76 research outputs found

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Naupliar and Metanaupliar development of Thysanoessa raschii (Malacostraca, Euphausiacea) from GodthĂĄbsfjord, Greenland, with a reinstatement of the ancestral status of the free-living Nauplius in Malacostracan evolution

    Get PDF
    The presence of a characteristic crustacean larval type, the nauplius, in many crustacean taxa has often been considered one of the few uniting characters of the Crustacea. Within Malacostraca, the largest crustacean group, nauplii are only present in two taxa, Euphauciacea (krill) and Decapoda Dendrobranchiata. The presence of nauplii in these two taxa has traditionally been considered a retained primitive characteristic, but free-living nauplii have also been suggested to have reappeared a couple of times from direct developing ancestors during malacostracan evolution. Based on a re-study of Thysanoessa raschii (Euphausiacea) using preserved material collected in Greenland, we readdress this important controversy in crustacean evolution, and, in the process, redescribe the naupliar and metanaupliar development of T. raschii. In contrast to most previous studies of euphausiid development, we recognize three (not two) naupliar (= ortho-naupliar) stages (N1-N3) followed by a metanauplius (MN). While there are many morphological changes between nauplius 1 and 2 (e.g., appearance of long caudal setae), the changes between nauplius 2 and 3 are few but distinct. They involve the size of some caudal spines (largest in N3) and the setation of the antennal endopod (an extra seta in N3). A wider comparison between free-living nauplii of both Malacostraca and non-Malacostraca revealed similarities between nauplii in many taxa both at the general level (e.g., the gradual development and number of appendages) and at the more detailed level (e.g., unclear segmentation of naupliar appendages, caudal setation, presence of frontal filaments). We recognize these similarities as homologies and therefore suggest that free-living nauplii were part of the ancestral malacostracan type of development. The derived morphology (e.g., lack of feeding structures, no fully formed gut, high content of yolk) of both euphausiid and dendrobranchiate nauplii is evidently related to their non-feeding (lecithotrophic) status

    Measurement of branching fractions and resonance contributions for B-0 ->(D)over-bar(0)K(+)pi(-) and search for B-0 ->(DK+)-K-0 pi(-) decays

    Get PDF
    Using 226x10(6) Upsilon(4S)-> B (B) over bar events collected with the BABAR detector at the PEP-II e(+)e(-) storage ring at the Stanford Linear Accelerator Center, we measure the branching fraction for B-0->(D) over bar (0)K(+)pi(-), excluding B-0-> D*-K+, to be B(B-0->(0)K(+)pi(-))=(88 +/- 15 +/- 9)x10(-6). We observe B-0->(D) over bar K-0(*)(892)(0) and B-0-> D-2(*)(2460)K--(+) contributions. The ratio of branching fractions B(B-0-> D*-K+)/B(B-0-> D(*-)pi(+))=(7.76 +/- 0.34 +/- 0.29)% is measured separately. The branching fraction for the suppressed mode B-0-> D(0)K(+)pi(-) is B(B-0-> D(0)K(+)pi(-))< 19x10(-6) at the 90% confidence level

    Comparative floral structure and systematics in Chrysobalanaceae s.l. (Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, Trigonaiceae; Malpighiales)

    Full text link
    Chrysobalanaceae s.l., one of the few suprafamilial subclades of Malpighiales that is supported by molecular phylogenetic analyses, and containing Chrysobalanaceae, Dichapetalaceae, Euphroniaceae, and Trigoniaceae, was comparatively studied with regard to floral structure. The subclade is well supported by floral structure. Potential synapomorphies for Chrysobalanaceae s.l. are the following shared features: floral cup; flowers obliquely monosymmetric; sepals congenitally united at base; sepals of unequal size (outer two shorter); fertile stamens concentrated on the anterior side of the flower and sometimes united into a strap; staminodes absent in the posteriormost antepetalous position; anthers extremely introrse, with thecae almost in one plane; endothecium continuous over the dorsal side of the connective; dorsal anther pit; gynoecium completely syncarpous up to the stigma; carpel flanks slightly bulged out transversely and thus carpels demarcated from each other by a longitudinal furrow; flowers with dense unicellular, non-lignified hairs, especially on the gynoecium; light-coloured, dense indumentum on young shoots and inflorescences. Potential synapomorphies for Chrysobalanaceae + Euphroniaceae include: spur in floral cup; clawed petals; lignified hairs on petals; nectary without lobes or scales and mostly annular. Potential synapomorphies for Dichapetalaceae + Trigoniaceae include: special mucilage cells in sepals in mesophyll (in addition to epidermis); anthers almost basifixed; gynoecium synascidiate up to lower style; nectary with lobes or scales and semi-annular
    • …
    corecore