1,025 research outputs found

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Clusters of spatial, temporal, and space-time distribution of hemorrhagic fever with renal syndrome in Liaoning Province, Northeastern China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by Hantavirus, with characteristics of fever, hemorrhage, kidney damage, and hypotension. HFRS is recognized as a notifiable public health problem in China, and Liaoning Province is one of the most seriously affected areas with the most cases in China. It is necessary to investigate the spatial, temporal, and space-time distribution of confirmed cases of HFRS in Liaoning Province, China for future research into risk factors.</p> <p>Methods</p> <p>A cartogram map was constructed; spatial autocorrelation analysis and spatial, temporal, and space-time cluster analysis were conducted in Liaoning Province, China over the period 1988-2001.</p> <p>Results</p> <p>When the number of permutation test was set to 999, Moran's I was 0.3854, and was significant at significance level of 0.001. Spatial cluster analysis identified one most likely cluster and four secondary likely clusters. Temporal cluster analysis identified 1998-2001 as the most likely cluster. Space-time cluster analysis identified one most likely cluster and two secondary likely clusters.</p> <p>Conclusions</p> <p>Spatial, temporal, and space-time scan statistics may be useful in supervising the occurrence of HFRS in Liaoning Province, China. The result of this study can not only assist health departments to develop a better prevention strategy but also potentially increase the public health intervention's effectiveness.</p

    Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair

    Get PDF
    Ionizing radiation (IR) and chemotherapy are standard of care treatments for glioblastoma (GBM) patients and both result in DNA damage, however, the clinical efficacy is limited due to therapeutic resistance. We identified a mechanism of such resistance mediated by phosphorylation of PTEN on tyrosine 240 (pY240-PTEN) by FGFR2. pY240-PTEN is rapidly elevated and bound to chromatin through interaction with Ki-67 in response to IR treatment and facilitates the recruitment of RAD51 to promote DNA repair. Blocking Y240 phosphorylation confers radiation sensitivity to tumors and extends survival in GBM preclinical models. Y240FPten knock-in mice showed radiation sensitivity. These results suggest that FGFR-mediated pY240-PTEN is a key mechanism of radiation resistance and is an actionable target for improving radiotherapy efficacy

    Identification of Enriched Driver Gene Alterations in Subgroups of Non-Small Cell Lung Cancer Patients Based on Histology and Smoking Status

    Get PDF
    BACKGROUND: Appropriate patient selection is needed for targeted therapies that are efficacious only in patients with specific genetic alterations. We aimed to define subgroups of patients with candidate driver genes in patients with non-small cell lung cancer. METHODS: Patients with primary lung cancer who underwent clinical genetic tests at Guangdong General Hospital were enrolled. Driver genes were detected by sequencing, high-resolution melt analysis, qPCR, or multiple PCR and RACE methods. RESULTS: 524 patients were enrolled in this study, and the differences in driver gene alterations among subgroups were analyzed based on histology and smoking status. In a subgroup of non-smokers with adenocarcinoma, EGFR was the most frequently altered gene, with a mutation rate of 49.8%, followed by EML4-ALK (9.3%), PTEN (9.1%), PIK3CA (5.2%), c-Met (4.8%), KRAS (4.5%), STK11 (2.7%), and BRAF (1.9%). The three most frequently altered genes in a subgroup of smokers with adenocarcinoma were EGFR (22.0%), STK11 (19.0%), and KRAS (12.0%). We only found EGFR (8.0%), c-Met (2.8%), and PIK3CA (2.6%) alterations in the non-smoker with squamous cell carcinoma (SCC) subgroup. PTEN (16.1%), STK11 (8.3%), and PIK3CA (7.2%) were the three most frequently enriched genes in smokers with SCC. DDR2 and FGFR2 only presented in smokers with SCC (4.4% and 2.2%, respectively). Among these four subgroups, the differences in EGFR, KRAS, and PTEN mutations were statistically significant. CONCLUSION: The distinct features of driver gene alterations in different subgroups based on histology and smoking status were helpful in defining patients for future clinical trials that target these genes. This study also suggests that we may consider patients with infrequent alterations of driver genes as having rare or orphan diseases that should be managed with special molecularly targeted therapies

    Approaches to advance scientific understanding of macrosystems ecology

    Get PDF
    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological pat- terns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require valida- tion, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them

    A novel nucleo-cytoplasmic hybrid clone formed via androgenesis in polyploid gibel carp

