knots due to the decrease of the 

propulsion load demand. The speed was increased to 25 knots before the second pulse 

happened. Due to the second pulse, the ship speed was decreased to 19 knots at 55 

seconds, as shown in Figure 5.26. 
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Figure 5.20 Pulse load demand in MVAC multi-agent system – case study III 
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Figure 5.21 Diagram of the dynamic cable constraint in MVAC multi-agent system – case study III 
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Figure 5.22 Propulsion load demand in MVAC multi-agent system – case study III 
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Figure 5.23 Frequency behavior of the MTG generator in MVAC multi-agent system – case study III 
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Figure 5.24 Propulsion load input voltage in MVAC multi-agent system – case study III 
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Figure 5.25 Desired ship speed and actual ship speed in MVAC multi-agent system – case study III 
 
 
 

5.3.2 DC zone multi-agent system case studies 

 In the DC zone multi-agent system studies, the diagram of a simplified notional 

all-electric ship power system simulation model for DC zone multi-agent system is 

shown in Figure 5.26, and the simulation step size τΔ  was chosen as 12 microseconds 

in the PSCAD simulation. The system consisted of two identical DC zones. The load 

definitions in one DC zone are shown in Table 5.1. It was assumed that only one ATG 

generator was in service, so the total generation capacity was 4 MW. It was also  
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Figure 5.26 Diagram of a simplified notional all-electric ship power system simulation model for DC zone multi-agent system 
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assumed that the propulsion load was out of service and a pulse load was served in the 

MVAC system at certain times of simulation. The notional all-electric ship power 

system used to study the DC zone multi-agent system is discussed in details in Appendix 

B.3. The agents in DC zones are discussed in Appendices A.4-A.7. 

 
 

Table 5.1 Load definitions in one DC zone for the DC zone multi-agent system case studies 
 

Component name Priority Rating (kW) Voltage (V) Switch Board Load type 
constant load 1 semi-vital 115.4 375 port variable 
constant load 2 non-vital 72 375 port variable 

DC motor 1 non-vital 36 375 port fixed 
constant load 3 vital 151.4 375 starboard variable 
constant load 4 semi-vital 70 375 starboard variable 

DC motor 2 semi-vital 115.4 375 starboard fixed 
DC motor 3 semi-vital 115.4 650 port fixed 
DC motor 4 non-vital 36 650 port fixed 

constant load 5 semi-vital 115.4 650 port variable 
DC motor 5 semi-vital 115.4 650 starboard fixed 
DC motor 6 semi-vital 47.6 650 starboard fixed 

constant load 6 semi-vital 22 650 starboard variable 
constant load 7 non-vital 199 650 starboard variable 

AC motor 1 vital 181 450 port fixed 
constant load 8 vital 42.6 450 port variable 

AC motor 2 semi-vital 79.4 450 port fixed 
constant load 9 semi-vital 40 450 port variable 

constant load 10 non-vital 85 450 port variable 
constant load 11 semi-vital 119.6 450 starboard variable 
constant load 12 non-vital 177 450 starboard variable 

AC motor 3 non-vital 192.6 450 starboard fixed 
AC motor 4 non-vital 115.4 450 starboard fixed 

 
 
 
 The operational constraints of the DC zone multi-agent system used in the case 

studies are shown in (5-8)-(5-11). 

Totali iiin PtxV ≤∑ = − )(12
1                                                   (5-8) 

Capacity
1PCM4

9
7

3
1 )()( −= −= − ≤+ ∑∑ PtxVtxV i iiini iiin                                    (5-9) 

Capacity
2PCM4

12
10

6
4 )()( −= −= − ≤+ ∑∑ PtxVtxV i iiini iiin                                 (5-10) 
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)(min tVV kk ≤                                                      (5-11) 

where, iinV −  and ix  are the input voltage and current of the ith DC-DC converter, 

respectively; TotalP  is the power available to the DC zone system; Capacity
1PCM4−P  and Capacity

2PCM4−P  

are the power capacity of PCM4-1 and PCM4-2, respectively; )(tVk  and min
kV  are the 

input voltage and the minimum allowed input voltage of motor load k, respectively. 

 The two DC zones served 44 loads with various priorities and power ratings. The 

parameters of the converter agent model and motor agent model are shown in Tables 5.2 

to 5.3. The equivalent inductor and capacitor of each constant load agent were chosen as 

0.005 H and 0.0002 F, respectively. The parameters of the converter agent models as 

shown in (4-26) and motor agent models as shown in (4-45) and (4-46) are given in 

Tables 5.2 and 5.3. The parameters of the cooperative controllers as shown in (4-39), (4-

55), (4-58) and (4-61) were chosen as follows. 

101 =k , 1002 =k , 70001 =K , 70002 =K , 5
5 10=K , 3001 =C , 102 =C , 

8
vital 10=W , 7

vital-semi 10=W , 1vitalnon =−W , 100=kγ ,  MW2Capacity
1PCM4 =−P , MW2Capacity

2PCM4 =−P  

where, vitalW , vital-semiW , and vitalnon−W  are weight-factors of vital, semi-vital, and non-vital 

loads, respectively. The minimum allowed input voltage for each motor was chosen as 

95% of its nominal voltage. In the case studies, each fixed-type load was either served at 

its maximum power rating or was not be served at all; each variable-type load was 

quantized based on 10 amperes current rating, which means that the load current could 

only be multiple of 10 amperes. 
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Table 5.2 Parameters of converter agents in the DC zone multi-agent system 
 

Parameters L (mH) C (μF) d 
375 V DC converter 234 1000 0.375 
650 V DC converter 228 1000 0.65 
800 V DC converter 160 1000 0.8 

 
 
 

Table 5.3 Parameters of motor load agents in the DC zone multi-agent system 
 

Component name Kd T1 T2 
DC motor 1 1 0.2203 0.01 
DC motor 2 1 0.3289 0.01 
DC motor 3 1 0.3648 0.01 
DC motor 4 1 0.2203 0.01 
DC motor 5 1 0.3648 0.01 
DC motor 6 1 0.3123 0.01 
AC motor 1 1 0.1789 0.002 
AC motor 2 1 0.2763 0.0116 
AC motor 3 1 0.3394 0.0105 
AC motor 4 1 0.3 0.02 

 
 
 
5.3.2.1 DC zone system – case study I 

 In this case study, a pulse load with a 1.2 MW power rating and 5 seconds pulse 

width was served in the MVAC system. Ramp rate of the pulse load was 10 MW/sec. 

The pulse load demand is shown in Figure 5.27. The pulse load was served from 3 to 8 

seconds, which changed the power available to the DC zone system.  

 The available power and total load demand of the DC zone system are shown in 

Figure 5.28. At 3 seconds, the power available to the DC zone system was decreased due 

to the connection of the pulse load; the total load demand of the DC zone system was 

also decreased immediately to track the available power. At 8 seconds, the power 

available to the DC zone system was increased due to the disconnection of the pulse 

load; the total load demand in the DC zone system was increased slowly to track the 
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available power, since the load demand of AC and DC motor loads was increased 

gradually when these loads were connected.  

 The frequency behavior of the ATG generator is shown in Figure 5.29. The 

frequency oscillations at 3 and 8 seconds were caused by the sudden load changes in the 

DC zone system. At 8 seconds, large oscillations appeared due to the mismatch of the 

available power and the total load demand in the DC zone system. The DC zone system 

included AC and DC motors, which take several seconds to reach steady state. 

Moreover, the DC zone multi-agent system is also a dynamic system, which takes 

several seconds to reach steady state after large disturbances. The maximum frequency 

deviation was 0.75 Hz, which was also less than the steady state frequency tolerance. 

Thus, the dynamic behavior of the ATG frequency was good enough based on the 

frequency requirements in IEEE-STD-45. 

 The output power of the ATG generator is shown in Figure 5.30. When the 

power demand of the pulse load was increased or decreased, the output power of the 

ATG generator included some oscillations. Input power of PCM4-1 and PCM4-2 is 

shown in Figure 5.31, which indicates that the input power of each PCM4 was always 

less than its 2 MW power capacity by using the cooperative controller. The output 

voltages of DC-DC converters of port side PCM1 in DC zone 1 are shown in Figure 

5.32. Since output voltages of DC-DC converters are controlled by local voltage 

regulators, the voltages were well maintained at nominal values - except when load 

changes happened. The motor input voltage constraints were also satisfied, since the 

voltage decrease was much less than 5% of the nominal value. 
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 The power demand of some individual loads served by port side PCM1 in DC 

zone 1 is shown in Figure 5.33. When the power available to the DC zone system 

decreased due to the pulse load connection, the switches to some fixed-type non-vital 

loads were opened and the set-points of some variable-type non-vital loads were 

decreased, which decreased the total load demand in the DC zone system to track the 

available power; when the power available to the DC zone system increased due to the 

disconnection of the pulse load, these disturbed fixed-type non-vital loads were 

reconnected to the system and the set-points of these variable-type non-vital loads were 

increased, which increased the total load demand in the DC zone system to track the 

available power. 

 As shown in Figure 5.33, AC motor 1 was always served due to its higher 

priority; constant load 1 was a variable-type semi-vital load, which was disturbed for a 

short period of time when the power available to the DC zone system was decreased; and 

DC motor 1 was a fixed-type non-vital load, which was disconnected when the available 

power decreased and reconnected when the available power increased. 

 The power demand of some individual loads served by starboard side PCM1 in 

DC zone 1 is shown in Figure 5.34. When the power available to the DC zone system 

was decreased, the power demand of constant loads 4, 7, and 12 was decreased to reduce 

the total load demand in the DC zone system. Constant load 3 was a vital load, which 

was always served. DC motor 2 was a semi-vital load, which was always served. 

 Input voltages of PCM4-1 and PCM4-2 are shown in Figure 5.35. The voltage 

oscillations at 3 and 8 seconds were caused by pulse load changes. At 3 and 8 seconds, 
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the voltage deviations were less than 5% of the nominal value, which is the steady state 

voltage tolerance in IEEE-STD-45 [17]. The output voltage of the ATG generator also 

included voltage oscillations when the pulse load was connected or disconnected, as 

shown in Figure 5.36. The ATG voltage also satisfied the voltage requirements in IEEE-

STD-45. 

 In this case study, a pulse load in the MVAC system was served, which changed 

the available power to the DC zone system. The heterogeneous multi-agent system 

cooperative controller was used to control each fixed-type or variable-type load to 

achieve dynamic balancing subject to PCM4 capacity constraints and motor input 

voltage constraints. The simulation results indicated that the total load demand in the DC 

zone system tracked the available power quickly, and the PCM4 capacity constraints and 

motor input voltage constraints were always satisfied in operational real time. The higher 

priority loads were served before lower priority loads. 
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Figure 5.27 Power demand of the pulse load in the MVAC system in DC zone multi-agent system – case 
study I 
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Figure 5.28 Available power and actual power demand of the DC zone system in DC zone multi-agent 
system – case study I 
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Figure 5.29 Frequency behavior of the ATG generator during disturbances of the pulse load in DC zone 
multi-agent system – case study I 
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Figure 5.30 Output power of the ATG generator in DC zone multi-agent system – case study I 
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Figure 5.31 Input powers to PCM4-1 and PCM4-2 in DC zone multi-agent system – case study I 
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Figure 5.32 Output voltages of DC-DC converters of port side PCM1 in DC zone 1 in DC zone multi-
agent system – case study I 
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Figure 5.33 Power demand of some individual loads on port side of DC zone 1 in DC zone multi-agent 
system – case study I 
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Figure 5.34 Power demand of some individual loads on starboard side of DC zone 1 in DC zone multi-
agent system – case study I 
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Figure 5.35 Input voltages of PCM4-1 and PCM4-2 in DC zone multi-agent system – case study I 
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Figure 5.36 The output voltage of the ATG generator during disturbances of the pulse load in DC zone 
multi-agent system – case study I 

 
 
 

5.3.2.2 DC zone multi-agent system – case study II 

 In DC zone – case study I, only pulse load demand was varied to change the 

power available to the DC zone system. In this case study, both pulse load demand and 

individual load demand in the DC zones were varied to study the dynamic performance 

of the new real-time load management method. The pulse load had a 5 seconds pulse 

with 0.8 MW magnitude. The ramp rate of the pulse load was 10 MW/sec. The pulse 
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load was served from 3 to 8 seconds, as shown in Figure 5.37. In DC zone 2, the switch 

status of five loads was changed to vary the total load demand in the DC zone system, as 

shown in Table 5.4. Each load was served at its maximum power rating when the load 

switch was closed; otherwise, the load was not served. 
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Figure 5.37 Power demand of the pulse load in the MVAC system in DC zone multi-agent system – case 
study II 

 
 
 

Table 5.4 Switch status of five loads in DC zone 2 
 

Component name Switch closed Switch open 
DC motor 1 4 – 9 sec 0 – 4 sec; 9 – 12 sec 
DC motor 4 5 – 11 sec 0 – 5 sec; 11 – 12 sec 
AC motor 3 3 – 10 sec 0 – 3 sec; 10 – 12 sec 

Constant load 4 2 – 7 sec 0 – 2 sec; 7 – 12 sec 
Constant load 10 1 – 8 sec 0 – 1 sec; 8 – 12 sec 

 
 
 

 The available power and total load demand of the DC zone system are shown in 

Figure 5.38. The total load demand tracked the available power very well. When the 

pulse load was not served, the available power was greater than the total load demand. 

