46 research outputs found

    Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner.

    Get PDF
    The precise subcellular organization of synaptic vesicles (SVs) at presynaptic sites allows for rapid and spatially restricted exocytotic release of neurotransmitter. The synapsins (Syns) are a family of presynaptic proteins that control the availability of SVs for exocytosis by reversibly tethering them to each other and to the actin cytoskeleton in a phosphorylation-dependent manner. Syn ablation leads to reduction in the density of SV proteins in nerve terminals and increased synaptic fatigue under high-frequency stimulation, accompanied by the development of an epileptic phenotype. We analyzed cultured neurons from wild-type and Syn I,II,III(-/-) triple knock-out (TKO) mice and found that SVs were severely dispersed in the absence of Syns. Vesicle dispersion did not affect the readily releasable pool of SVs, whereas the total number of SVs was considerably reduced at synapses of TKO mice. Interestingly, dispersion apparently involved exocytosis-competent SVs as well; it was not affected by stimulation but was reversed by chronic neuronal activity blockade. Altogether, these findings indicate that Syns are essential to maintain the dynamic structural organization of synapses and the size of the reserve pool of SVs during intense SV recycling, whereas an additional Syn-independent mechanism, whose molecular substrate remains to be clarified, targets SVs to synaptic boutons at rest and might be outpaced by activity

    APache Is an AP2-Interacting Protein Involved in Synaptic Vesicle Trafficking and Neuronal Development

    Get PDF
    Synaptic transmission is critically dependent on synaptic vesicle (SV) recycling. Although the precise mechanisms of SV retrieval are still debated, it is widely accepted that a fundamental role is played by clathrin-mediated endocytosis, a form of endocytosis that capitalizes on the clathrin/adaptor protein complex 2 (AP2) coat and several accessory factors. Here, we show that the previously uncharacterized protein KIAA1107, predicted by bioinformatics analysis to be involved in the SV cycle, is an AP2-interacting clathrin-endocytosis protein (APache). We found that APache is highly enriched in the CNS and is associated with clathrin-coated vesicles via interaction with AP2. APache-silenced neurons exhibit a severe impairment of maturation at early developmental stages, reduced SV density, enlarged endosome-like structures, and defects in synaptic transmission, consistent with an impaired clathrin/AP2-mediated SV recycling. Our data implicate APache as an actor in the complex regulation of SV trafficking, neuronal development, and synaptic plasticity

    Mepolizumab versus benralizumab for eosinophilic granulomatosis with polyangiitis (EGPA): A European real-life retrospective comparative study

    Get PDF
    Background: Following the results of the MANDARA trial, this real-life study aimed at comparing the effectiveness and safety profile of mepolizumab versus benralizumab in a European EGPA cohort. Methods: We conducted a retrospective observational comparative study including EGPA patients, who received mepolizumab or benralizumab at the asthma dose. Patients were matched 1:1 by sex, age, BVAS and oral corticosteroid (OCS) dosage at the treatment initiation (T0). Complete response (CR) and partial response (PR), disease activity, OCS, pulmonary parameters, eosinophil count, relapses, and safety outcomes were also compared at 3, 6 and 12 months. Results: Patients treated with mepolizumab or benralizumab (n = 88 each) were matched: 57 % were females, median age was 54 years (IQR 45–60), median OCS dose 10 (7.5–12.5) and 10 (7–13) mg/day, median BVAS 4 (2–7) and 3 (2–8), respectively. 45.4 % of patients in the mepolizumab group and 51.1 % in the benralizumab group achieved CR or PR at T3, with CR steadily increasing during follow-up for both treatments. At T12, a higher CR rate was found in the benralizumab group (48.1 % vs 32.4 %, p = 0.005). No differences in BVAS, OCS, and respiratory parameters were observed between groups at the different timepoints. Throughout the follow-up, both treatments reduced eosinophil count, although a deeper reduction was found in the benralizumab group at all timepoints (p < 0.0001). Safety profile was comparable between patient groups. Conclusion: Mepolizumab and benralizumab showed comparable overall effectiveness and safety in EGPA. However, benralizumab achieved a higher CR rate at T12, and a deeper peripheral eosinophil reduction

    An Emerging Role of PRRT2 in Regulating Growth Cone Morphology.

