978 research outputs found

    Three-dimensional fracture growth as a standard dissipative system: some general theorems and numerical simulations

    Get PDF
    Crack propagation in brittle materials has been studied by several authors exploiting its analogy with standard dissipative systems theory. In recent publications, minimum theorems were derived in terms of crack tip “quasi static velocity” for two-dimensional fracture mechanics. Following the cornerstone work of Rice on weight function theories, Leblond and coworkers proposed asymptotic expansions for stress intensity factors in three dimensions. In view of the expression of the expansions proposed by Leblond, however, symmetry of Ceradini’s theorem operators was not evident and the extension to 3D of outcomes proposed in 2D not straightforward. Following a different path of reasoning, minimum theorems have been finally derived. Moving from well-established theorems in plasticity, algorithms for crack advancing have been finally formulated. Their performance is here presented within a set of classical benchmarks

    Multifield nested metafilters for wave propagation control

    Get PDF
    The present work proposes a novel class of multifield nested tunable metadevices that serve as high performance acoustic metafilters. The designed metafilter is characterized by a multiscale, hierarchical structure. At the mesoscale, the metamaterial consists of a sequence of two different periodically alternating layers: a polymeric homogeneous layer, which exhibits a viscoelastic constitutive response, and a microstructured one. The latter is based on the periodic repetition of a multiphase microscale cell that is composed by a stiff elastic external coating, a viscoelastic phase and an internal disk of piezoelectric material shunted by an external electrical circuit having a tunable impedance/admittance This tuning parameter affects the constitutive elastic properties of the piezoelectric phase and, in turn, the overall response of the microscale cell, thereby ultimately enabling to achieve an optimal filtering performance for the metadevice. Due to the periodicity of the multiphase cell at the microscale, a two-scale variational-asymptotic homogenization technique is exploited in the frequency domain in order to obtain the frequency-dependent overall constitutive properties of the microstructured layer. Subsequently, in-plane free wave propagation inside the periodic multilayered metamaterial at the mesoscale is investigated by means of Floquet–Bloch theory, together with the transfer matrix method. By triggering the shunting effect, a stiffening of the piezoelectric phase can be achieved, which is demonstrated to open low frequency band gaps in the metamaterial frequency spectrum. The filtering capability of the metadevice has been assessed as a function of its geometrical features and the tuning parameter, thus paving the way towards the design of sophisticated and topologically optimized acoustic filters

    Design of thermo-piezoelectric microstructured bending actuators via multi-field asymptotic homogenization

    Get PDF
    The use of integrated MicroElectroMechanical systems (MEMS) is recently spread thanks to their improved sensitivity, accuracy and reliability. Accurate preliminary computations born from the need of high precision in the manufacturing process of such devices. Piezoelectric materials are broadly employed in this field as direct converters between mechanical and electrical signals and some of these piezoelectric materials show pyroelectric features, which involve thermo-electrical interactions. Pyroelectric bending actuators are analyzed in the present study in plane conditions. They consists of active PZT layers with in-plane polarization and a microstructured composite layer characterized by a periodic microstructure where PZT fibers with an out of plane polarization are immersed in a polymeric matrix. The constitutive law of the composite layer at the macroscale has been determined by means of a multi-field asymptotic homogenization technique, recently developed for thermo-piezoelectric materials. Overall constitutive equations characterizing the behavior of the microstructured layer at the macroscale have been derived and the closed form of the overall constitutive tensors has been provided for the equivalent first-order (Cauchy) homogenized continuum. Deflection of unimorph and bimorph bender actuators has been investigated in relation to their geometrical features, exploiting the out of plane piezoelectric properties of the composite layer, which modify the stiffness of the entire bender. An accurate description of benders behavior at the structural length scale is of fundamental importance in order to design devices with high performances. In this regard, the influence of the microstructure on the global response of the actuator is investigated in the present study in order to understand how the composite material can be tailored to meet specific design requirements

    Multi-objective optimal design of mechanical metafilters based on principal component analysis