Since all the loads served by PCM4-1 already reached their maximum power and the 
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input power to PCM4-2 reached the power capacity of the PCM4, as shown in Figure 

5.39, the total load demand in the DC zone system reached the maximum power. 

 The total load demand changes happened at 2 and 7 seconds, as shown in Figure 

5.38, caused by load changes in DC zone 2. At 2 seconds, constant load 4 served by 

starboard side PCM1 in DC zone 2 was connected to the system, which caused the total 

load demand oscillations. At 7 seconds, constant load 4 served by starboard side PCM1 

in DC zone 2 was disconnected. Since the total load demand should be less than the 

available power, some other loads were disturbed when the constant load 4 was 

connected. 

 The frequency behavior of the ATG generator is shown in Figure 5.40. The 

frequency oscillations were caused by the sudden load changes in the system. The 

maximum frequency deviation was 0.9 Hz, which was much less than the steady state 

frequency tolerance (3% of the nominal value) as given in IEEE-STD-45. The output 

voltages of DC-DC converters of port side PCM1 in DC zone 1 are shown in Figure 

5.41. Each motor input voltage decrease was much less than 5% of the nominal value. 

 The power demand of some individual loads in DC zone 1 is shown in Figures 

5.42 and 5.43. When load changes happened in DC zone 2, the power demand in DC 

zone 1 was also dynamically changed by using the real-time load management method to 

achieve the dynamic balancing while satisfying operational constraints of the system and 

considering load priorities.  

 In this case study, both pulse load demand and DC zone load demand were 

varied to study the dynamic performance of the new multi-agent system-based real-time 
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load management method. The developed cooperative controller dynamically regulated 

the power set-point of variable-type loads and the switch status of fixed-type loads to 

achieve dynamic balancing when load changes happened. The operational constraints of 

the system were also satisfied in operational real time. 
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Figure 5.38 Total load demand and available power of the DC zone system in DC zone multi-agent 
system – case study II 
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Figure 5.39 Input power of PCM4-1 and PCM4-2 in DC zone multi-agent system – case study II 
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Figure 5.40 Frequency behavior of the ATG generator in DC zone multi-agent system – case study II 
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Figure 5.41 Output voltages of port side PCM1 in DC zone 1 in DC zone multi-agent system – case study 
II 
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Figure 5.42 Power demand of some individual loads on port side of DC zone 1 in DC zone multi-agent 
system – case study II 
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Figure 5.43 Power demand of some individual loads on starboard side of DC zone 1 in DC zone multi-
agent system – case study II 

 
 
 

5.3.3 Coordination of MVAC and DC zone multi-agent systems – coordination case 

study 

 In the study for coordination of the MVAC and DC zone multi-agent systems, 

the simulation step size was chosen as 15 microseconds in the PSCAD simulation. The 

diagram of a simplified notional all-electric ship power system simulation model for 

coordination of MVAC and DC zone multi-agent systems is shown in Figure 5.44. The 

simulation duration was 50 seconds. Two DC zones were included in the simulation. 

Both the MTG and ATG generators were in service. The total generation capacity was 

40 MW. It was assumed that the ship operated in cruise mode from 0 to 30 seconds. At 

30 seconds, the operation mode was switched from cruise mode to battle mode until the 

end of the simulation at 50 seconds. It was also assumed that the cruising speed of the 
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ship was 27 knots. The propulsion load demand at this cruising speed was 21 MW. A 

pulse load was served from 30 to 35 seconds. The magnitude and ramp rate of the pulse 

load were 36 MW and 100 MW/sec, respectively, which is shown in Figure 5.45. This 

pulse magnitude was extremely large, which was 90% of the total generation capacity.  

 The operational constraints for the MVAC multi-agent system included (5-1)-(5-

5) and operational constraints for the DC zone multi-agent system included (5-8)-(5-11). 

The parameters of the MVAC and DC zone multi-agent systems in the coordination case 

study were the same as the parameters in MVAC case studies as shown in section 5.3.1 

and DC zone case studies as shown in section 5.3.2. The notional all-electric ship power 

system used to study the coordination of the two multi-agent systems is discussed in 

details in Appendix B.4. 

 When the pulse load was served from 30 to 35 seconds, the ship speed was 

decreased from 27 to 20 knots, as shown in Figure 5.46. The propulsion load demand, as 

shown in Figure 5.47, was decreased to compensate for the load changes in the system 

caused by the pulse load.  
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Figure 5.44 Diagram of a simplified notional all-electric ship power system simulation model for coordination of MVAC and DC zone multi-agent 
systems 
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 The frequency behavior of the MTG generator is shown in Figure 5.48. The 

frequency drop caused by the connection of the pulse load was 1.9 Hz, which was less 

than the transient frequency deviation tolerance 2.4 Hz (4% of the normal value). When 

the pulse load was disconnected from the system, the frequency deviation was 2.9 Hz, 

which was greater than the transient frequency deviation tolerance. The transient 

recovery time of the MTG frequency was less than the maximum allowed transient 

recovery time, which is 2 seconds. Thus, the frequency of the MTG generator did not 

satisfy the frequency requirements in IEEE-STD-45. 

 When the pulse load was served, the available power to the DC zone system was 

also decreased, as shown in Figure 5.49. When the available power signal was 

decreased, the actual load demand was also reduced using the DC zone multi-agent 

system to follow the available power signal. At 35 seconds, the pulse load was 

disconnected, which increased the available power to the DC zone system, as shown in 

Figure 5.49. The actual load demand was regulated to follow the available power signal 

gradually. Input powers to PCM4-1 and PCM4-2 are shown in Figure 5.50. The PCM4 

power capacity constraint was always satisfied.  

 In this case study, the coordination study of MVAC and DC zone multi-agent 

systems is presented. A 36 MW pulse load was served to verify the effectiveness of the 

real-time load management technique in this extreme case. When the pulse load was 

served, the propulsion load and lower priority service loads in DC zones were 

interrupted immediately to compensate the impact of the pulse load on the power quality 
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of the all-electric ship power system. The ship speed was decreased by around 7 knots 

due to the interruption of the pulse load. 
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Figure 5.45 Power demand of the pulse load in the coordination case study 
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Figure 5.46 Desired ship speed and actual ship speed in the coordination case study 
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Figure 5.47 Propulsion load demand in the coordination case study 
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Figure 5.48 Frequency behavior of the MTG generator in the coordination case study 
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Figure 5.49 Available power and actual power demand of the DC zone system in the coordination case 
study 
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Figure 5.50 Input powers to PCM4-1 and PCM4-2 in the coordination case study 
 
 
 

5.4  Performance Analysis  

 To evaluate the dynamic performance of the developed multi-agent system 

framework, two metrics [95] were used as defined in (5-12). 
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The first metric, 1J , was used to evaluate the convergence time of a system state, which 

is shown in Figure 5.51(a). ε  is an error tolerance. This metric was used to measure the 

convergence time of a system state after a disturbance happens. As shown in Figure 

5.51(a), after the disturbance happens at 0t , the trajectory moves outside the tolerance 

boundary and the trajectory gradually converges inside the tolerance boundary at 1t . The 

second metric, 2J , was used to evaluate the maximum deviation of a system state from 

its desired value, which is shown in Figure 5.51(b). 
∞

)(ty  is the infinity norm of signal 

)(ty . As shown in Figure 5.51(b), the trajectory includes oscillations after a system 
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disturbance, and this metric is used to measure the maximum deviation of the oscillation 

signal.  
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Figure 5.51 Performance metrics for the multi-agent system. (a) Performance metric for convergence 
time, (b) Performance metric for maximum deviation 
 
 
 
5.4.1 Performance analysis – MVAC multi-agent system 

 In the MVAC multi-agent system performance analysis, the diagram of the 

simplified notional all-electric ship power system simulation model for MVAC multi-
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agent system is shown in Figure 5.3, which is the same as the system used in MVAC 

multi-agent system case studies in section 5.3.1. Three scenarios were used to evaluate 

the dynamic performances of the MVAC multi-agent system using the two metrics. In 

the scenario, it was assumed that the MTG and ATG generators were both available, so 

the total generation capacity was 40 MW. DC zone details were neglected and each DC 

zones was represented by a constant resistive load. The simulation step size was 40 

microseconds and the simulation duration was 60 seconds. The notional all-electric ship 

power system used for the performance analysis for the MVAC multi-agent system is 

discussed in detail in Appendix B.2. The parameters and mathematical models of the 

MTG and ATG agents, propulsion load agent, and pulse load agent are given in 

Appendices A.1-A.3. The operational constraints of the MVAC system used in the three 

scenarios are shown in (5-1)-(5-5). 

 In Scenario I, the propulsion load demand was 21 MW and the cruising speed 

was 27 knot. Twelve pulse loads with different power ratings and pulse widths were 

used. The power ratings of pulse loads were in the range of 5 to 15 MW. In this scenario, 

the propulsion load could fully compensate for the pulse load demand and the dynamic 

behaviors of the MVAC multi-agent system were studied. In Scenario II, the propulsion 

load demand was decreased to 10.5 MW and the cruising speed was 22 knots. The power 

ratings of pulse loads were also in the range of 5 to 15 MW. In this scenario, the 

propulsion load could not fully compensate for the pulse load demand and the dynamic 

behaviors of the MVAC multi-agent system were studied. In Scenario III, the power 

ratings of pulse loads were 35 MW, which were extremely high compared with the total 
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generation capacity. In this scenario, the pulse load demand was very close to the 

generation capacity, and the performance of the MVAC multi-agent system was 

explored in extreme cases.  

5.4.1.1 MVAC multi-agent system – Scenario I 

 Twelve case studies were simulated in this scenario. The pulse load was served at 

30 seconds. The power ratings, pulse widths, and ramp rates of the pulse load in this 

scenario are summarized in Table 5.5. The propulsion load demand was 21 MW in 

steady state to maintain the cruising speed at 27 knots. The power ratings of pulse loads 

were 5, 10, or 15 MW, which were less than the propulsion load demand. Thus, the 

propulsion load could fully compensate for the pulse load demand in this scenario. 

 
 

Table 5.5 Summary of the pulse load in MVAC multi-agent system – Scenario I 
 

Case No. Pulse magnitude 
(MW) 

Pulse width 
(sec)  

Ramp rate 
(MW/sec) 

Propulsion load 
demand (MW) 

1 5 1 100 21 
2 5 2 100 21 
3 5 3 100 21 
4 5 5 100 21 
5 10 1 100 21 
6 10 2 100 21 
7 10 3 100 21 
8 10 5 100 21 
9 15 1 150 21 

10 15 2 150 21 
11 15 3 150 21 
12 15 5 150 21 

 
 
 
 In cases 1-4, the power rating of each pulse load were 5 MW and the pulse 

widths were 1, 2, 3, and 5 seconds, respectively. In case 1, the pulse load and propulsion 

load demands are shown in Figure 5.52. In this case, the pulse width was 1 second and 
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the pulse load was served from 30 to 31 seconds. In case 2, the pulse load and propulsion 

load demands are shown in Figure 5.53. In this case, the pulse width was 2 seconds and 

the pulse load was served from 30 to 32 seconds. In case 3, the pulse load and propulsion 

load demands are shown in Figure 5.54. In this case, the pulse width was 3 seconds and 

the pulse load was served from 30 to 33 seconds. In case 4, the pulse load and propulsion 

load demands are shown in Figure 5.55. In this case, the pulse width was 5 seconds and 

the pulse load was served from 30 to 35 seconds. 
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Figure 5.52 Pulse load and propulsion load demands in case 1 of MVAC multi-agent system – Scenario I 
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Figure 5.53 Pulse load and propulsion load demands in case 2 of MVAC multi-agent system – Scenario I 
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Figure 5.54 Pulse load and propulsion load demands in case 3 of MVAC multi-agent system – Scenario I 
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Figure 5.55 Pulse load and propulsion load demands in case 4 of MVAC multi-agent system – Scenario I 
 
 
 