    No full text
    Mutations in the PRRT2 gene are the main cause for a group of paroxysmal neurological diseases including paroxysmal kinesigenic dyskinesia, episodic ataxia, benign familial infantile seizures, and hemiplegic migraine. In the mature central nervous system, the protein has both a functional and a structural role at the synapse. Indeed, PRRT2 participates in the regulation of neurotransmitter release, as well as of actin cytoskeleton dynamics during synaptogenesis. Here, we show a role of the protein also during early stages of neuronal development. We found that PRRT2 accumulates at the growth cone in cultured hippocampal neurons. Overexpression of the protein causes an increase in the size and the morphological complexity of growth cones. In contrast, the growth cones of neurons derived from PRRT2 KO mice are smaller and less elaborated. Finally, we demonstrated that the aberrant shape of PRRT2 KO growth cones is associated with a selective alteration of the growth cone actin cytoskeleton. Our data support a key role of PRRT2 in the regulation of growth cone morphology during neuronal development

    A novel SYN1 missense mutation in non-syndromic X-linked intellectual disability affects synaptic vesicle life cycle, clustering and mobility

    No full text
    Intellectual Disability is a common and heterogeneous disorder characterized by limitations in intellectual functioning and adaptive behaviour, whose molecular mechanisms remain largely unknown. Among the numerous genes found to be involved in the pathogenesis of intellectual disability, 10% are located on the X-chromosome. We identified a missense mutation (c.236 C > G; p.S79W) in the SYN1 gene coding for synapsin I in the MRX50 family, affected by non-syndromic Xlinked intellectual disability. Synapsin I is a neuronal phosphoprotein involved in the regulation of neurotransmitter release and neuronal development. Several mutations in SYN1 have been identified in patients affected by epilepsy and/or autism. The S79W mutation segregates with the disease in the MRX50 family and all affected members display intellectual disability as sole clinical manifestation. At the protein level, the S79W Synapsin I mutation is located in the region of the B-domain involved in recognition of highly curved membranes. Expression of human S79W Synapsin I in Syn1 knockout hippocampal neurons causes aberrant accumulation of small clear vesicles in the soma, increased clustering of synaptic vesicles at presynaptic terminals and increased frequency of excitatory spontaneous release events. In addition, the presence of S79W Synapsin I strongly reduces the mobility of synaptic vesicles, with possible implications for the regulation of neurotransmitter release and synaptic plasticity. These results implicate SYN1 in the pathogenesis of non-syndromic intellectual disability, showing that alterations of synaptic vesicle trafficking are one possible cause of this disease, and suggest that distinct mutations in SYN1 may lead to distinct brain pathologies

    Synapsin I deletion reduces neuronal damage and ameliorates clinical progression of experimental autoimmune encephalomyelitis

    No full text
    The classical view of multiple sclerosis (MS) pathogenesis states that inflammation-mediated demyelination is responsible for neuronal damage and loss. However, recent findings show that impairment of neuronal functions and demyelination can be independent events, suggesting the coexistence of other pathogenic mechanisms. Due to the inflammatory milieu, subtle alterations in synaptic function occur, which are probably at the basis of the early cognitive decline that often precedes the neurodegenerative phases in MS patients. In particular, it has been reported that inflammation enhances excitatory synaptic transmission while it decreases GABAergic transmission in vitro and ex vivo. This evidence points to the idea that an excitation/inhibition imbalance occurs in the inflamed MS brain, even though the exact molecular mechanisms leading to this synaptic dysfunction are as yet not completely clear. Along this line, we observed that acute treatment of primary hippocampal neurons in culture with pro inflammatory cytokines leads to an increased phosphorylation of synapsin I (SynI) by ERK1/2 kinase and to an increase in the frequency of spontaneous synaptic vesicle release events, which is prevented by SynI deletion. In vivo, the ablation of SynI expression is protective in terms of disease progression and neuronal damage in the experimental autoimmune encephalomyelitis mouse model of MS. Our results point to a possible key role in MS pathogenesis of the neuronal protein SynI, a regulator of excitation/inhibition balance in neuronal networks. (C) 2017 Elsevier Inc. All rights reserved
    corecore