    Get PDF
    In this paper, an advanced computational method is proposed, whose aim is to obtain an approximately optimal design of a particular class of acoustic metamaterials, by means of a novel combination of multiobjective optimization and dimensionality reduction. Metamaterials are modeled as beam lattices with internal local resonators coupled with the microstructure through a viscoelastic phase. The dynamics is governed by a set of integro-differential equations, that are transformed into the Z-Laplace space in order to derive an eigenproblem whose solution provides the dispersion relation of the free in-plane propagating Bloch waves. A multi-objective optimization problem is stated, whose aim is to achieve the largest multiplicative trade-off between the bandwidth of the first stop band and the one of the successive pass band in the metamaterial frequency spectrum. Motivated by the multi-dimensionality of the design parameters space, the goal above is achieved by integrating numerical optimization with machine learning. Specifically, the problem is solved by combining a sequential linear programming algorithm with principal component analysis, exploited as a data dimensionality reduction technique and applied to a properly sampled field of gradient directions, with the aim to perform an optimized sensitivity analysis. This represents an original way of applying principal component analysis in connection with multi-objective optimization. Successful performances of the proposed optimization method and its computational savings are demonstrated

    I.S.Mu.L.T. Achilles Tendon Ruptures Guidelines

    Get PDF
    This work provides easily accessible guidelines for the diagnosis, treatment and rehabilitation of Achilles tendon ruptures. These guidelines could be considered as recommendations for good clinical practice developed through a process of systematic review of the literature and expert opinion, to improve the quality of care for the individual patient and rationalize the use of resources. This work is divided into two sessions: 1) questions about hot topics; 2) answers to the questions following Evidence Based Medicine principles. Despite the frequency of the pathology andthe high level of satisfaction achieved in treatment of Achilles tendon ruptures, a global consensus is lacking. In fact, there is not a uniform treatment and rehabilitation protocol used for Achilles tendon ruptures

    Performance evaluation of the (1,3)-\u3b2-D-glucan detection assay in non-intensive care unit adult patients

    Get PDF
    Objectives: To assess the performance of the (1,3)-\u3b2-D-glucan (BDG) detection assay in a large cohort of patients with suspected candidemia who were admitted to non-intensive care unit hospital wards. Methods: This observational, retrospective cohort study was conducted in a 1,100-bed university hospital in Rome, where an infectious disease consultation team has been operational. Two groups of patients were included in the analysis: Group 1, patients with Candida bloodstream infection (BSI) who had at least one BDG test performed \ub148 hours from the first positive blood culture (Candida BSI Group) and Group 2, patients with risk factors for candidemia who had at least one BDG test but had negative blood cultures (Control Group). Both Group 1 and Group 2 did not receive prior antifungal therapy. Different BDG cutoff values were considered: 80, 200, 300, 400, and 65500 pg/mL. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve were calculated. Results: A total of 1,296 patients were studied. Of them, 100 patients (candidemic) were in Group 1 and the remaining 1,196 patients (controls) were in Group 2. There were no differences in demographic characteristics between patients of the two groups. According to the above cutoff values, sensitivity (%) and specificity (%) of the BDG assay ranged from 91 to 60.7 and 87.7 to 97.8, respectively, whereas the PPV (%) and NPV (%) ranged from 38.2 to 68.3 and 99.1 to 97.0, respectively. Conclusion: Serum BDG has a very high NPV in a population with~10% prevalence of candidemia. This NPV may support decisions to discontinue antifungal therapy in those patients who were empirically treated because of the suspect of candidemia

    Malnutrition in COVID-19 survivors: prevalence and risk factors

    Get PDF
    Background: Nutritional status is a critical factor throughout COVID-19 disease course. Malnutrition is associated with poor outcomes in hospitalized COVID-19 patients. Aim: To assess the prevalence of malnutrition and identify its associated factors in COVID-19 survivors. Methods: Study cohort included 1230 COVID-19 survivors aged 18-86 attending a post-COVID-19 outpatient service. Data on clinical parameters, anthropometry, acute COVID-19 symptoms, lifestyle habits were collected through a comprehensive medical assessment. Malnutrition was assessed according to Global Leadership Initiative on Malnutrition (GLIM) criteria. Results: Prevalence of malnutrition was 22% at 4-5 months after acute disease. Participants who were not hospitalized during acute COVID-19 showed a higher frequency of malnutrition compared to those who needed hospitalization (26% versus 19%, p < 0.01). Malnutrition was found in 25% COVID-19 survivors over 65 years of age compared to 21% younger participants (p < 0.01). After multivariable adjustment, the likelihood of being malnourished increased progressively and independently with advancing age (Odds ratio [OR] 1.02; 95% CI 1.01-1.03) and in male participants (OR 5.56; 95% CI 3.53-8.74). Malnutrition was associated with loss of appetite (OR 2.50; 95% CI 1.73-3.62), and dysgeusia (OR 4.05; 95% CI 2.30-7.21) during acute COVID-19. Discussion: In the present investigation we showed that malnutrition was highly prevalent in a large cohort of COVID-19 survivors at 4-5 months from acute illness. Conclusions: Our findings highlight the need to implement comprehensive nutritional assessment and therapy as an integral part of care for COVID-19 patients