 Comparison of the MTG generator frequency with 5 MW pulse loads with 

different pulse widths is shown in Figure 5.56. In this scenario, we mainly focus on the 

system frequency when the pulse load was connected or disconnected, so the frequency 

signal was plotted from 25 to 40 seconds. The connection and disconnection of the pulse 

load caused frequency oscillations. The deviation magnitude of each frequency signal 

was much less than the steady state frequency tolerance, which was 1.8 Hz. The ship 

speeds of cases 1 to 4 are shown in Figure 5.57. In this scenario, we mainly focus on the 
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ship speed decrease after the disturbance of the pulse load, so the ship speed was plot 

from 25 to 60 seconds. When the pulse load was served at 30 seconds, the ship speed 

began to decrease slowly until the pulse load was disconnected from the system. 
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Figure 5.56 Comparison of the MTG generator frequency with 5 MW pulse loads with different pulse 
widths in MVAC multi-agent system – Scenario I 
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Figure 5.57 Comparison of ship speed with 5 MW pulse loads with different pulse widths in MVAC 
multi-agent system – Scenario I 
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 In cases 5-8, the power rating of each pulse load was 10 MW and the pulse 

widths were 1, 2, 3, and 5 seconds, respectively. In case 5, the pulse load and propulsion 

load demands are shown in Figure 5.58. In this case, the pulse width was 1 second and 

the pulse load was served from 30 to 31 seconds. In case 6, the pulse load and propulsion 

load demands are shown in Figure 5.59. In this case, the pulse width was 2 seconds and 

the pulse load was served from 30 to 32 seconds. In case 7, the pulse load and propulsion 

load demands are shown in Figure 5.60. In this case, the pulse width was 3 seconds and 

the pulse load was served from 30 to 33 seconds. In case 8, the pulse load and propulsion 

load demands are shown in Figure 5.61. In this case, the pulse width was 5 seconds and 

the pulse load was served from 30 to 35 seconds. 
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Figure 5.58 Pulse load and propulsion load demands in case 5 of MVAC multi-agent system – Scenario I 
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Figure 5.59 Pulse load and propulsion load demands in case 6 of MVAC multi-agent system – Scenario I 
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Figure 5.60 Pulse load and propulsion load demands in case 7 of MVAC multi-agent system – Scenario I 
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Figure 5.61 Pulse load and propulsion load demands in case 8 of MVAC multi-agent system – Scenario I 
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 Comparison of the MTG generator frequency with 10 MW pulse loads with 

different pulse widths is shown in Figure 5.62. The connection and disconnection of the 

pulse load caused frequency oscillations. The deviation magnitude of each frequency 

signal was much less than the steady state frequency tolerance, which was 1.8 Hz. The 

ship speeds of cases 5 to 8 are shown in Figure 5.63. When the pulse load was served at 

30 seconds, the ship speed began to decrease slowly until the pulse load was 

disconnected from the system. 
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Figure 5.62 Comparison of the MTG generator frequency with 10 MW pulse loads with different pulse 
widths in MVAC multi-agent system – Scenario I 
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Figure 5.63 Comparison of ship speed with 10 MW pulse loads with different pulse widths in MVAC 
multi-agent system – Scenario I 

 
 
 

 In cases 9-12, the power rating of each pulse load was 15 MW and the pulse 

widths were 1, 2, 3, and 5 seconds, respectively. In case 9, the pulse load and propulsion 

load demands are shown in Figure 5.64. In this case, the pulse width was 1 second and 

the pulse load was served from 30 to 31 seconds. In case 10, the pulse load and 

propulsion load demands are shown in Figure 5.65. In this case, the pulse width was 2 

seconds and the pulse load was served from 30 to 32 seconds. In case 11, the pulse load 

and propulsion load demands are shown in Figure 5.66. In this case, the pulse width was 

3 seconds and the pulse load was served from 30 to 33 seconds. In case 12, the pulse 

load and propulsion load demands are shown in Figure 5.67. In this case, the pulse width 

was 5 seconds and the pulse load was served from 30 to 35 seconds. 
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Figure 5.64 Pulse load and propulsion load demands in case 9 of MVAC multi-agent system – Scenario I 
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Figure 5.65 Pulse load and propulsion load demands in case 10 of MVAC multi-agent system – Scenario I 
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Figure 5.66 Pulse load and propulsion load demands in case 11 of MVAC multi-agent system – Scenario I 
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Figure 5.67 Pulse load and propulsion load demands in case 12 of MVAC multi-agent system – Scenario I 
 
 
 

 Comparison of the MTG generator frequency with 15 MW pulse loads with 

different pulse widths is shown in Figure 5.68. The connection and disconnection of the 

pulse load caused frequency oscillations. The deviation magnitude of each frequency 

signal was less than the steady state frequency tolerance, which was 1.8 Hz. The ship 

speeds of cases 9 to 12 are shown in Figure 5.69. When the pulse load was served at 30 

seconds, the ship speed began to decrease slowly until the pulse load was disconnected 

from the system. 
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Figure 5.68 Comparison of the MTG generator frequency with 15 MW pulse loads with different pulse 
widths in MVAC multi-agent system – Scenario I 
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Figure 5.69 Comparison of ship speed with 15 MW pulse loads with different pulse widths in MVAC 
multi-agent system – Scenario I 

 
 
 

 The performance metrics, 1J  and 2J , were used to evaluate the dynamic 

performance of the MTG generator frequency for pulse loads with different power 

ratings and pulse widths.  
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 Metric 1 analyzed the convergence time of the frequency signal when a pulse 

load was connected and disconnected in the MVAC multi-agent system. The frequency 

error tolerance ε  of metric 1 was chosen as 3% of the nominal frequency because the 

steady state frequency tolerance is 3% of the nominal value as discussed in IEEE-STD-

45 [17]. The convergence time of the system frequency should always be less than 2 

seconds. To compute the value of metric 1, 1J , the MTG frequency signal is used. When 

the frequency deviation is larger than 3% of the nominal frequency, the time instant, 0t , 

is obtained; when the frequency deviation returns less than 3% of the nominal frequency, 

the time instant, 1t , is obtained. The value of metric 1, 1J , is equal to 01 tt − . Metric 2 

was used to evaluate the maximum frequency deviation from the nominal value. To 

compute the value of metric 2, 2J , the maximum deviation of the MTG generator is 

obtained first. The value of metric 2, 2J , is equal to the maximum deviation of the MTG 

generator. In all-electric ship power systems, the frequency deviation of the system 

frequency should always be less than 4% of the nominal value [17]. 

 The results are summarized in Table 5.6. The results indicated that when pulse 

magnitude was increased, the magnitude of the MTG frequency deviation was also 

increased shown in Figure 5.56, Figure 5.62, and Figure 5.68. The value of metric 2, 2J , 

is increased with the increase of the pulse magnitude, which is much less than 3% of the 

nominal frequency. The MTG frequency deviation was always less than the steady state 

frequency tolerance, and the value of metric 1 was equal to 0 in each case study in 
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Scenario I. Therefore, the behavior of the MTG frequency in each case satisfied the 

frequency requirements of IEEE-STD-45 very well in this scenario. 

 
 
Table 5.6 Summary of the frequency performance of the MTG generator in MVAC multi-agent system – 

Scenario I 
 

Case No. Pulse magnitude 
(MW) 

Pulse width 
(sec)  

Ramp rate 
(MW/sec) 

Metric 1 (sec) Metric 2 (Hz) 

1 5 1 100 0 0.332 
2 5 2 100 0 0.351 
3 5 3 100 0 0.314 
4 5 5 100 0 0.302 
5 10 1 100 0 0.478 
6 10 2 100 0 0.545 
7 10 3 100 0 0.568 
8 10 5 100 0 0.527 
9 15 1 150 0 0.680 

10 15 2 150 0 0.816 
11 15 3 150 0 0.834 
12 15 5 150 0 0.782 

 
 
 
5.4.1.2 MVAC multi-agent system – Scenario II 

 Twelve case studies were simulated in this scenario. The pulse load was served at 

30 seconds. The definitions of pulse loads were the same as MVAC multi-agent system 

– Scenario I, which are shown in Table 5.5. The propulsion load demand was 10.5 MW 

in steady state to maintain the cruising speed of the ship at 22 knots. The power ratings 

of pulse loads were 5, 10, and 15 MW. The propulsion load could fully compensate for 

the pulse load demand when the power rating of the pulse load was 5 or 10 MW, but 

could not fully compensate for the pulse load demand when the power rating of the pulse 

load was 15 MW.  

 In cases 1-4, the power rating of each pulse load were 5 MW and the pulse 

widths were 1, 2, 3, and 5 seconds, respectively. In case 1, the pulse load and propulsion 
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load demands are shown in Figure 5.70. In this case, the pulse width was 1 second and 

the pulse load was served from 30 to 31 seconds. In case 2, the pulse load and propulsion 

load demands are shown in Figure 5.71. In this case, the pulse width was 2 seconds and 

the pulse load was served from 30 to 32 seconds. In case 3, the pulse load and propulsion 

load demands are shown in Figure 5.72. In this case, the pulse width was 3 seconds and 

the pulse load was served from 30 to 33 seconds. In case 4, the pulse load and propulsion 

load demands are shown in Figure 5.73. In this case, the pulse width was 5 seconds and 

the pulse load was served from 30 to 35 seconds. 
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Figure 5.70 Pulse load and propulsion load demands in case 1 of MVAC multi-agent system – Scenario II 
 
 
 

0 10 20 30 40 50 60
0

10

20

30

40

time (sec)

Po
w

er
 d

em
an

d 
(M

W
)

 

 

Pulse load demand
Propulsion load demand

 
 

Figure 5.71 Pulse load and propulsion load demands in case 2 of MVAC multi-agent system – Scenario II 
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Figure 5.72 Pulse load and propulsion load demands in case 3 of MVAC multi-agent system – Scenario II 
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Figure 5.73 Pulse load and propulsion load demands in case 4 of MVAC multi-agent system – Scenario II 
 
 
 

 Comparison of the MTG generator frequency with 5 MW pulse loads with 

different pulse widths is shown in Figure 5.74. In this scenario, we mainly focus on the 

system frequency when the pulse load was connected or disconnected, so the frequency 

signal was plotted from 25 to 40 seconds. The connection and disconnection of the pulse 

load caused frequency oscillations. The deviation magnitude of each frequency signal 

was much less than the steady state frequency tolerance, which was 1.8 Hz. 
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Figure 5.74 Comparison of the MTG generator frequency with 5 MW pulse loads with different pulse 
widths in MVAC multi-agent system – Scenario II 

 
 
 

 In cases 5-8, the power rating of each pulse load were 10 MW and the pulse 

widths were 1, 2, 3, and 5 seconds, respectively. In case 5, the pulse load and propulsion 

load demands are shown in Figure 5.75. In this case, the pulse width was 1 second and 

the pulse load was served from 30 to 31 seconds. In case 6, the pulse load and propulsion 

load demands are shown in Figure 5.76. In this case, the pulse width was 2 seconds and 

the pulse load was served from 30 to 32 seconds. In case 7, the pulse load and propulsion 

load demands are shown in Figure 5.77. In this case, the pulse width was 3 seconds and 

the pulse load was served from 30 to 33 seconds. In case 8, the pulse load and propulsion 

load demands are shown in Figure 5.78. In this case, the pulse width was 5 seconds and 

the pulse load was served from 30 to 35 seconds. 
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Figure 5.75 Pulse load and propulsion load demands in case 5 of MVAC multi-agent system – Scenario II 
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Figure 5.76 Pulse load and propulsion load demands in case 6 of MVAC multi-agent system – Scenario II 
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Figure 5.77 Pulse load and propulsion load demands in case 7 of MVAC multi-agent system – Scenario II 
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Figure 5.78 Pulse load and propulsion load demands in case 8 of MVAC multi-agent system – Scenario II 
 
 
 

 Comparison of the MTG generator frequency with 10 MW pulse loads with 

different pulse widths is shown in Figure 5.79. The connection and disconnection of the 

pulse load caused frequency oscillations. The deviation magnitude of each frequency 

signal was much less than the steady state frequency tolerance, which was 1.8 Hz. 
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Figure 5.79 Comparison of MTG generator frequency with 10 MW pulse loads with different pulse 
widths in MVAC multi-agent system – Scenario II 
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 In cases 9-12, the power rating of each pulse load was 15 MW and the pulse 

widths were 1, 2, 3, and 5 seconds, respectively. In case 9, the pulse load and propulsion 

load demands are shown in Figure 5.80. In this case, the pulse width was 1 second and 

the pulse load was served from 30 to 31 seconds. In case 10, the pulse load and 

propulsion load demands are shown in Figure 5.81. In this case, the pulse width was 2 

seconds and the pulse load was served from 30 to 32 seconds. In case 11, the pulse load 

and propulsion load demands are shown in Figure 5.82. In this case, the pulse width was 

3 seconds and the pulse load was served from 30 to 33 seconds. In case 12, the pulse 

load and propulsion load demands are shown in Figure 5.83. In this case, the pulse width 

was 5 seconds and the pulse load was served from 30 to 35 seconds. 
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Figure 5.80 Pulse load and propulsion load demands in case 9 of MVAC multi-agent system – Scenario II 
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Figure 5.81 Pulse load and propulsion load demands in case 10 of MVAC multi-agent system – Scenario 
II 
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Figure 5.82 Pulse load and propulsion load demands in case 11 of MVAC multi-agent system – Scenario 
II 
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Figure 5.83 Pulse load and propulsion load demands in case 12 of MVAC multi-agent system – Scenario 
II 
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 Comparison of the MTG generator frequency with 15 MW pulse loads with 

different pulse widths is shown in Figure 5.84. When the 15 MW pulse load was served, 

the propulsion load could not fully compensate for the pulse load demand because the 

total propulsion load demand was only 10.5 MW. Thus, the magnitude of each MTG 

frequency deviation in cases 9-12 in MVAC multi-agent system – Scenario II was 

greater than the frequency deviation in MVAC multi-agent system – Scenario I. As 

shown in Figure 5.84, the magnitude of each MTG frequency deviation in cases 9-12 in 

MVAC system – scenario II was still less than steady state frequency tolerance, which 

was equal to 1.8 Hz. 
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Figure 5.84 Comparison of MTG generator frequency with 15 MW pulse loads with different pulse 
widths in MVAC multi-agent system – Scenario II 

 
 
 

 The performance metrics, 1J  and 2J , were used to evaluate the dynamic 

performance of the MTG generator frequency for pulse loads with different power 
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ratings and pulse widths. The results in MVAC multi-agent system – Scenario II are 

summarized in Table 5.7. Metric 1 analyzed the convergence time of the frequency 

signal when a pulse load was connected and disconnected in the MVAC system. The 

frequency error tolerance ε  of metric 1 was chosen as 3% of the nominal frequency 

because the steady state frequency tolerance is 3% of the nominal value as discussed in 

IEEE-STD-45. The convergence time of the system frequency should be less than 2 

seconds. Metric 2 was used to evaluate the maximum frequency deviation from the 

nominal value. In all-electric ship power systems, the frequency deviation of the system 

frequency should be always less than 4% of the nominal value. 