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unisexual vertebrates have been demonstrated to reproduce by gynogenesis, hybridogenesis, parthenogenesis, or kleptogenesis, however, it is uncertain how the reproduction mode contributes to the clonal diversity. Recently, polyploid gibel carp has been revealed to possess coexisting dual modes of unisexual gynogenesis and sexual reproduction and to have numerous various clones. Using sexual reproduction mating between clone D female and clone A male and subsequent 7 generation multiplying of unisexual gynogenesis, we have created a novel clone strain with more than several hundred millions of individuals. Here, we attempt to identify genetic background of the novel clone and to explore the significant implication for clonal diversity contribution.</p> <p>Methods</p> <p>Several nuclear genome markers and one cytoplasmic marker, the mitochondrial genome sequence, were used to identify the genetic organization of the randomly sampled individuals from different generations of the novel clone.</p> <p>Results</p> <p>Chromosome number, <it>Cot</it>-1 repetitive DNA banded karyotype, microsatellite patterns, AFLP profiles and transferrin alleles uniformly indicated that nuclear genome of the novel clone is identical to that of clone A, and significantly different from that of clone D. However, the cytoplasmic marker, its complete mtDNA genome sequence, is same to that of clone D, and different from that of clone A.</p> <p>Conclusions</p> <p>The present data indicate that the novel clone is a nucleo-cytoplasmic hybrid between the known clones A and D, because it originates from the offspring of gonochoristic sexual reproduction mating between clone D female and clone A male, and contains an entire nuclear genome from the paternal clone A and a mtDNA genome (cytoplasm) from the maternal clone D. It is suggested to arise via androgenesis by a mechanism of ploidy doubling of clone A sperm in clone D ooplasm through inhibiting the first mitotic division. Significantly, the selected nucleo-cytoplasmic hybrid female still maintains its gynogenetic ability. Based on the present and previous findings, we discuss the association of rapid genetic changes and high genetic diversity with various ploidy levels and multiple reproduction modes in several unisexual and sexual complexes of vertebrates and even other invertebrates.</p

    Mechanisms Underlying Hypoxia Tolerance in Drosophila melanogaster: hairy as a Metabolic Switch

    Get PDF
    Hypoxia-induced cell injury has been related to multiple pathological conditions. In order to render hypoxia-sensitive cells and tissues resistant to low O2 environment, in this current study, we used Drosophila melanogaster as a model to dissect the mechanisms underlying hypoxia-tolerance. A D. melanogaster strain that lives perpetually in an extremely low-oxygen environment (4% O2, an oxygen level that is equivalent to that over about 4,000 m above Mt. Everest) was generated through laboratory selection pressure using a continuing reduction of O2 over many generations. This phenotype is genetically stable since selected flies, after several generations in room air, survive at this low O2 level. Gene expression profiling showed striking differences between tolerant and naïve flies, in larvae and adults, both quantitatively and qualitatively. Up-regulated genes in the tolerant flies included signal transduction pathways (e.g., Notch and Toll/Imd pathways), but metabolic genes were remarkably down-regulated in the larvae. Furthermore, a different allelic frequency and enzymatic activity of the triose phosphate isomerase (TPI) was present in the tolerant versus naïve flies. The transcriptional suppressor, hairy, was up-regulated in the microarrays and its binding elements were present in the regulatory region of the specifically down-regulated metabolic genes but not others, and mutations in hairy significantly reduced hypoxia tolerance. We conclude that, the hypoxia-selected flies: (a) altered their gene expression and genetic code, and (b) coordinated their metabolic suppression, especially during development, with hairy acting as a metabolic switch, thus playing a crucial role in hypoxia-tolerance

    Patterns and correlates of physical activity: a cross-sectional study in urban Chinese women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inactivity is a modifiable risk factor for many diseases. Rapid economic development in China has been associated with changes in lifestyle, including physical activity. The purpose of this study was to investigate the patterns and correlates of physical activity in middle-aged and elderly women from urban Shanghai.</p> <p>Methods</p> <p>Study population consisted of 74,942 Chinese women, 40–70 years of age, participating in the baseline survey of the Shanghai Women's Health Study (1997–2000), an ongoing population-based cohort study. A validated, interviewer-administered physical activity questionnaire was used to collect information about several physical activity domains (exercise/sports, walking and cycling for transportation, housework). Correlations between physical activity domains were evaluated by Spearman rank-correlation coefficients. Associations between physical activity and socio-demographic and lifestyle factors were evaluated by odds ratios derived from logistic regression.</p> <p>Results</p> <p>While more than a third of study participants engaged in regular exercise, this form of activity contributed only about 10% to daily non-occupational energy expenditure. About two-thirds of women met current recommendations for lifestyle activity. Age was positively associated with participation in exercise/sports and housework. Dietary energy intake was positively associated with all physical activity domains. High socioeconomic status, unemployment (including retirement), history of chronic disease, small household, non-smoking status, alcohol and tea consumption, and ginseng intake were all positively associated with exercise participation. High socioeconomic status and small household were inversely associated with non-exercise activities.</p> <p>Conclusion</p> <p>This study demonstrates that physical activity domains other than sports and exercise are important contributors to total energy expenditure in women. Correlates of physical activity are domain-specific. These findings provide important information for research on the health benefits of physical activity and have public health implications for designing interventions to promote participation in physical activity.</p

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
    corecore