92 research outputs found

    Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population

    Full text link
    [EN] We investigated the variation and short-term evolution of the selfing rate and inbreeding depression (ID) across three generations within a cedar forest that was established from admixture ca 1860. The mean selfing rate was 9.5%, ranging from 0 to 48% among 20 seed trees (estimated from paternally inherited chloroplast DNA). We computed the probability of selfing for each seed and we investigated ID by comparing selfed and outcrossed seeds within progenies, thus avoiding maternal effects. In all progenies, the germination rate was high (88-100%) and seedling mortality was low (0-12%). The germination dynamics differed significantly between selfed and outcrossed seeds within progenies in the founder gene pool but not in the following generations. This transient effect of selfing could be attributed to epistatic interactions in the original admixture. Regarding the seedling growth traits, the ID was low but significant: 8 and 6% for height and diameter growth, respectively. These rates did not vary among generations, suggesting minor gene effects. At this early stage, outcrossed seedlings outcompeted their selfed relatives, but not necessarily other selfed seedlings from other progenies. Thus, purging these slightly deleterious genes may only occur through within-family selection. Processes that maintain a high level of genetic diversity for fitness-related traits among progenies also reduce the efficiency of purging this part of the genetic load. © 2011 Macmillan Publishers Limited All rights reserved. Guardar / Salir Siguiente >This work has been partially supported by Grant PPI-00-04 from the Polytechnic University of Valencia (Spain). We thank B Fady and E Klein as well as two anonymous reviewers for their helpful comments on a previous version of the paper. We acknowledge B Jouaud, W Brunetto, F Jean and H Picot for seed collection and processing and laboratory assistance, as well as P Brahic and staff from the Experimental Nursery of Aix-Les Milles for nursery cares.Ferriol Molina, M.; Pichot, C.; Lefevre, F. (2011). Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population. Heredity. 106(1):146-157. https://doi.org/10.1038/hdy.2010.451461571061Barret SH, Eckert CG (1990). Variation and evolution of mating systems in seed plants. In: Kawano S (ed). Biological Approaches and Evolutionary Trends in Plants. Academic Press: London. pp 230–254.Benton TG, Plaistow SJ, Coulson TN (2006). Complex population dynamics and complex causation: devils, details and demography. Proc R Soc B Biol Sci 273: 1173–1181.Bower AD, Aitken SN (2007). Mating system and inbreeding depression in whitebark pine (Pinus albicaulis Engelm.). Tree Genet Genomes 3: 379–388.Byers DL, Waller DM (1999). Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30: 479–513.Cointat M (1996). Le roman du cèdre. Revue Forestière Française 48: 503–526.Collevatti RG, Grattapaglia D, Duvall J (2001). High resolution microsatellite based analysis of the mating system allows the detection of significant biparental inbreeding in Caryocar brasiliense, an endangered tropical tree species. Heredity 86: 60–67.Cottrell JE, White IMS (1995). The use of isozyme genetic markers to estimate the rate of outcrossing in a Sitka pruce (Picea sitchensis (Bong.) Carr.) seed orchard in Scotland. New Forests 10: 111–122.Coulson T, Benton TG, Lundberg P, Dall SRX, Kendall BE (2006). Putting evolutionary biology back in the ecological theatre: a demographic framework mapping genes to communities. Evol Ecol Res 8: 1155–1171.Durel CE, Bertin P, Kremer A (1996). Relationship between inbreeding depression and inbreeding coefficient in maritime pine (Pinus pinaster). Theor Appl Genet 92: 347–356.Eriksson E (2006). Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine. Biomass Bioenergy 30: 848–854.Fady B, Lefèvre F, Reynaud M, Vendramin GG, Bou Dagher-Karrat M, Anzidei M et al. (2003). Gene flow among different taxonomic units: evidence from nuclear and cytoplasmic markers in Cedrus plantation forests. Theor Appl Genet 107: 1132–1138.Farris MA, Mitton JB (1984). Population density, outcrossing rate, and heterozygote superiority in ponderosa pine. Evolution 38: 1151–1154.Favre-Duchartre M (1970). Des Ovules Aux Graines. Monographie 8. Masson et Cie.: Paris.Franklin EC (1969). Inbreeding Depression in Metrical Traits of Loblolly Pine (Pinus taeda L.) as a Result of Self-pollination. North Carolina State University: Raleigh, NC. Technical report No 40, School of Forest Resources.Gregorius HR, Ziehe M, Ross MD (1987). Selection caused by self-fertilization I. Four measures of self-fertilization and their effects on fitness. Theor Popul Biol 31: 91–115.Hamrick JL, Godt MJ (1989). Allozyme diversity in plant species. In: Brown AHD, Al Kahler MC, Weir BS (eds). Plant Population Genetics, Breeding, and Genetic Resources. Sinauer: Sunderland, MA. pp 43–63.Holsinger KE (1991). Mass-action models of plant mating systems—the evolutionary stability of mixed mating systems. Am Nat 138: 606–622.Husband BC, Schemske DW (1996). Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54–70.Jones FA, Hamrick JL, Peterson CJ, Squiers ER (2006). Inferring colonization history from analyses of spatial genetic structure within populations of Pinus strobus and Quercus rubra. Mol Ecol 15: 851–861.Kärkkäinen K, Savolainen O (1993). The degree of early inbreeding depression determines the selfing rate at the seed stage: model and results from Pinus sylvestris (Scots pine). Heredity 71: 160–166.Keller LF, Waller DM (2002). Inbreeding effects in wild populations. Trends Ecol Evol 17: 230–241.Klein EK, Lavigne C, Gouyon PH (2006). Mixing of propagules from discrete sources at long distance: comparing an exponential tail to an exponential. BMC Ecol 6: 3.Knowles P, Furnier GR, Aleksiuk MK, Perry DJ (1987). Significant levels of self-fertilization in natural populations of tamarack. Can J Bot 65: 1087–1091.Koelewijn HP, Koski V, Savolainen O (1999). Magnitude and timing of inbreeding depression in Scots pine (Pinus sylvestris L.). Evolution 53: 758–768.Kremer A (1994). Genetic diversity and phenotypic variability of forest trees. Genet Sel Evol 26: s105–s123.Krouchi F, Derridj A, Lefèvre F (2004). Year and tree effect on reproductive organisation of Cedrus atlantica in a natural forest. For Ecol Manage 197: 181–189.Lande R (1988). Genetics and demography in biological conservation. Science 241: 1455–1460.Ledig FT (1986). Heterozygosity, heterosis, and fitness in outbreeding plants. In: Soulé ME (ed). Conservation Biology: the Science of Scarcity and Diversity. Sinauer Ass: Sunderland. pp 77–104.Lee JK, Nordheim EV, Kang H (1996). Inference for lethal gene estimation with application in plants. Biometrics 52: 451–462.Lefèvre F, Fady B, Fallour-Rubio D, Ghosn D, Bariteau M (2004). Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population. Heredity 93: 542–550.Marquardt PE, Epperson BK (2004). Spatial and population genetic structure of microsatellites in white pine. Mol Ecol 13: 3305–3315.Morgante M, Vendramin GG, Rossi P (1991). Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Can J Bot 69: 2704–2708.Mosseler A, Major JE, Simpson JD, Daigle B, Lange K, Park YS et al. (2000). Indicators of population viability in red spruce, Picea rubens. I. Reproductive traits and fecundity. Can J Bot 78: 928–940.Naydenov KD, Tremblay FM, Alexandrov A, Fenton NJ (2005). Structure of Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis : provenance tests. Biochem Syst Ecol 33: 1226–1245.Neale DB, Adams WT (1985). The mating system in natural and shelterwood stands of Douglas-fir. Theor Appl Genet 71: 201–207.Notivol E, Garcia-Gil MR, Alia R, Savolainen O (2007). Genetic variation of growth rhythm traits in the limits of a latitudinal cline in Scots pine. Can J For Res 37: 540–551.O’Connell LM, Russell J, Ritland K (2004). Fine-scale estimation of outcrossing in western redcedar with microsatellite assay of bulked DNA. Heredity 93: 443–449.Parducci L, Szmidt AE, Madaghiele A, Anzidei M, Vendramin GG (2001). Genetic variation at chloroplast microsatellites (CpSSRs) in Abies nebrodensis (Lojac.) Mattei and three neighboring Abies species. Theor Appl Genet 102: 733–740.Parraguirre-Lezama C, Vargas-Hernández JJ, Ramirez-Vallejo P, Ramirez Herrera C (2004). Mating system in four natural populations of Pinus greggii Engelm. Agrociencia 38: 107–119.Petit RJ, Hampe A (2006). Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst 37: 187–214.Pichot C, Bastien C, Courbet F, Demesure-Musch B, Dreyfus P, Fady B et al. (2006). Déterminants et conséquences de la qualité génétique des graines et semis lors de la phase initiale de régénération naturelle des peuplements forestiers. In: 6e Colloque National du BRG ; La Rochelle 2006/10/02-04. Les Actes du Bureau des Ressources Génétiques 6: 277–297.Remington DL, O’Malley DM (2000a). Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics 155: 337–348.Remington DL, O’Malley DM (2000b). Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution 54: 1580–1589.Restoux G, Silva DE, Sagnard F, Torre F, Klein E, Fady B (2008). Life at the margin: the mating system of Mediterranean conifers. Web Ecol 8: 94–102.Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002). Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11: 869–877.Ritland K, El-Kassaby YA (1985). The nature of inbreeding in a seed orchard of Douglas fir as shown by an efficient multi-locus model. Theor Appl Genet 71: 375–384.Ritland K, Travis S (2004). Inferences involving individual coefficients of relatedness and inbreeding in natural populations of Abies. For Ecol Manage 197: 171–180.Robledo-Arnuncio JJ, Alia R, Gil L (2004). Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol 13: 2567–2577.Rouault G, Turgeon J, Candau JN, Roques A, Aderkas P (2004). Oviposition strategies of conifer seed chalcids in relation to host phenology. Naturwissenschaften 91: 472–480.Savolainen O, Kärkkäinen K, Kuittinen H (1992). Estimating numbers of embryonic lethals in conifers. Heredity 69: 308–314.Scofield DG, Schultz ST (2006). Mitosis, stature and evolution of plant mating systems: low-Phi and high-Phi plants. Proc R Soc B Biol Sci 273: 275–282.Shaw DV, Allard RW (1982). Estimation of outcrossing rates in douglas-fir using isoenzyme markers. Theor Appl Genet 62: 113–120.Skrøppa T (1996). Diallel crosses in Picea abies. II. Performance and inbreeding depression of selfed families. For Genet 3: 69–79.Sorensen FC (1997). Effects of sib mating and wind pollination on nursery seedling size, growth components, and phenology of Douglas-fir seed-orchard progenies. Can J For Res 27: 557–566.Sorensen FC (1999). Relationship between self-fertility, allocation of growth, and inbreeding depression in three coniferous species. Evolution 53: 417–425.Sorensen FC (2001). Effect of population outcrossing rate on inbreeding depression in Pinus contorta var. murrayana seedlings. Scand J For Res 16: 391–403.Sorensen FC, Adams WT (1993). Self fertility and natural selfing in three Oregon Cascade populations of lodgepole pine. In: Lindgren D (ed). Pinus contorta—From Untamed Forest to Domesticated Crop. Department of Forest Genetics and Plant Physiology, Sweden University of Agricultural Science: Umea, Sweden. Report 11, pp 358–374.Sorensen FC, Miles RS (1974). Self-pollination effects on Douglas fir and ponderosa pine seeds and seedlings. Silvae Genet 23: 135–138.Sorensen FC, Miles RS (1982). Inbreeding depression in height, height growth, and survival of Douglas-fir, ponderosa pine, and noble fir to 10 years of age. For Sci 28: 283–292.Terrab A, Paun O, Talavera S, Tremetsberger K, Arista M, Stuessy TF (2006). Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. Am J Bot 93: 1274–1280.Vendramin GG, Lelli L, Rossi P, Morgante M (1996). A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5: 595–598.White TL, Adams WT, Neale DB (2007). Forest Genetics. CABI Publisher: Cambridge, MA. pp 149–186.Wilcox MD (1983). Inbreeding depression and genetic variances estimated from self- and cross- pollinated families of Pinus radiata. Silvae Genet 32: 89–96.Williams CG (2007). Re-thinking the embryo lethal system within the Pinaceae. Can J Bot 85: 667–677.Williams CG (2008). Selfed embryo death in Pinus taeda: a phenotypic profile. New Phytol 178: 210–222.Williams CG, Auckland LD, Reynolds MM, Leach KA (2003). Overdominant lethals as part of the conifer embryo lethal system. Heredity 91: 584–592.Wilson R (1923). Life history of Cedrus atlantica. Bot Gaz 75: 203–208.Yazdani R, Muona O, Rudin D, Szmidt AE (1985). Genetic structure of a Pinus sylvestris L. seed-tree stand and naturally regenerated understory. For Sci 31: 430–436