 The results indicated that when pulse magnitude was increased, the magnitude of 

the MTG frequency deviation was increased as shown in Figure 5.74, Figure 5.79, and 

Figure 5.84. When the propulsion load could not fully compensate for the pulse load 

demand, the frequency oscillations would be more significant. The value of metric 2, 2J , 

is increased with the increase of the pulse magnitude, which is much less than 3% of the 

nominal frequency. In cases 9-12, the pulse load magnitude is larger than propulsion 

load demand, and the value of metric 2, 2J , is around 1.2, which is larger than the value 

in Scenario I. The MTG frequency deviation was always less than the steady state 

frequency tolerance, which was equal to 1.8 Hz, and the value of metric 1 was equal to 0 

in each case study in MVAC multi-agent system – Scenario II. Therefore, the behavior 

of the MTG frequency in each case satisfied the frequency requirements of IEEE-STD-

45 very well in this scenario. 
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Table 5.7 Summary of the frequency performance of the MTG generator in MVAC multi-agent system – 
Scenario II 

 
Case No. Pulse magnitude 

(MW) 
Pulse width 

(sec)  
Ramp rate 
(MW/sec) 

Metric 1 (sec) Metric 2 (Hz) 

1 5 1 100 0  0.323  
2 5 2 100 0  0.364  
3 5 3 100 0  0.351  
4 5 5 100 0  0.329  
5 10 1 100 0  0.465  
6 10 2 100 0  0.707  
7 10 3 100 0  0.692  
8 10 5 100 0  0.687  
9 15 1 150 0  1.180  

10 15 2 150 0  1.221  
11 15 3 150 0  1.139  
12 15 5 150 0  1.138  

 
 
 
5.4.1.3 MVAC multi-agent system – Scenario III 

 Eight extreme cases were simulated to study dynamic behaviors of the MVAC 

multi-agent system in this scenario. The pulse load was served at 30 seconds. The 

definitions of the pulse load and propulsion load in each case are shown in Table 5.8. In 

this scenario, the power rating of the pulse load was 35 MW, which was always larger 

than the propulsion load demand.  

 
 

Table 5.8 Summary of the pulse load and propulsion load in MVAC multi-agent system – Scenario III 
 

Case No. Pulse magnitude 
(MW) 

Pulse width 
(sec)  

Ramp rate 
(MW/sec) 

Propulsion load 
demand (MW) 

1 35 1 350 10.5 
2 35 2 350 10.5 
3 35 3 350 10.5 
4 35 5 350 10.5 
5 35 1 350 21 
6 35 2 350 21 
7 35 3 350 21 
8 35 5 350 21 
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 In cases 1-4, the power rating of each pulse load was 35 MW and the pulse 

widths were 1, 2, 3, and 5 seconds, respectively. The propulsion load demand in each 

case was 10.5 MW. In steady state, the cruising speed of the ship was 22 knots. In case 

1, the pulse load and propulsion load demands are shown in Figure 5.85. In this case, the 

pulse width was 1 second and the pulse load was served from 30 to 31 seconds. In case 

2, the pulse load and propulsion load demands are shown in Figure 5.86. In this case, the 

pulse width was 2 seconds and the pulse load was served from 30 to 32 seconds. In case 

3, the pulse load and propulsion load demands are shown in Figure 5.87. In this case, the 

pulse width was 3 seconds and the pulse load was served from 30 to 33 seconds. In case 

4, the pulse load and propulsion load demands are shown in Figure 5.88. In this case, the 

pulse width was 5 seconds and the pulse load was served from 30 to 35 seconds. 
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Figure 5.85 Pulse load and propulsion load demands in case 1 of MVAC multi-agent system – Scenario 
III 
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Figure 5.86 Pulse load and propulsion load demands in case 2 of MVAC multi-agent system – Scenario 
III 
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Figure 5.87 Pulse load and propulsion load demands in case 3 of MVAC multi-agent system – Scenario 
III 
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Figure 5.88 Pulse load and propulsion load demands in case 4 of MVAC multi-agent system – Scenario 
III 
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 Comparison of the MTG frequency in cases 1-4 is shown in Figure 5.89. When 

the pulse load was connected, the maximum frequency decrease in each case was 4% of 

the nominal value, which was equal to the transient frequency tolerance. The recovery 

time of the MTG frequency in each case was less than the maximum allowed transient 

recovery time, which was 2 seconds. Therefore, when the pulse load was connected to 

the system, the dynamic behavior of the MTG frequency in each case was acceptable 

based on IEEE-STD-45 [17]. When the pulse load was disconnected from the system, 

the magnitude of the frequency deviation in each case was greater than the transient 

frequency tolerance. Thus, the dynamic behaviors of the MTG frequency in cases 1-4 

did not satisfy the frequency requirements of IEEE-STD-45. 
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Figure 5.89 Comparison of the MTG generator frequency with 10.5 MW propulsion load and 35 MW 
pulse loads with different pulse widths in MVAC multi-agent system – Scenario III 

 
 
 

 In cases 5-8, the power rating of each pulse load was 35 MW and the pulse 

widths were 1, 2, 3, and 5 seconds, respectively. The propulsion load demand in each 



 

 

242

case was 21 MW. In steady state, the cruising speed of the ship was 27 knots. In case 5, 

the pulse load and propulsion load demands are shown in Figure 5.90. In this case, the 

pulse width was 1 second and the pulse load was served from 30 to 31 seconds. In case 

6, the pulse load and propulsion load demands are shown in Figure 5.91. In this case, the 

pulse width was 2 seconds and the pulse load was served from 30 to 32 seconds. In case 

7, the pulse load and propulsion load demands are shown in Figure 5.92. In this case, the 

pulse width was 3 seconds and the pulse load was served from 30 to 33 seconds. In case 

8, the pulse load and propulsion load demands are shown in Figure 5.93. In this case, the 

pulse width was 5 seconds and the pulse load was served from 30 to 35 seconds. 
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Figure 5.90 Pulse load and propulsion load demands in case 5 of MVAC multi-agent system – Scenario 
III 
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Figure 5.91 Pulse load and propulsion load demands in case 6 of MVAC multi-agent system – Scenario 
III 
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Figure 5.92 Pulse load and propulsion load demands in case 7 of MVAC multi-agent system – Scenario 
III 
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Figure 5.93 Pulse load and propulsion load demands in case 8 of MVAC multi-agent system – Scenario 
III 
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 Comparison of the MTG frequency in cases 5-8 is shown in Figure 5.94. When 

the pulse load was connected, the maximum frequency decrease in each case was 3% of 

the nominal value, which was equal to the steady state frequency tolerance. The transient 

recovery time of the MTG frequency in each case was 0. Therefore, when the pulse load 

was connected to the system, the dynamic behavior of the MTG frequency in each case 

was acceptable based on IEEE-STD-45. When the pulse load was disconnected from the 

system, the magnitude of the frequency deviation in case 7 was greater than the transient 

frequency tolerance, and the magnitudes of the frequency deviations in case 5, 6, and 8 

were less than the transient frequency tolerance. The transient recovery time of each case 

was less than the maximum allowed transient recovery time. The dynamic behaviors of 

the MTG frequency in case 7 did not satisfy the frequency requirements in IEEE-STD-

45. The dynamic behaviors of the MTG frequency in case 5, 6, and 8 satisfied the 

frequency requirements of IEEE-STD-45. 
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Figure 5.94 Comparison of the MTG generator frequency with 21 MW propulsion load and 35 MW pulse 
loads with different pulse widths in MVAC system – Scenario III 
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 The performance metrics, 1J  and 2J , were used to evaluate the dynamic 

performance of the MTG generator frequency for pulse loads with different power 

ratings and pulse widths. The results in MVAC multi-agent system – Scenario III are 

summarized in Table 5.9. Metric 1 analyzed the convergence time of the frequency 

signal when a pulse load was connected and disconnected in the MVAC system. The 

frequency error tolerance ε  of metric 1 was chosen as 3% of the nominal frequency. 

The convergence time of the system frequency should be less than 2 seconds. Metric 2 

was used to evaluate the maximum frequency deviation from the nominal value. In all-

electric ship power systems, the frequency deviation of the system frequency should be 

always less than 4% of the nominal value, which is equal to 2.4 Hz. 

 The results in Table 5.9 indicated that when the load demand of the propulsion 

load was increased, the magnitude of the MTG frequency deviation was also increased 

as shown in Figure 5.89 and Figure 5.94. Since the pulse load demand in each case was 

much greater than the propulsion load demand, the propulsion load could not fully 

compensate for the pulse load demand.  

 In cases 1-4, the propulsion load demand was 10.5 MW, which was less than the 

pulse load demand. When the pulse load was connected to the system, the steady state 

frequency tolerance was violated and the transient recovery time was less than the 

maximum allowed transient recovery time in each case; when the pulse load was 

disconnected from the system, the transient frequency tolerance was violated in each 

case. In each case, the value of metric 2, 2J , is larger than 4% of the nominal frequency 
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as shown in Table 5.9. Thus, the dynamic behaviors of the MTG generator in cases 1-4 

did not satisfy the frequency requirements in IEEE-STD-45. 

 In cases 5-8, the propulsion load demand was 21 MW, which was less than the 

pulse load demand. When the pulse load was connected to the system, the steady state 

frequency tolerance was satisfied and the transient recovery time was 0 in each case; 

when the pulse load was disconnected from the system, the transient frequency tolerance 

was violated only in case 7. In case 7, the value of metric 2, 2J , is 2.65 Hz, which is 

larger than 4% of the nominal frequency as shown in Table 5.9. Thus, the dynamic 

behaviors of the MTG generator in cases 5, 6, and 8 satisfy the frequency requirements 

of IEEE-STD-45, but the dynamic behavior of the MTG generator in case 7 did not 

satisfy the frequency requirements of IEEE-STD-45. 

 
 

Table 5.9 Summary of the frequency performance of the MTG generator in MVAC multi-agent system – 
Scenario III 

 
Case No. Metric 1 (sec) - pulse 

load connection 
Metric 1 (sec) - pulse 

load disconnection 
Metric 2 (Hz) 

1 0.82 0.32 2.61 
2 1.31 0.38 2.89 
3 1.31 0.40 3.08 
4 1.31 0.43 3.02 
5 0 0.26 2.39 
6 0 0.29 2.40 
7 0 0.32 2.65 
8 0 0.29 2.40 

 
 
 
5.4.2 Performance analysis – DC zone multi-agent system 

 In the DC zone multi-agent system studies, the diagram of a simplified notional 

all-electric ship power system simulation model for DC zone multi-agent system is 
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shown in Figure 5.26, and the simulation step size τΔ  was chosen as 12 microseconds 

in the PSCAD simulation. The simulation duration was 12 seconds. In the DC zone 

multi-agent system performance analysis, two scenarios were used to evaluate the 

dynamic performance of the DC zone multi-agent system using metric 2. The system 

consisted of two identical DC zones. The load definitions in one DC zone are shown in 

Table 5.1. It was assumed that only one ATG generator was in service, so the total 

generation capacity was 4 MW. It was also assumed that the propulsion load was out of 

service and a pulse load was served in the MVAC system from 3 to 8 seconds. The 

notional all-electric ship power system used to study the DC zone multi-agent system is 

discussed in detail in Appendix B.3. The agents in DC zones are discussed in 

Appendices A.4-A.7. The operational constraints of the DC zone system used in the two 

scenarios are shown in (5-8)-(5-11). The parameters of the multi-agent system 

cooperative controller were the same as DC zone multi-agent system case studies in 

section 5.3.2. The parameters of converter agents and load agents were also the same as 

DC zone multi-agent system case studies in section 5.3.2. 