    Solid Organ Transplantation During COVID-19 Pandemic: An International Web-based Survey on Resources’ Allocation

    Get PDF
    Background. Solid organ transplants (SOTs) are life-saving interventions, recently challenged by coronavirus disease 2019 (COVID-19). SOTs require a multistep process, which can be affected by COVID-19 at several phases. Methods. SOT-specialists, COVID-19-specialists, and medical ethicists designed an international survey according to CHERRIES guidelines. Personal opinions about continuing SOTs, safe managing of donors and recipients, as well as equity of resources' allocation were investigated. The survey was sent by e-mail. Multiple approaches were used (corresponding authors from Scopus, websites of scientific societies, COVID-19 webinars). After the descriptive analysis, univariate and multivariate ordinal regression analysis was performed. Results. There were 1819 complete answers from 71 countries. The response rate was 49%. Data were stratified according to region, macrospecialty, and organ of interest. Answers were analyzed using univariate- multivariate ordinal regression analysis and thematic analysis. Overall, 20% of the responders thought SOTs should not stop (continue transplant without restriction); over 70% suggested SOTs should selectively stop, and almost 10% indicated they should completely stop. Furthermore, 82% agreed to shift resources from transplant to COVID-19 temporarily. Briefly, main reason for not stopping was that if the transplant will not proceed, the organ will be wasted. Focusing on SOT from living donors, 61% stated that activity should be restricted only to "urgent"cases. At the multivariate analysis, factors identified in favor of continuing transplant were Italy, ethicist, partially disagreeing on the equity question, a high number of COVID-19- related deaths on the day of the answer, a high IHDI country. Factors predicting to stop SOTs were Europe except-Italy, public university hospital, and strongly agreeing on the equity question. Conclusions. In conclusion, the majority of responders suggested that transplant activity should be continued through the implementation of isolation measures and the adoption of the COVID-19-free pathways. Differences between professional categories are less strong than supposed

    Correction to: Two years later: Is the SARS-CoV-2 pandemic still having an impact on emergency surgery? An international cross-sectional survey among WSES members

    Get PDF
    Background: The SARS-CoV-2 pandemic is still ongoing and a major challenge for health care services worldwide. In the first WSES COVID-19 emergency surgery survey, a strong negative impact on emergency surgery (ES) had been described already early in the pandemic situation. However, the knowledge is limited about current effects of the pandemic on patient flow through emergency rooms, daily routine and decision making in ES as well as their changes over time during the last two pandemic years. This second WSES COVID-19 emergency surgery survey investigates the impact of the SARS-CoV-2 pandemic on ES during the course of the pandemic. Methods: A web survey had been distributed to medical specialists in ES during a four-week period from January 2022, investigating the impact of the pandemic on patients and septic diseases both requiring ES, structural problems due to the pandemic and time-to-intervention in ES routine. Results: 367 collaborators from 59 countries responded to the survey. The majority indicated that the pandemic still significantly impacts on treatment and outcome of surgical emergency patients (83.1% and 78.5%, respectively). As reasons, the collaborators reported decreased case load in ES (44.7%), but patients presenting with more prolonged and severe diseases, especially concerning perforated appendicitis (62.1%) and diverticulitis (57.5%). Otherwise, approximately 50% of the participants still observe a delay in time-to-intervention in ES compared with the situation before the pandemic. Relevant causes leading to enlarged time-to-intervention in ES during the pandemic are persistent problems with in-hospital logistics, lacks in medical staff as well as operating room and intensive care capacities during the pandemic. This leads not only to the need for triage or transferring of ES patients to other hospitals, reported by 64.0% and 48.8% of the collaborators, respectively, but also to paradigm shifts in treatment modalities to non-operative approaches reported by 67.3% of the participants, especially in uncomplicated appendicitis, cholecystitis and multiple-recurrent diverticulitis. Conclusions: The SARS-CoV-2 pandemic still significantly impacts on care and outcome of patients in ES. Well-known problems with in-hospital logistics are not sufficiently resolved by now; however, medical staff shortages and reduced capacities have been dramatically aggravated over last two pandemic years
    • …
    corecore