701 research outputs found

    Соціокультурні аспекти розвитку системи дитячо-юнацького туризму (на прикладі Харківської обласної станції юних туристів)

    Get PDF
    Метою статті є аналіз соціокультурних аспектів сучасного розвитку системи дитячо-юнацького туризму, висвітлення досвіду роботи Харківської обласної станції юних туристів в зазначеному напрямку. Аналіз досліджень і публікацій. Дослідженню питань розвитку системи дитячо-юнацького туризм

    Modelling climate related performances of building wall coatings and understanding the portability of the "Kunzel" rule in different climates

    Get PDF
    How may a coating affect the hygrothermal performance of the building envelope in different climates? Years ago, Helmut Kunzel, one of the fathers of Building Physics, proposed, a simple, well-known rule, relating two characteristics of a coating: its water absorption coefficient and its vapour diffusion. The "Kunzel rule" (and the associated diagram), based on a model confirmed by field tests in the German climate, set an upper limit to both parameters and their product, became a German standard and a practice among experts, practitioners and manufacturers, in many European countries. This paper proposes the results of an analysis aiming to verify its portability in other climates and is based on an extensive simulation of the hygrothermal performances of a reference wall in six different climatic conditions

    The modelling cycle for collective animal behaviour

    Get PDF
    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together

    Principles of 2D terahertz spectroscopy of collective excitations: the case of Josephson plasmons in layered superconductors

    Full text link
    Two-dimensional terahertz spectroscopy (2DTS), a terahertz analogue of nuclear magnetic resonance, is a new technique poised to address many open questions in complex condensed matter systems. The conventional theoretical framework used ubiquitously for interpreting multidimensional spectra of discrete quantum level systems is, however, insufficient for the continua of collective excitations in strongly correlated materials. Here, we develop a theory for 2DTS of a model collective excitation, the Josephson plasma resonance in layered superconductors. Starting from a mean-field approach at temperatures well below the superconducting phase transition, we obtain expressions for the multidimensional nonlinear responses that are amenable to intuition derived from the conventional single-mode scenario. We then consider temperatures near the superconducting critical temperature TcT_c, where dynamics beyond mean-field become important and conventional intuition fails. As fluctuations proliferate near TcT_c, the dominant contribution to nonlinear response comes from an optical parametric drive of counter-propagating Josephson plasmons, which gives rise to 2D spectra that are qualitatively different from the mean-field predictions. As such, and in contrast to one-dimensional spectroscopy techniques, such as third harmonic generation, 2DTS can be used to directly probe thermally excited finite-momentum plasmons and their interactions. Our theory provides a clear interpretation of recent 2DTS measurements on cuprates, and we discuss implications beyond the present context of Josephson plasmons

    HMD-TMO: A Tone Mapping Operator for 360° HDR Images Visualization for Head Mounted Displays

    Get PDF
    International audienceWe propose a Tone Mapping Operator, denoted HMD-TMO, dedicated to the visualization of 360 • High Dynamic Range images on Head Mounted Displays. The few existing studies about this topic have shown that the existing Tone Mapping Operators for classic 2D images are not adapted to 360 • High Dynamic Range images. Consequently, several dedicated operators have been proposed. Instead of operating on the entire 360 • image, they only consider the part of the image currently viewed by the user. Tone mapping a part of the 360 • image is less challenging as it does not preserve the global luminance dynamic of the scene. To cope with this problem, we propose a novel tone mapping operator which takes advantage of both a view-dependant tone mapping that enhances the contrast, and a Tone Mapping Operator applied to the entire 360 • image that preserves global coherency. Furthermore, we present a subjective study to model lightness perception in a Head Mounted Display

    Squeezed Josephson plasmons in driven YBa2_2Cu3_3O6+x_{6+x}

    Full text link
    The physics of driven collective modes in quantum materials underpin a number of striking non-equilibrium functional responses, which include enhanced magnetism, ferroelectricity and superconductivity. However, the coherent coupling between multiple modes at once are difficult to capture by single-pump probe (one-dimensional) spectroscopy, and often remain poorly understood. One example is phonon-mediated amplification of Josephson plasmons in YBa2_2Cu3_3O6+x_{6+x}, in which at least three normal modes of the solid are coherently mixed as a source of enhanced superconductivity. Here, we go beyond previous pump-probe experiments in this system and acquire two-dimensional frequency maps using pairs of mutually delayed, carrier envelope phase stable mid-infrared pump pulses, combined with measurements of the time-modulated second-order nonlinear optical susceptibility. We find that the driven zone-center phonons amplify coherent pairs of opposite-momentum Josephson plasma polaritons, generating a squeezed state of interlayer phase fluctuations. The squeezed state is a potentially important ingredient in the microscopic physics of photo-induced superconductivity in this and other materials.Comment: 20 pages, 7 figure

    High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury

    Get PDF
    Ischemia/reperfusion (I/R) injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI). There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive parametric magnetic resonance imaging (MRI) may elucidate spatio-temporal pathophysiological changes in the kidney by monitoring the MR relaxation parameters T* and T, which are known to be sensitive to blood oxygenation. The aim of our study was to establish the technical feasibility of fast continuous T*/T mapping throughout renal I/R. MRI was combined with a remotely controlled I/R model and a segmentation model based semi-automated quantitative analysis. This technique enabled the detailed assessment of changes in all kidney regions during ischemia and early reperfusion. Significant changes in T* and T were observed shortly after induction of renal ischemia and during the initial reperfusion phase. Our study demonstrated for the first time that continuous and high temporal resolution parametric MRI is feasible for monitoring and characterization of I/R induced AKI in rats. This technique may help in the identification of the timeline of key events responsible for development of renal damage in hypoperfusion-induced AKI

    Probing Inhomogeneous Cuprate Superconductivity by Terahertz Josephson Echo Spectroscopy

    Full text link
    Inhomogeneities play a crucial role in determining the properties of quantum materials. Yet methods that can measure these inhomogeneities are few, and apply to only a fraction of the relevant microscopic phenomena. For example, the electronic properties of cuprate materials are known to be inhomogeneous over nanometer length scales, although questions remain about how such disorder influences supercurrents and their dynamics. Here, two-dimensional terahertz spectroscopy is used to study interlayer superconducting tunneling in near-optimally-doped La1.83Sr0.17CuO4. We isolate a 2 THz Josephson echo signal with which we disentangle intrinsic lifetime broadening from extrinsic inhomogeneous broadening. We find that the Josephson plasmons are only weakly inhomogeneously broadened, with an inhomogeneous linewidth that is three times smaller than their intrinsic lifetime broadening. This extrinsic broadening remains constant up to 0.7Tc, above which it is overcome by the thermally-increased lifetime broadening. Crucially, the effects of disorder on the Josephson plasma resonance are nearly two orders of magnitude smaller than the in-plane variations in the superconducting gap in this compound, which have been previously documented using Scanning Tunnelling Microscopy (STM) measurements. Hence, even in the presence of significant disorder in the superfluid density, the finite frequency interlayer charge fluctuations exhibit dramatically reduced inhomogeneous broadening. We present a model that relates disorder in the superfluid density to the observed lifetimes
    corecore