 In Scenario I, four cases were used to study the impact of the ramp rate of pulse 

loads on the dynamic performance of the DC zone multi-agent system. In each case, the 

pulse load had the same power magnitude, but had different ramp rates. In Scenario II, 

five cases were used to study the impact of the power magnitude of pulse loads on the 

dynamic performance of the DC zone multi-agent system. In each case, the pulse load 

had the same ramp rate, but had different power magnitudes. 
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5.4.2.1 DC zone multi-agent system – Scenario I 

 It was also assumed that the pulse load was served from 3 to 8 seconds with a 1.2 

MW magnitude. The ramp rate of the pulse load was chosen as 1, 2, 5, and 10 MW/sec 

to study the dynamic performance of the DC zone multi-agent system. The definitions of 

pulse loads in DC zone multi-agent system – Scenario I are summarized in Table 5.10. 

Since the generation capacity of the system was 4 MW, the available power to the DC 

zone system was decreased when the pulse load was served. 

 
 

Table 5.10 Summary of the pulse load for the DC zone multi-agent system - Scenario I 
 

Case No. Pulse magnitude (MW) Pulse width (sec) Ramp rate (MW/sec) 
1 1.2 5 1 
2 1.2 5 2 
3 1.2 5 5 
4 1.2 5 10 

 
 
 

 In case 1, the power magnitude of the pulse load was 1.2 MW; the ramp rate of 

the pulse load was 1 MW/sec; the pulse width was 5 seconds. The power demand of the 

pulse load is shown in Figure 5.95. The available power and the total load demand of the 

DC zone system are shown in Figure 5.96. The frequency behavior of the ATG 

generator is shown in Figure 5.97. When the pulse load was connected in the system, the 

maximum frequency was 0.85 Hz; when the pulse load was disconnected in the system, 

the maximum frequency was 0.35 Hz. 
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Figure 5.95 Power demand of the pulse load in case 1 of DC zone multi-agent system – Scenario I 
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Figure 5.96 Total load demand and available power of the DC zone system in case 1 of DC zone multi-
agent system – Scenario I 
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Figure 5.97 Frequency behavior of the ATG generator in case 1 of DC zone multi-agent system – 
Scenario I 
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 In case 2, the power magnitude of the pulse load was 1.2 MW; the ramp rate of 

the pulse load was 2 MW/sec; the pulse width was 5 seconds. The power demand of the 

pulse load is shown in Figure 5.98. The available power and the total load demand of the 

DC zone system are shown in Figure 5.99. The frequency behavior of the ATG 

generator is shown in Figure 5.100. When the pulse load was connected in the system, 

the maximum frequency was 0.7 Hz; when the pulse load was disconnected in the 

system, the maximum frequency was 0.3 Hz. 
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Figure 5.98 Power demand of the pulse load in case 2 of DC zone multi-agent system – Scenario I 
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Figure 5.99 Total load demand and available power of the DC zone system in case 2 of DC zone multi-
agent system – Scenario I 
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Figure 5.100 Frequency behavior of the ATG generator in case 2 of DC zone multi-agent system – 
Scenario I 

 
 
 

 In case 3, the power magnitude of the pulse load was 1.2 MW; the ramp rate of 

the pulse load was 5 MW/sec; the pulse width was 5 seconds. The power demand of the 

pulse load is shown in Figure 5.101. The available power and the total load demand of 

the DC zone system are shown in Figure 5.102. The frequency behavior of the ATG 

generator is shown in Figure 5.103. When the pulse load was connected in the system, 

the maximum frequency was 0.8 Hz; when the pulse load was disconnected in the 

system, the maximum frequency was 0.7 Hz. 
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Figure 5.101 Power demand of the pulse load in case 3 of DC zone multi-agent system – Scenario I 
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Figure 5.102 Total load demand and available power of the DC zone system in case 3 of DC zone multi-
agent system – Scenario I 
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Figure 5.103 Frequency behavior of the ATG generator in case 3 of DC zone multi-agent system – 
scenario I 

 
 
 

 In case 4, the power magnitude of the pulse load was 1.2 MW; the ramp rate of 

the pulse load was 10 MW/sec; the pulse width was 5 seconds. The power demand of the 

pulse load is shown in Figure 5.104. The available power and the total load demand of 

the DC zone system are shown in Figure 5.105. The frequency behavior of the ATG 

generator is shown in Figure 5.106. When the pulse load was connected in the system, 
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the maximum frequency was 0.6 Hz; when the pulse load was disconnected in the 

system, the maximum frequency was 0.75 Hz. 
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Figure 5.104 Power demand of the pulse load in case 4 of DC zone multi-agent system – Scenario I 
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Figure 5.105 Total load demand and available power of the DC zone system in case 4 of DC zone multi-
agent system – Scenario I 
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Figure 5.106 Frequency behavior of the ATG generator in case 4 of DC zone multi-agent system – 
Scenario I 

 
 
 

 The performance metric, 2J , was used to evaluate the dynamic performance of 

the ATG generator frequency for pulse loads with different ramp rates. The results in DC 

zone multi-agent system – Scenario I are summarized in Table 5.11. Metric 2 was used 

to evaluate the maximum frequency deviation from the nominal value. In all-electric 

ship power systems, the transient frequency deviation should be always less than 4% of 

the nominal value; the maximum allowed frequency deviation in steady state is 3% of 

the nominal value. 

 The results in Table 5.11 indicated that the magnitude of the ATG frequency 

deviation in each case was much less than the maximum allowed frequency deviation in 

steady state, which is equal to 3% of the nominal value. Thus, the dynamic behaviors of 

the ATG generator frequency in cases 1-4 satisfy the frequency requirements in IEEE-

STD-45. When the pulse load is connected, the value of metric 2, 2J , is almost the same 

in each case; when the pulse load is disconnected, the value of metric 2, 2J , in cases 1 
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and 2 is smaller than the value in cases 3 and 4, which means that the maximum 

frequency deviation is increased with the increase of the ramp rate of the pulse load. 

 
 

Table 5.11 Summary of the frequency behavior of the ATG generator in DC zone multi-agent system – 
Scenario I 

 
Case No. Metric 2 (Hz) - pulse load connection Metric 2 (Hz) - pulse load disconnection 

1 0.85 0.35 
2 0.70 0.30 
3 0.80 0.70 
4 0.60 0.75 

 
 
 
5.4.2.2 DC zone multi-agent system – Scenario II 

 It was also assumed that the pulse load was served from 3 to 8 seconds and the 

ramp rate of the pulse load was 10 MW/sec in each case. The power magnitude of the 

pulse load was chosen as 0.4, 0.6, 0.8, 1.0, and 1.2 MW to study the dynamic 

performance of the DC zone system. The definitions of pulse loads in DC zone multi-

agent system – Scenario II are summarized in Table 5.12. Since the generation capacity 

of the system was 4 MW, the available power to the DC zone system was decreased 

when the pulse load was served. 

 
 

Table 5.12 Summary of the pulse load for the DC zone multi-agent system – Scenario II 
 

Case No. Pulse magnitude (MW) Pulse width (sec) Ramp rate (MW/sec) 
1 0.4 5 10 
2 0.6 5 10 
3 0.8 5 10 
3 1.0 5 10 
5 1.2 5 10 
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 In case 1, the power magnitude of the pulse load was 0.4 MW; the ramp rate of 

the pulse load was 10 MW/sec; the pulse width was 5 seconds. The power demand of the 

pulse load is shown in Figure 5.107. The available power and the total load demand of 

the DC zone system are shown in Figure 5.108. The frequency behavior of the ATG 

generator is shown in Figure 5.109. When the pulse load was connected in the system, 

the maximum frequency was 0.91 Hz; when the pulse load was disconnected in the 

system, the maximum frequency was 0.25 Hz. 
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Figure 5.107 Power demand of the pulse load in case 1 of DC zone multi-agent system – Scenario II 
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Figure 5.108 Total load demand and available power of the DC zone system in case 1 of DC zone multi-
agent system – Scenario II 
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Figure 5.109 Frequency behavior of the ATG generator in case 1 of DC zone multi-agent system – 
Scenario II 

 
 
 

 In case 2, the power magnitude of the pulse load was 0.6 MW; the ramp rate of 

the pulse load was 10 MW/sec; the pulse width was 5 seconds. The power demand of the 

pulse load is shown in Figure 5.110. The available power and the total load demand of 

the DC zone system are shown in Figure 5.111. The frequency behavior of the ATG 

generator is shown in Figure 5.112. When the pulse load was connected in the system, 

the maximum frequency was 0.81 Hz; when the pulse load was disconnected in the 

system, the maximum frequency was 0.36 Hz. 
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Figure 5.110 Power demand of the pulse load in case 2 of DC zone multi-agent system – Scenario II 
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Figure 5.111 Total load demand and available power of the DC zone system in case 2 of DC zone multi-
agent system – Scenario II 
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Figure 5.112 Frequency behavior of the ATG generator in case 2 of DC zone multi-agent system – 
Scenario II 

 
 
 

 In case 3, the power magnitude of the pulse load was 0.8 MW; the ramp rate of 

the pulse load was 10 MW/sec; the pulse width was 5 seconds. The power demand of the 

pulse load is shown in Figure 5.113. The available power and the total load demand of 

the DC zone system are shown in Figure 5.114. The frequency behavior of the ATG 

generator is shown in Figure 5.115. When the pulse load was connected in the system, 
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the maximum frequency was 0.71 Hz; when the pulse load was disconnected in the 

system, the maximum frequency was 0.49 Hz. 
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Figure 5.113 Power demand of the pulse load in case 3 of DC zone multi-agent system – Scenario II 

 
 
 

0 2 4 6 8 10 12
2

2.5

3

3.5

4

4.5

5

time (sec)

Po
w

er
 (M

W
)

 

 

Available power to the DC zone system
Total load demand in the DC zone system

3
 

 
Figure 5.114 Total load demand and available power of the DC zone system in case 3 of DC zone multi-
agent system – Scenario II 
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Figure 5.115 Frequency behavior of the ATG generator in case 3 of DC zone multi-agent system – 
Scenario II 

 
 
 

 In case 4, the power magnitude of the pulse load was 1.0 MW; the ramp rate of 

the pulse load was 10 MW/sec; the pulse width was 5 seconds. The power demand of the 

pulse load is shown in Figure 5.116. The available power and the total load demand of 

the DC zone system are shown in Figure 5.117. The frequency behavior of the ATG 

generator is shown in Figure 5.118. When the pulse load was connected in the system, 

the maximum frequency was 0.64 Hz; when the pulse load was disconnected in the 

system, the maximum frequency was 0.85 Hz. 
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Figure 5.116 Power demand of the pulse load in case 4 of DC zone multi-agent system – Scenario II 
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Figure 5.117 Total load demand and available power of the DC zone system in case 4 of DC zone multi-
agent system – Scenario II 
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Figure 5.118 Frequency behavior of the ATG generator in case 4 of DC zone multi-agent system – 
Scenario II 
 
 
 In case 5, the power magnitude of the pulse load was 1.2 MW; the ramp rate of 

the pulse load was 10 MW/sec; the pulse width was 5 seconds. This case is the same as 

case 4 of DC zone multi-agent system – Scenario I as shown in section 5.4.2.1. When 

the pulse load was connected in the system, the maximum frequency was 0.6 Hz; when 

the pulse load was disconnected in the system, the maximum frequency was 0.75 Hz. 
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 The performance metric, 2J , was used to evaluate the dynamic performance of 

the ATG generator frequency for pulse loads with various power magnitudes. The results 

in DC zone multi-agent system – Scenario II are summarized in Table 5.13. Metric 2 

was used to evaluate the maximum frequency deviation from the nominal value. The 

results indicated that the magnitude of the ATG frequency deviation in each case was 

much less than the maximum allowed frequency deviation in steady state, which is equal 

to 3% of the nominal value. Thus, the dynamic behavior of the ATG generator frequency 

in cases 1-5 satisfies the frequency requirements in IEEE-STD-45. When the pulse load 

is connected, the value of metric 2, 2J , is almost the same in each case; when the pulse 

load is disconnected, the value of metric 2, 2J , is increased with the increase of the ramp 

rate of the pulse load. 

 
 

Table 5.13 Summary of the frequency behavior of the ATG generator in DC zone multi-agent system – 
Scenario II 

 
Case No. Metric 2 (Hz) - pulse load connection Metric 2 (Hz) - pulse load disconnection 

1 0.91 0.25 
2 0.81 0.36 
3 0.71 0.49 
4 0.64 0.85 
5 0.60 0.75 

 
 
 
5.5  Summary of Simulation Results 

 In the MVAC system case studies, various pulse loads with different power 

magnitudes and pulse widths were used to study the impact of the pulse load on the 

power quality of all-electric ship power systems. The real-time load management 

approach used the propulsion load to compensate the power demand of the pulse load to 
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reduce the frequency and voltage oscillations to meet operational constraints when load 

changes happened. The simulation results indicated that if the magnitude of the pulse 

load was less than the propulsion load demand, the propulsion load could fully 

compensate the load changes caused by the pulse load, which significantly reduced the 

frequency oscillations of the system. On the other hand, if the magnitude of the pulse 

load was greater than the propulsion load demand, the propulsion load could not fully 

compensate the load changes caused by the pulse load, which might result in some 

unacceptable frequency oscillations. 