    Genetic analyses of maternal and teacher ratings on attention problems in 7-year-old Dutch twins

    Get PDF
    The goal of the present study is to examine genetic and environmental influences on maternal and teacher ratings of Attention Problems (AP) in 7-year-old children. Teachers completed the Teacher Report Form (N=2259 pairs), and mothers the Child Behavior Checklist (N=2057 pairs). Higher correlations were found in twins rated by the same teacher than in twins rated by different teachers. This can be explained by rater bias or by a greater environmental sharing in twins, who are in the same classroom. We further found that 41% of the variation in maternal and teacher ratings is explained by a common factor. The heritability of this common factor is 78%. The heritabilities of the rater specific factors of mothers and teachers are 76% and 39%, respectively. Because Attention Problems that are persistent over situations may indicate more serious behavior problems than context dependent Attention Problems, we believe that gene finding strategies should focus on this common phenotype

    Genetic and environmental influences on the relation between attention problems and Attention Deficit Hyperactivity Disorder.

    Get PDF
    Objective: The assessment of symptoms of ADHD in children is usually based on a clinical interview or a behavior checklist. The aim of the present study is to investigate the extent to which these instruments measure an underlying construct and to estimate the genetic and environmental influences on individual differences in ADHD. Methods: Maternal ratings were collected on 10,916 twins from 5,458 families. Child Behavior Checklist (CBCL) ratings were available for 10,018, 6,565, and 5,780 twins at the ages 7, 10, and 12, respectively. The Conners Rating Scale (4,887 twins) and the DSM interview (1,006 twins) were completed at age 12. The magnitude of genetic and environmental influences on the variance of the three measures of ADHD and the covariance among the three measures of ADHD was obtained. Results: Phenotypic correlations range between .45 and .77. Variances and covariances of the measurements were explained mainly by genetic influences. The model that provided the best account of the data included an independent pathway for additive and dominant genetic effects. The genetic correlations among the measures collected at age 12 varied between .63 and 1.00. Conclusions: The genetic overlap between questionnaire ratings and the DSM-IV diagnosis of ADHD is high. Clinical and research implications of these findings are presented

    Added Value Measures in Education Show Genetic as Well as Environmental Influence

    Get PDF
    Does achievement independent of ability or previous attainment provide a purer measure of the added value of school? In a study of 4000 pairs of 12-year-old twins in the UK, we measured achievement with year-long teacher assessments as well as tests. Raw achievement shows moderate heritability (about 50%) and modest shared environmental influences (25%). Unexpectedly, we show that for indices of the added value of school, genetic influences remain moderate (around 50%), and the shared (school) environment is less important (about 12%). The pervasiveness of genetic influence in how and how much children learn is compatible with an active view of learning in which children create their own educational experiences in part on the basis of their genetic propensities

    Sex-specific genetic effects influence variation in body composition

    Get PDF
    Aims/hypothesis: Despite well-known sex differences in body composition it is not known whether sex-specific genetic or environmental effects contribute to these differences. Methods: We assessed body composition in 2,506 individuals, from a young Dutch genetic isolate participating in the Erasmus Rucphen Family study, by dual-energy X-ray absorptiometry and anthropometry. We used variance decomposition procedures to partition variation of body composition into genetic and environmental components common to both sexes and to men and women separately and calculated the correlation between genetic components in men and women. Results: After accounting for age

    The effect of birth-weight with genetic susceptibility on depressive symptoms in childhood and adolescence

    Get PDF
    Low birth-weight has been associated with depression and related outcomes in adults, and with problem behaviours in children. This study aimed to examine the association between low birth-weight for gestation and depressive symptoms in children and adolescents and to examine whether the relationship is moderated by genetic risk for depression. An epidemiological, genetically sensitive design was used including 2,046 twins aged 8–17 years (1,023 families). Data were obtained by parental report and analysed using regression analysis. A small but significant association between birth-weight for gestation and early depressive symptoms was observed. The unit increase in depressive symptoms per unit decrease in birth-weight for gestation was greater for individuals at genetic or familial risk for depression. For low birth-weight children, genetic risk for depression moderated the influence of birth-weight for gestation in predicting early depressive symptoms. Birth-weight for gestation is moderated by genetic and familial risk for depression in influencing early depression symptoms. These observations have clinical implications in that the impact of being small for gestational age on depressive symptoms is greater in children at familial/genetic risk although the association between birth weight and depression does not imply causality

    Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion

    Get PDF
    The personality traits of neuroticism and extraversion are predictive of a number of social and behavioural outcomes and psychiatric disorders. Twin and family studies have reported moderate heritability estimates for both traits. Few associations have been reported between genetic variants and neuroticism/extraversion, but hardly any have been replicated. Moreover, the ones that have been replicated explain only a small proportion of the heritability (<∼2%). Using genome-wide single-nucleotide polymorphism (SNP) data from ∼12 000 unrelated individuals we estimated the proportion of phenotypic variance explained by variants in linkage disequilibrium with common SNPs as 0.06 (s.e.=0.03) for neuroticism and 0.12 (s.e.=0.03) for extraversion. In an additional series of analyses in a family-based sample, we show that while for both traits ∼45% of the phenotypic variance can be explained by pedigree data (that is, expected genetic similarity) one third of this can be explained by SNP data (that is, realized genetic similarity). A part of the so-called ‘missing heritability' has now been accounted for, but some of the reported heritability is still unexplained. Possible explanations for the remaining missing heritability are that: (i) rare variants that are not captured by common SNPs on current genotype platforms make a major contribution; and/ or (ii) the estimates of narrow sense heritability from twin and family studies are biased upwards, for example, by not properly accounting for nonadditive genetic factors and/or (common) environmental factors

    Comparing the effects of sun exposure and vitamin D supplementation on vitamin D insufficiency, and immune and cardio-metabolic function: The Sun Exposure and Vitamin D Supplementation (SEDS) Study

    Get PDF
    Background: Adults living in the sunny Australian climate are at high risk of skin cancer, but vitamin D deficiency (defined here as a serum 25-hydroxyvitamin D (25(OH)D) concentration of less than 50 nmol/L) is also common. Vitamin D deficiency may be a risk factor for a range of diseases. However, the optimal strategies to achieve and maintain vitamin D adequacy (sun exposure, vitamin D supplementation or both), and whether sun exposure itself has benefits over and above initiating synthesis of vitamin D, remain unclear. The Sun Exposure and Vitamin D Supplementation (SEDS) Study aims to compare the effectiveness of sun exposure and vitamin D supplementation for the management of vitamin D insufficiency, and to test whether these management strategies differentially affect markers of immune and cardio-metabolic function. Methods/Design: The SEDS Study is a multi-centre, randomised controlled trial of two different daily doses of vitamin D supplementation, and placebo, in conjunction with guidance on two different patterns of sun exposure. Participants recruited from across Australia are aged 18-64 years and have a recent vitamin D test result showing a serum 25(OH)D level of 40-60 nmol/L. Discussion: This paper discusses the rationale behind the study design, and considers the challenges but necessity of data collection within a non-institutionalised adult population, in order to address the study aims. We also discuss the challenges of participant recruitment and retention, ongoing engagement of referring medical practitioners and address issues of compliance and participant retention. Trial registration: Australia New Zealand Clinical Trials Registry: ACTRN12613000290796 Registered 14 March 2013

    Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions

    Get PDF
    Genetic variation shared between closely related species may be due to retention of ancestral polymorphisms because of incomplete lineage sorting (ILS) and/or introgression following secondary contact. It is challenging to distinguish ILS and introgression because they generate similar patterns of shared genetic diversity, but this is nonetheless essential for inferring accurately the history of species with overlapping distributions. To address this issue, we sequenced 33 independent intron loci across the genome of two closely related pine species (Pinus massoniana Lamb. and Pinus hwangshanensis Hisa) from Southeast China. Population structure analyses revealed that the species showed slightly more admixture in parapatric populations than in allopatric populations. Levels of interspecific differentiation were lower in parapatry than in allopatry. Approximate Bayesian computation suggested that the most likely speciation scenario explaining this pattern was a long period of isolation followed by a secondary contact. Ecological niche modeling suggested that a gradual range expansion of P. hwangshanensis during the Pleistocene climatic oscillations could have been the cause of the overlap. Our study therefore suggests that secondary introgression, rather than ILS, explains most of the shared nuclear genomic variation between these two species and demonstrates the complementarity of population genetics and ecological niche modeling in understanding gene flow history. Finally, we discuss the importance of contrasting results from markers with different dynamics of migration, namely nuclear, chloroplast and mitochondrial DNA

    Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene

    Get PDF
    Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G>C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.2×10-6). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted. © 2014 Plenge et al
    corecore