 When the cruising speed of the ship was 27 knots, the propulsion load demand 

was 21 MW in steady state. In this case, if a 36 MW pulse load was served, the 

maximum frequency deviation was less than 4% of the nominal value and the recovery 

time of the system frequency was less than 2 seconds. When the cruising speed of the 

ship was 22 knots, the propulsion load demand was 10.5 MW in steady state. In this 

case, if a 36 MW pulse load was served, the maximum frequency deviation was greater 

than 4% of the nominal value, which means that the system frequency did not satisfy the 

frequency requirements as given in IEEE-STD-45. Thus, the real-time load management 

approach needs enough loads in service to compensate the load changes in the system. 

 In the DC zone system case studies, only one ATG generator was in service. A 

pulse load was also served to study the dynamic behavior of the system. When the pulse 

load was connected in the system, the total load demand of the DC zone system was 

decreased quickly to track the available power to the DC zone system by using the multi-

agent system cooperative controller. On the other hand, when the pulse load was 
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disconnected from the system, the total load demand of the DC zone system was 

increased to track the available power to the DC zone system. Since the DC zone system 

includes some dynamic loads such as AC and DC motors, it takes 1 to 2 seconds for the 

load demand to reach steady state. 

 Performance analysis results of the MVAC multi-agent system indicated that if 

the propulsion load demand was larger than the magnitude of the pulse load, the 

propulsion load fully compensated the impact of the pulse load and the maximum system 

frequency deviation was reduced using the real-time load management approach, which 

was less than the maximum allowed frequency deviation. If the propulsion load demand 

was less than the magnitude of the pulse load, the propulsion load could not fully 

compensate the impact of the pulse load, which caused large frequency deviation. In 

some extreme cases, when the pulse load magnitude was 35 MW, the dynamic 

performance of the system frequency did not satisfy the frequency requirements in 

IEEE-STD-45. 

 In the performance analysis of the DC zone multi-agent system, pulse loads with 

various magnitudes and ramp rates were studied. When the pulse load was connected to 

the system, the maximum frequency deviation was almost the same in each case with 

various magnitudes or ramp rates of the pulse load. When the pulse load was 

disconnected, the maximum frequency deviation was increased with the increase of the 

magnitude or ramp rate of the pulse load. Performance analysis results of the DC zone 

multi-agent system indicated that the frequency deviation of the ATG generator was 
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much less than the steady state frequency tolerance, when various pulse loads with 

different power magnitudes and ramp rates were served.  

 

5.6  Summary  

 In this chapter, the heterogeneous multi-agent system-based real-time load 

management and notional all-electric ship power system model were simulated in 

PSCAD to study the performance of the developed real-time load management 

approach. Case studies for the MVAC multi-agent system, DC zone multi-agent system, 

and the coordination of the two multi-agent systems were simulated in PSCAD to study 

the dynamic performances of the developed technique. In the MVAC multi-agent system 

case studies, the coordination of the propulsion load and pulse load were illustrated to 

show the effectiveness of the management of the propulsion load to reduce the frequency 

oscillations caused by the pulse load. The dynamic cable constraint was also illustrated 

to show that this constraint was satisfied for the pulse load agent by using the developed 

MVAC multi-agent system.  

 In the DC zone case studies, the dynamic performances of the DC zone multi-

agent system were also studied. The results indicated that the actual load demand of the 

DC zone system tracked the available power very well, and the DC zone multi-agent 

system ensured that vital loads were served before semi-vital and non-vital loads. The 

coordination of the two multi-agent systems was also studied to show the dynamic 

performance of the proposed technique. The results showed that the objective of real-
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time load management was achieved while satisfying the operational constraints of the 

system. 

 Performance analysis of the multi-agent system framework was conducted to 

evaluate the performance of the new multi-agent system-based real-time load 

management method. For the MVAC multi-agent system, various pulse loads with 

different power magnitudes and pulse widths were used to study the dynamic 

performance of the new method. The results indicated that a propulsion load could fully 

compensate for the load changes caused by a pulse load when the magnitude of the pulse 

load was less than the propulsion load demand. The frequency oscillations of the system 

were significantly reduced. However, if the magnitude of the pulse load was larger than 

the propulsion load demand, the propulsion load had some limitations to reduce the 

impact of the pulse load on the power quality of the system. The DC zone multi-agent 

system could reduce the load demand to track the available power reference quickly, 

when the available power to the DC zone system was decreased. On the other hand, 

when the available power was increased, the load demand took 1-2 seconds to track the 

available power reference.  
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6. CONCLUSIONS AND FUTURE WORK 

 

6.1  Summary and Conclusions 

 In this dissertation, a novel bio-inspired multi-agent system framework 

developed for real-time load management of all-electric ship power systems was 

presented. The technique balances the generation and load of the system in operational 

real time while satisfying various operational constraints of the system and considering 

load priorities. The multi-agent system cooperatively achieved real-time load 

management based on cooperative controllers through local measurements and 

communication between different agents. In addition, pulse loads and propulsion loads 

were coordinated to compensate for the impact of pulse loads on the power quality of 

all-electric ship power systems. 

 The real-time load management multi-agent system for all-electric ship power 

systems includes MVAC and DC zone multi-agent systems. An AC-DC communication 

agent is used to coordinate these two systems. In the DC zone multi-agent system, the 

heterogeneous multi-agent system technique integrates multiple agents with different 

dynamic models to achieve the real-time load management objective and improve the 

accuracy of cooperative controllers. Moreover, an artificial potential function is used to 

drive the system state to the desired state while avoiding constraint regions by using an 

attractor term and repulsor term. The heterogeneous multi-agent system also takes load 

priorities into consideration, which ensures that vital loads are served before semi-vital 

and non-vital loads.  
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 The MVAC multi-agent system coordinates generators, propulsion loads, and 

pulse loads in the MVAC system. The multi-agent system framework automatically 

regulates power set-points of propulsion loads to compensate for load changes caused by 

pulse loads based on the system frequency. The voltage controller in the propulsion load 

agents also regulates the propulsion load demand when the input voltage constraint of a 

propulsion load is violated. The pulse load agent regulates the pulse load to satisfy the 

dynamic cable constraint of the cable connecting the MTG generator and pulse load. 

 In order to apply the bio-inspired multi-agent system methodology in the DC 

zone system, the system was partitioned into subsystems, which were modeled using 

dynamic agent models. For the DC zone system of the all-electric ship power system, 

Partitioning Strategy III was used to partition the DC zone system into a group of 

electrical subsystems. Partitioning Strategy III partitioned the system based on individual 

electrical components. Since electrical components might have different dynamical 

models, a heterogeneous multi-agent system was developed. This partitioning strategy 

provides more flexibility to integrate detailed system dynamics and alternate paths of 

vital loads into the multi-agent system, which greatly improved the accuracy of the 

multi-agent system cooperative controller. In addition, various operational constraints of 

the system were integrated into the multi-agent system. A novel bio-inspired 

heterogeneous multi-agent system cooperative controller was developed based on 

Partitioning Strategy III for the DC zone multi-agent system. 

 The AC-DC communication agent connects the MVAC and DC zone multi-agent 

systems, which coordinates the two multi-agent systems to achieve the real-time load 
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management for all-electric ship power systems. Through communications with the two 

multi-agent agent systems, the AC-DC communication agent calculates the available 

power to the DC zone system and the total load demand of the DC zone system which is 

obtained by the system losses agent to calculate the total losses in the MVAC system. 

 The heterogeneous multi-agent system cooperative controller was implemented 

in the PSCAD software to evaluate the dynamic performance of the developed 

technique. Case studies for the MVAC multi-agent system, DC zone multi-agent system, 

and coordination of these two multi-agent systems indicated that the developed multi-

agent system framework achieved generation and load balancing in real time while 

satisfying operational constraints of the system, such as PCM4 capacity constraints, and 

dynamic cable constraints.  

 In the MVAC multi-agent system case studies, the propulsion load and pulse load 

were coordinated to improve the frequency performance of the all-electric ship power 

system. When the pulse load was served, the propulsion load was disturbed temporarily 

to reduce the impact of the pulse load on the power quality of the system. Since the 

propulsion load was disturbed for a short period of time, the ship speed was slightly 

decreased due to the large inertia of the ship. In addition, the pulse load agent ensured 

that the dynamic cable constraint was always satisfied in operational real time. In an 

extreme case, when the magnitude of the pulse load was much larger than the propulsion 

load demand, the maximum frequency deviation was larger than 3% of nominal value, 

which was the steady state frequency deviation tolerance.  
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 In the DC zone multi-agent system case studies, load changes in the DC zone 

system and pulse load changes in MVAC system were studied. By using the developed 

heterogeneous multi-agent system, the motor input voltage constraints, available power 

capacity constraint, and PCM4 capacity constraints were satisfied in operational real-

time. In addition, the vital loads were served at a higher priority than semi-vital and non-

vital loads. When the available power in the DC zone system was decreased, the actual 

load demand tracked the available power quickly and the frequency oscillation was in 

acceptable range. When the available power to the DC zone system was increased, the 

actual load demand took 1-2 seconds to track the available power since the dynamic 

loads in DC zones could not increase their load demands instantaneously. The frequency 

oscillation was in the acceptable range. 

 Performance analysis was performed using two metrics, 1J  and 2J . 1J
 
measures 

the convergence speed of a state trajectory; 2J  measures the maximum deviation of a 

state trajectory. Performance analysis results for the MVAC multi-agent system 

indicated that the propulsion load could fully compensate for the load changes caused by 

a pulse load when the magnitude of the pulse load was less than the propulsion load 

demand. The frequency and voltage oscillations were significantly reduced by the 

propulsion load compensation. However, if the magnitude of a pulse load was larger 

than the propulsion load demand, the propulsion load could not fully compensate for the 

load changes, which caused larger frequency and voltage oscillations in the system. The 

value of metric 1, 1J , was equal to 0, when the propulsion load could fully compensate 

the impact of the pulse load. In extreme cases, when the magnitude of the pulse load was 
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much larger than the propulsion load demand, the value of metric 1, 1J , had a positive 

value, which was still less than the maximum allowed value. The value of metric 2, 2J , 

increased with the increase of the magnitude of the pulse load. In some extreme cases, 

when the magnitude of the pulse load was much larger than the propulsion load demand,  

the value of metric 2, 2J , was larger than the tolerance value, which means that the 

frequency requirements in IEEE-STD-45were not satisfied. 

 In the DC zone multi-agent system performance analysis, the pulse load at 

various magnitudes and ramp rates was studied. When the pulse load was connected to 

the system, the value of metric 2, 2J , was almost the same in each case with different 

ramp rates or magnitudes of the pulse load. When the pulse load was disconnected from 

the system, the value of metric 2, 2J , increased with the increase of the magnitude or 

ramp rate of the pulse load. The value of metric 2, 2J , was always less than the tolerance 

value. Thus, the dynamic performance of the DC zone multi-agent system satisfied the 

requirements in IEEE-STD-45. 

 

6.2  Contributions 

 The contributions of this dissertation are summarized as follows: 

1) The developed heterogeneous multi-agent system framework is one of the 

first applications to address the real-time load management problem for all-

electric ship power systems. This work is one of the first applications of the 
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multi-agent system cooperative control methodology to solve secondary 

control problems in power systems areas. 

2) The developed heterogeneous multi-agent system framework successfully 

coordinates propulsion loads and pulse loads, which can greatly improve the 

power quality of all-electric ship power systems. Moreover, the 

heterogeneous multi-agent system framework integrates multiple agents in 

DC zones with different dynamic models, which can significantly improve 

the accuracy of cooperative controllers. 

3) The multi-agent system cooperative controller was used for the first time to 

solve a hybrid control problem, which includes continuous control variables 

and switch control variables to control individual loads in all-electric ship 

power systems.   

4) The developed multi-agent system-based real-time load management 

methodology has great potential to be extended to other types of isolated 

power systems, such as microgrids and islanded power systems in oil fields. 

 

6.3  Future work 

 In the future work, the robust analysis of the multi-agent system-based 

cooperative controller could be studied. In the multi-agent system design, reduced-order 

converter and load agent models were used. The model simplifications introduced some 

errors in the multi-agent system. Moreover, continuous control variables and switch 

control variables are included in the real-time load management problem, which may 
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reduce the accuracy of the cooperative controller. The robust analysis could help to 

determine a region that the cooperative controller can work normally. 

 The developed bio-inspired multi-agent system methodology could also be 

applied to other isolated power systems such as microgrids. Microgrids can operate in 

grid-connected mode or islanded mode and can smoothly transient between these two 

modes. Moreover, microgrids employ a large number of intermittent energy resources 

such as wind and solar. These intermittent energy resources may change the generation 

capacity significantly depending on the weather [96], [97]. The developed real-time load 

management technique can be used to rebalance the generation and load in real time 

when the available generation power of microgrids changes. In addition, the dynamic 

balancing of generation and loads of microgrids needs to be achieved to mitigate system 

transients during switching to islanded mode [98]. Furthermore, microgrids in islanded 

mode include limited rotating inertia and fast system dynamics, and developed real-time 

load management technique can balance the load and generation in operational real time 

to improve frequency and voltage behaviors in microgrids.  
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APPENDIX A 

MATHEMATICAL MODELS OF AGENTS 

 

A.1 Generator Agent 

 The diagram of MTG agent 1 is shown in Figure A.1. The input signals of the 

MTG agent 1 are frequency deviation, status, and output power of MTG generator 1. 

The MTG generator 1 status )(MTG1 its Δ
 
can be ‘0’ or ‘1’. If MTG generator is in service, 

the status is ‘1’; otherwise, the status is ‘0’. Since the generation capacity of MTG 

generator is 36 MW, the gain of MTG agent 1 1K  is chosen as 36. The generation 

capacity of MTG generator 1 is shown in (A-1). 

)()( MTG111_MTG iicapacity tsKtP Δ⋅=Δ                                               (A-1) 

 
 

)( itΔΔω

)(1_MTG icapacity tP Δ

)(MTG1 itP Δ

)(MTG1 itP Δ

)( itΔΔω

)(MTG1 its Δ

 
 

Figure A.1 Diagram of MTG agent 1 in the MVAC multi-agent system 
 
 
 

 Since only MTG agent 1 is used to measure the frequency, other generator agents 

do not measure the system frequency. The diagram of MTG agent 2 is shown in Figure 

A.2. The input signals of the MTG agent 2 are status, and output power of MTG 

generator 2. The gain of MTG agent 2 1K  is also chosen as 36. The diagram of the ATG 
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agent is shown in Figure A.3. The input signal of the ATG agent status is )(ATG its Δ , and 

output power of the ATG generator. Since the generation capacity of ATG generator is 4 

MW, the gain of the ATG agent 2K  is chosen as 4. The generation capacity of ATG 

generator is shown in (A-2). 

)()( ATG2_ATG iicapacity tsKtP Δ⋅=Δ                                     (A-2) 
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Figure A.2 Diagram of MTG agent 2 in the MVAC multi-agent system 
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Figure A.3 Diagram of ATG agent in the MVAC multi-agent system 
 
 
 
A.2 Propulsion Load Agent 

 The diagram of the ship speed controller in the propulsion load agent is shown in 

Figure A.4. The input signals of the speed controller are the actual ship speed and speed 

reference. The ship speed controller is shown in (A-3), which is the transfer function of 

PI controller 1 in Figure 4.21. 
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skksG IP 111 )( +=                                             (A-3) 

where, 1Pk  and 1Ik  are the proportional and integral gains of the speed controller, which 

were chosen as 1 and 500, respectively; the maximum limit maxP  and minimum limit 

minP  of the speed controller were chosen as 1.1 and 0 (p.u.), respectively. 
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)( iship tv Δ

 
 

Figure A.4 Diagram of the ship speed controller in the propulsion load agent in the MVAC multi-agent 
system 

 
 
 

 The diagram of the frequency regulation controller in the propulsion load agent is 

shown in Figure A.5. The input signal of the controller is the frequency deviation of 

MTG generator 1. The frequency regulation controller in propulsion load agent 1 is 

shown in (A-4), which is the transfer function of PI controller 2 in Figure 4.21. 

skksG IP 222 )( +=                                               (A-4) 

where, 2Pk  and 2Ik  are the proportional and integral gains of the frequency regulation 

controller, which were chosen as 20 and 1, respectively; the maximum and minimum 

limits of the frequency regulation controller were chosen as 1.0 and 0 (p.u.), 

respectively. This controller is activated when the absolute value of the frequency 

deviation ωΔ  is larger than 0.5% of the nominal value; the controller is deactivated 

when ωΔ  is less than 0.1% of the nominal value. A hysteresis component was used to 
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implement this function. This hysteresis component can eliminate the high frequency 

switching of the controller, which improves the dynamic performance of the system. 
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Figure A.5 Diagram of the frequency regulation controller in propulsion load agent 1 in the MVAC multi-
agent system 

 
 
 

 The diagram of the voltage controller in the propulsion load agent is shown in 

Figure A.6. VK  is chosen as 10. If the input voltage of the propulsion load is less than 

90% of the nominal value, the controller is activated to decrease the power set-point of 

the propulsion load to make the voltage return to nominal value; if the input voltage of 

the propulsion load is larger than 95% of the nominal value, the controller is deactivated. 

The hysteresis component is used to eliminate the high frequency switching of the 

voltage controller. 
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Figure A.6 Diagram of the voltage controller in the propulsion load agent in the MVAC multi-agent 
system 
 
 



 

 

293

A.3 Pulse Load Agent 

 The implementation of the dynamic constraint of the cable serving the pulse load 

is shown in Figure A.7. IntegralT  is the total time of the violation of the cable ampacity 

constraint in a period time of T. If IntegralT  is no larger than the maximum allowed time 

1T , the pulse load is still served; otherwise, the pulse load is disconnected immediately. 

The parameters of the pulse load agent are shown as 10=T  and 51 =T . 
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Figure A.7 Diagram of the pulse load agent in the MVAC multi-agent system 
 
 
 

A.4 DC-DC Converter Agent 

 The model of DC-DC converter agent i is shown in (A-5). 
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where, )()()( ti
CL

d
CL
txtu iout

ii

i

ii

i
iC −− ⋅+−= . The parameters iL  and iC  in the agent model 

are obtained from the DC-DC converter circuit model. )(txi  and )(tyi  are defined as (A-

6). 
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                                      (A-6) 

The DC-DC converter agent models have three different types – 375 V DC-DC 

converter agent, 650 V DC-DC converter agent, and 800 V DC-DC converter agent. The 

parameters of DC-DC converter agent models are shown in Table A.1. 

 
 

Table A.1 Parameters of DC-DC converter agents in the DC zone multi-agent system 
 

Parameters Li (mH) Ci (μF) di 
375 V DC converter agent 234 1000 0.375 
650 V DC converter agent 228 1000 0.65 
800 V DC converter agent 160 1000 0.8 

 
 
 

A.5 Constant Load Agent 

 The constant load agent j is shown as (A-7). 
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where, ( ) )(ˆ)()()()()(
11111111 11 iLLLjLinLLLjL tuCLtqLvCLtztu

jjjjjjjj
Δ⋅⋅−+−= , jj inLLj vLtq

11
(/1)(1 ⋅=  

))(
1

tv
jcL− , )()( 11 titz jj = , and 1iM  is the total number of constant load agents in the ith 

load-layer multi-agent system. The equivalent inductor 
jLL

1
 and capacitor 

jLC
1

 of each 

constant load agent were chosen as 0.005 H and 0.0002 F, respectively. 
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A.6 DC Motor Agent 

 The DC motor load agent model is expressed in (A-8). 
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where, 
kk inLdk vtPtz

22
)()(2 = , 

kinLv
2

 is the input voltage of the DC motor load agent, 

)(ˆ)/()()/()()/1()( 2222122 222222 ikdkkL tuTKtqTTtzTtu
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22
)()(ˆ pointset2 Δ=Δ − , 

and 2iM  is the total number of DC motor load agents in the ith load-layer multi-agent 

system. The parameters of DC motor agent models are shown in Table A.2. 

 
 

Table A.2 Parameters of DC motor agents in one DC zone 
 

Component name Kd T1 T2 
DC motor 1 1 0.2203 0.01 
DC motor 2 1 0.3289 0.01 
DC motor 3 1 0.3648 0.01 
DC motor 4 1 0.2203 0.01 
DC motor 5 1 0.3648 0.01 
DC motor 6 1 0.3123 0.01 

 
 
 
A.7 AC Motor Agent 

 The AC motor load agent model is expressed in (A-9).  
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where, 
ll inLdl vtPtz

33
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linLv
3

 is the input voltage of the AC motor load agent, 
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and 3iM  is the total number of AC motor load agents in the load-layer multi-agent 

system. The parameters of AC motor agent models are shown in Table A.3. 

 
 

Table A.3 Parameters of AC motor agents in one DC zone 
 

Component name Kd T1 T2 
AC motor 1 1 0.1789 0.002 
AC motor 2 1 0.2763 0.0116 
AC motor 3 1 0.3394 0.0105 
AC motor 4 1 0.3 0.02 
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APPENDIX B 

SYSTEM PARAMETERS OF ALL-ELECTRIC SHIP POWER SYSTEM COMPUTER 

MODEL 

 

B.1 All-Electric Ship Power System Computer Model for PSCAD Simulation 

 The one-line diagram of the notional all-electric ship power system model used 

in PSCAD simulation is shown in Figure B.1. 

 
 

 
 

Figure B.1 One-line diagram of the simplified notional all-electric ship power system computer model for 
PSCAD simulation 
 
 
 
B.1.1 Parameters of generators 

 The parameters of the MTG generator are shown in Table B.1 [11]. 
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Table B.1 Parameters of the MTG generator in the notional all-electric ship power system 
 

Name Parameter Value 
Rated RMS Line-Line Voltage Vgl-l 13.8 kV 
Active Power Pg 36 MW 
Power Factor pf 0.8 
Frequency freq 60 Hz 
Armature Resistance at 95ºC Ra 0.010Ω 
Potier reactance Xp 0.17 
D axis unsaturated reactance Xd 1.55 
D axis unsaturated transient reactance Xd' 0.22 
D axis unsaturated sub-transient reactance Xd'' 0.14 
D axis open circuit unsaturated transient time constant Tdo' 8.95s 
D axis open circuit unsaturated sub-transient time constant Tdo'' 0.036s 
Q axis unsaturated reactance Xq 0.76 
Q axis unsaturated sub-transient reactance Xq'' 0.20 
Q axis open circuit unsaturated sub-transient time constant Tqo'' 0.12 s 
Inertia constant H 1.49s 

 
 
 

 The parameters of the ATG generator are shown in Table B.2 [11]. 

 
 

Table B.2 Parameters of the ATG generator in the notional all-electric ship power system 
 

Name Parameter Value 
Rated RMS Line-Line Voltage Vgl-l 13.8 kV 
Active Power Pg 4 MW 
Power Factor pf 0.8 
Frequency freq 60 Hz 
Armature Resistance at 95ºC Ra 0.199 Ω 
Potier reactance Xp 0.18 
D axis unsaturated reactance Xd 1.25 
D axis unsaturated transient reactance Xd' 0.24 
D axis unsaturated sub-transient reactance Xd'' 0.17 
D axis open circuit unsaturated transient time constant Tdo' 4.11 s 
D axis open circuit unsaturated sub-transient time constant Tdo'' 0.023 s 
Q axis unsaturated reactance Xq 0.62 
Q axis unsaturated sub-transient reactance Xq'' 0.26 
Q axis open circuit unsaturated sub-transient time constant Tqo'' 0.061 s 
Inertia constant H 1.06 s 

 
 
 

 The type of exciters used in the simulation is IEEE Alternator Supplied Rectifier 

Excitation System #1 (AC1A). The parameters of exciters of the MTG and ATG 

generators are shown in Table B.3 [11].  
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Table B.3 Parameters of the exciter in the notional all-electric ship power system 
 

Name Parameter Value 
Lead time constant TC 0 
Lag time constant TB 0 
Regulator gain KA 400 pu 
Regulator time constant TA 0.02 s 
Maximum regulator internal voltage  VAMAX 14.5 pu 
Minimum regulator internal voltage VAMIN -14.5 pu 
Maximum regulator output  VRMAX 6.03 pu 
Minimum regulator output VRMIN -5.43 pu 
Rate feedback gain KF 0.03 
Rate feedback time constant TF 1 s 
Exciter time constant TE 0.8 s 
Exciter constant related to field KE 1 pu 
Field circuit commutating reactance KC 0.2 pu 
Demagnitizing factor KD 0.38 pu 
Saturation at VE1 SE(VE1) 0.1 pu 
Exciter voltage for SE1 VE1 4.18 pu 
Saturation at VE2 SE(VE2) 0.03 pu 
Exciter voltage for SE2 VE2 3.14 pu 

 
 
 

B.1.2 Parameters of transformer 

 The parameters of transformers in the MVAC system of the all-electric ship 

power system are shown in Table B.4 [11].  

 
 

Table B.4 Parameters of transformer in the MVAC system 
 

Parameter Value 
Primary line-to-line voltage 13.8 kV 
Secondary line-to-line voltage 4.16 kV 
Winding type D-D 
3 phase transformer MVA 25 MVA 
Base operation frequency 60 Hz 
Positive sequence leakage reactance 0.1 pu 
Cooper losses 0.001 pu 
No load losses 0.001 pu 
Saturation placed on:  Winding-2 
Air Core Reactance 0.2 pu 
In rush decay time constant 1.0 s 
Knee voltage 1.25 pu 
Time to release flux clipping 0.1 s 
Magnetizing current 1% 
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B.1.3 Parameters of advanced induction motor (AMI) and propulsion converter 

 The parameters of the advanced induction motor in the all-electric ship power 

system are shown in Table B.5 [11].  

 
Table B.5 Parameters of the advanced induction motor in the notional all-electric ship power system 

 
Parameter Value 
Rated power 45 MVA 
Rated voltage 12 kV 
Base angular frequency 377 
Stator / rotor turns ratio 2.637687 
Angular moment of inertia (J = 2H) 1 sec 
Mechanical damping 0.01 pu 
Stator resistance 0.0034 pu 
Wound rotor resistance 0.00607 pu 
Magnetizing inductance 0.9 pu 
Stator leakage inductance 0.0102 pu 
Wound rotor leakage inductance 0.011 pu 

 
 
 

 The propulsion system and the hydrodynamics for the marine propulsion system 

have been discussed in detail in [10]. The diagram of propulsion converter is shown in 

Figure B.2. The parameters of the propulsion converter dcL  and dcC  are chosen as 1 mH 

and 10 mF, respectively. 
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Figure B.2 Diagram of the propulsion converter and advanced induction motor 
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B.1.4 Parameters of the pulse load 

 The diagram of the pulse load charging circuit is shown in Figure B.3 [12], [13]. 

The inductor PL  and capacitor PC  in the charging circuit in the case studies were chosen 

as 1 mH and 10 mF, respectively. mL  was chosen as 0. PR  is the equivalent resistor of 

the pulse load, which is determined by the charging status of the pulse load. 1D  to 6D  

are diodes in the rectifier. The load demand of the pulse load is shown as (B-1). 

p

C
pulse R

tV
tP p
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Figure B.3 Diagram of a pulse load charging circuit in the all-electric ship power system 
 
 
 
B.1.5 Parameters of DC-DC converters in PCM1 

 A diagram of the DC-DC converter model in PCM1 is shown in Figure B.4. The 

DC-DC converter is controlled using a PI controller, which is expressed as (B-2). 

skksG IP +=)(                                                (B-2) 

where, Pk  and Ik  are proportional and integral gains of the PI controller. 
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Figure B.4 Diagram of DC-DC converter model with a voltage controller 
 
 
 
 The parameters of DC-DC converters in PCM1 are summarized in Table B.6. L 

and C are the inductor and capacitor of the DC-DC converter, respectively. pk  and ik  

are the proportional and integral gains of the DC-DC converter, respectively. d is the 

duty ratio of the DC-DC converter. The switching frequency of the converter was 5 kHz. 

 
 

Table B.6 Parameters of DC-DC converters in PCM1 
 

Parameter 375 V DC-DC converter 650 V DC-DC converter 800 V DC-DC converter 
L 234 mH 228 mH 160 mH 
C 1000 μF 1000 μF 1000 μF 
kp

 
0.1 1 0.05 

ki
 

0 0 0.01 
d 0.375 0.650 0.800 

 
 
 

B.1.6 Parameters of PCM2 and PCM4 

 The PCM2 is a three phase full-bridge inverter with bipolar sinusoidal pulsed 

width modulation, which has been implemented in [11], [99]. The detail parameters are 
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also shown in [11], [99]. The diagram of the PCM2 is shown in Figure B.5. AR , BR  and 

CR  are equivalent loads. The parameter of PCM2 1C  is chosen as 270 µF. 
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Figure B.5 Diagram of PCM2 in DC zones 
 
 
 
 PCM4 is an uncontrolled rectifier, which includes an AC transformer and an 

uncontrolled rectifier. The implementation and parameters of PCM4 are discussed in 

[11], [99]. The diagram of PCM4 is shown in Figure B.6. The parameters of PCM4 

transformer are shown in Table B.7. The parameters of rectifier L and C are chosen as 

1.1 mH and 102 mF, respectively. 
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Figure B.6 Diagram of PCM4 in DC zones 
 
 
 

Table B.7 Parameters of PCM4 transformer 
 

Parameter Value 
Primary line-to-line voltage 4.16 kV 
Secondary line-to-line voltage 0.8 kV 
Winding type D-D 
3 phase transformer MVA 2.5 MVA 
Base operation frequency 60 Hz 
Positive sequence leakage reactance 0.06 pu 
Cooper losses 0 
No load losses 0 
Saturation placed on:  Winding-2 
Air Core Reactance 0.2 pu 
In rush decay time constant 1.0 s 
Knee voltage 1.25 pu 
Time to release flux clipping 0.1 s 

 
 
 
B.1.7 Parameters of cables 

 The simplified DC cable model used in the case studies is shown in Figure B.7. 
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Figure B.7 Diagram of a simplified DC cable model in the all-electric ship power system 
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 AC cables in the notional all-electric ship power system were also modeled as RL 

circuit. The parameters of the DC and AC cables are shown in Tables B.8 and B.9. The 

lengths of AC cables are shown in Table B.10. 

 
Table B.8 Parameters of AC cables in the all-electric ship power system 

 
Parameter AC cable 1 AC cable 2 AC cable 3 

R 6.314×10-5 Ω/meter 6.314×10-5 Ω/meter 6.314×10-5 Ω/meter 
L

 
3.42×10-10 H/meter 3.42×10-10 H/meter 3.42×10-10 H/meter 

 
 
 

Table B.9 Parameters of DC cables in the all-electric ship power system 
 

Parameter DC cable 1 DC cable 2 DC cable 3 DC cable 4 DC cable 5 
R 10-5 Ω 10-5 Ω 10-4 Ω 5×10-5 Ω 2×10-5 Ω 
L

 
10-7 H 10-7 H 10-4 H 5×10-7 H 2×10-7 H 

 
 
 

Table B.10 AC cable lengths in the all-electric ship power system 
 

Starting End Type of cable Length (meter) 
4.16 kV AC bus 1 PCM4-1 AC cable 3 15 
4.16 kV AC bus 2 PCM4-2 AC cable 3 15 
4.16 kV AC bus 1 Propulsion load AC cable 2 15 

MTG bus Pulse load AC cable 1 15 
MTG bus ATG bus AC cable 1 100 

 
 
 

B.1.8 Parameters of loads in DC zones 

 The constant DC loads are shown in Figure B.8. The parameters of constant DC 

loads are shown in Table B.11. The constant AC loads are shown in Figure B.9. The 

parameters of constant AC loads are shown in Table B.12. The DC motors are shown in 

Figure B.10. The parameters of DC motors are shown in Table B.13. The parameters for 

AC motors 1 and 3 in DC zones are shown in Table B.14 [11]. The parameters for AC 

motors 2 and 4 in DC zones are shown in Table B.15 [11]. 
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Figure B.8 Diagram of a constant DC load model in DC zones 
 
 
 

Table B.11 Parameters of DC motors in DC zones 
 

Parameter R j  (Ω) C j (F) L j (H) 
Constant load 1 1.219 0.0002 0.005 
Constant load 2 1.953 0.0002 0.005 
Constant load 3 0.929 0.0002 0.005 
Constant load 4 2.009 0.0002 0.005 
Constant load 5 3.661 0.0002 0.005 
Constant load 6 19.205 0.0002 0.005 
Constant load 7 2.123 0.0002 0.005 
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Figure B.9 Diagram of a constant AC load model in DC zones 
 
 
 

Table B.12 Parameters of constant AC loads in DC zones 
 

Parameter R’j 
Constant load 8 4.754 
Constant load 9 5.063 

Constant load 10 2.383 
Constant load 11 1.693 
Constant load 12 1.144 
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Figure B.10 Diagram of DC motor model in DC zones 
 
 
 

Table B.13 Parameters of DC motors in DC zones 
 

Parameter Rated voltage (V) Rated current (A) J B kM 
DC motor 1 375 96 0.178 0.00355 0.88 
DC motor 2 375 308 0.178 0.00355 1 
DC motor 3 650 177 0.178 0.00355 1 
DC motor 4 650 55 0.178 0.00355 0.88 
DC motor 5 650 177 0.178 0.00355 1 
DC motor 6 650 73 0.178 0.00355 0.88 

 
 
 

Table B.14 Parameters of the AC motors 1 and 3 in DC zones 
 

Parameter Value 
Rated line-to-line voltage (RMS) 0.45 kV 
Frequency 60 Hz 
Design ratio 1 pu 
Power factor 0.884 pu 
Efficiency 0.920 pu 
Slip at full load 0.059 pu 
Starting current at full volts 6.82 pu 
Starting torque at full volts 2.59 pu 
Maximum torque 3.28 pu 
Number of poles 2 
Polar moment of Inertia 3.0817 kg·m2 
mechanical damping 0.008 pu 
Constant torque (load torque) 0.82 pu 
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Table B.15 Parameters of the AC motors 2 and 4 in DC zones 
 

Parameter Value 
Rated line-to-line voltage (RMS) 0.45 kV 
Frequency 60 Hz 
Design ratio 0.6 pu 
Power factor 0.816 pu 
Efficiency 0.959 pu 
Slip at full load 0.039 pu 
Starting current at full volts 6.96 pu 
Starting torque at full volts 1.73 pu 
Maximum torque 3.33 pu 
Number of poles 2 
Polar moment of Inertia 3.0817 kg·m2 
mechanical damping 0.008 pu 
Constant torque (load torque) 0.82 pu 

 
 

B.2 Simplified Notional All-Electric Ship Power System Model for MVAC Multi-

Agent System Studies 

 The diagram of a simplified notional all-electric ship power system simulation 

model for the MVAC multi-agent system studies is shown in Figure B.11. The 

parameters of the MTG and ATG generators, transformers, propulsion load, and pulse 

load are given in Appendix B.1.1-Appendix B.1.4. The parameters of cables are given in 

Appendix B.1.7. This simplified notional system was used in the MVAC multi-agent 

system – case studies and performance analysis, as shown in sections 5.3.1 and 5.4.1.  

 In the notional system, it was assumed that the port side DC distribution buses 

were served by PCM4-1 and starboard side DC distribution buses were served by 

PCM4-2. In the MVAC system case studies, all the loads served by PCM4-1 or PCM4-2 

were aggregated together and modeled using a constant load. The diagram of a PCM4 

and its load is shown in Figure B.12. It was assumed that the lumped DC loads 1 and 2 

were 2 MW in the simulation. The lumped DC loads were modeled using constant 



 

 

309

resistors. The values of constant resistors 14−PCMR  and 24−PCMR  served by PCM4-1 and 

PCM4-2 were both chosen as 2 Ω.  

 The AC cable connecting bus 1 and bus 4 was used to test the dynamic cable 

constraints in the MVAC system. The cable connects to the MTG generator bus to the 

pulse load, which is shown in Figure B.11. 

 
 

 
 

Figure B.11 Diagram of a simplified notional all-electric ship power system simulation model for MVAC 
multi-agent system studies 

 
 
 

PCM4R

 
 

Figure B.12 Diagram of a PCM4 and its load used for MVAC multi-agent system case studies 
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B.3 Simplified Notional All-Electric Ship Power System Model for DC Zone Multi-

Agent System Studies 

 The diagram of a simplified notional all-electric ship power system simulation 

model used for the DC zone multi-agent system studies is shown in Figure B.13. The 

system includes one ATG, two transformers, one pulse load, and two DC zones. The 

MTG generator was out of service in the DC zone multi-agent system case studies. The 

parameters of the ATG generator, transformers, and pulse load are given in Appendices 

B.1.1, B.1.2 and B.1.4, respectively. The models and parameters of PCM1, PCM2, and 

PCM4 in DC zones are given in Appendices B.1.5 and B.1.6. The parameters of the AC 

and DC cables are given in Appendix B.7. The models and parameters of loads in DC 

zones are given in Appendix B.1.8. This simplified notional system was used in the DC 

zone multi-agent system – case studies and performance analysis, as shown in sections 

5.3.2 and 5.4.2.  

 

B.4 Simplified Notional All-Electric Ship Power System Simulation Model for 

MVAC and DC Zone Multi-Agent Systems Coordination Case Study 

 The diagram of a simplified notional all-electric ship power system simulation 

model used for the coordination of MVAC and DC zone multi-agent systems case study 

is shown in Figure B.14. The system includes one MTG, one ATG, two transformers, 

one propulsion load, one pulse load, and two DC zones. The parameters of the MTG and 

ATG generators, transformers, propulsion load, and pulse load are given in Appendices 

B.1.1 to B.1.4, respectively. The models and parameters of PCM1, PCM2, and PCM4 in 
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DC zones are given in Appendices B.1.5 and B.1.6. The parameters of the AC and DC 

cables are given in Appendix B.7. The models and parameters of loads in DC zones are 

given in Appendix B.1.8. This simplified notional system was used in the coordination 

of MVAC and DC zone multi-agent systems case study, as shown in sections 5.3.3. 
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Figure B.13 Diagram of a simplified notional all-electric ship power system simulation model for DC zone multi-agent system studies 
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Figure B.14 Diagram of a simplified notional all-electric ship power system simulation model for coordination of MVAC and DC zone multi-agent 
systems case study 
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