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Abstract

In this paper, an advanced computational method is proposed, whose aim is to obtain an approximately

optimal design of a particular class of acoustic metamaterials, by combining multi-objective optimization

and dimensionality reduction in a novel way. Metamaterials are modeled as beam lattices with internal

local resonators coupled with the microstructure through a viscoelastic phase. The dynamics is governed

by a set of integro-differential equations, that are transformed into the Z-Laplace space in order to derive

an eigenproblem whose solution provides the dispersion relation of the free in-plane propagating Bloch

waves. A multi-objective optimization problem is stated, whose aim is to achieve the largest multiplicative

trade-off between the bandwidth of the first stop band and the one of the successive pass band in the

metamaterial frequency spectrum. Motivated by the multi-dimensionality of the design parameters space,

the goal above is achieved by integrating numerical optimization with machine learning. Specifically,

the problem is solved by combining a sequential linear programming algorithm with principal component

analysis, exploited as a data dimensionality reduction technique. This represents a novel way of applying

principal component analysis in connection with multi-objective optimization. Successful performances of

the proposed optimization method and its computational savings are demonstrated.

Keywords: Beam lattice metamaterial; Damped wave propagation; Complex-valued frequency spectrum;

Gradient-based optimization; Dimensionality reduction.

1. Introduction

Architected materials and metamaterials are composite materials characterized by various smart and

unconventional functionalities. They are designed in order to achieve superior effective properties with re-

spect to their ingredient materials. Propelled by both theory and experiments, research efforts conducted in

the last decades in the field are huge and focus on different extraordinary aspects such as wave guiding and

polarization [1–4], energy transfer, harvesting and sensing [5–12], active and passive control of wave prop-

agation [13–19], extreme lightness and auxeticity [20–25], negative refraction index [26–29], and acoustic

filtering [30–35]. Because of the hierarchical nature of such multiphase materials, their microstructural op-

timization for achieving desired functionalities may involve significant computational resources [36, 37].
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In this regard, the exceptional advancements in the microengineering and nanotechnologies sectors have

caused a fast and revolutionary transformation in the traditional design methodologies for metamateri-

als and architected materials. Promoted by the onward accelerating growth of accessible computational

resources, data-driven approaches have quickly evolved into competitive analyses and design tools as a

result of the possibility to interpret and manipulate large datasets using artificial intelligence techniques.

Nowadays these tools represent a useful support or even a valid alternative to conventional model-driven

methodologies [38–43]. Machine learning algorithms have revealed highly beneficial in resolving chal-

lenging mathematical and computational problems afflicted by high dimensions, strong nonlinearities, and

the existence of multiple solutions, and constraints [44]. Among them, Principal Component Analysis

(PCA) is a well-known data dimensionality reduction technique [45, 46]. Loosely speaking, it works by

projecting a dataset onto a subspace having a reduced dimension, which is generated by a subset of so-

called principal directions. Among all subspaces having a certain reduced dimension, the one generated

by the principal directions identified by PCA minimizes the mean squared error of approximation of its

training dataset. Although there exist several classical applications of PCA to materials science [47], it

was recently shown by the authors [48] that PCA can also be successfully exploited in connection with

constrained multi-objective optimization problems, since instead of exploiting the true gradient of the con-

strained objective function, an approximation of that gradient can be used, this last obtained from the

application of PCA to the properly sampled field of gradient directions. According to the authors’ expe-

rience, this is a non-standard, almost unexplored, but potentially quite interesting way of using PCA in

connection with multi-objective optimization (the case of single-objective optimization was briefly consid-

ered by the authors in a recent conference work [49]). It is worth mentioning that a related application of

PCA to image gradient orientations is also reported in the literature on image processing [50].

Departing from this stimulating framework, this paper focuses on a particular class of metamaterials,

identified as mechanical, or acoustic metamaterials with the goal of optimizing specific spectral properties.

Acoustic metamaterials, whose mechanical model departs from a beam lattice description, are character-

ized by a periodic topology and a microstructure enriched by massive oscillators acting as tunable local

resonators. Their tunability and the consequent frequency-dispersive behavior of various properties (such

as mass density [51], bulk modulus [52] or both [53]) results in a dynamic interaction with the microstruc-

ture, causing the opening of band gaps in the relative frequency spectrum [19, 54]. The bandwidth of

these band gaps is nearly directly proportional to the oscillator mass and the central frequency almost

approximates the oscillator natural one [55–60]. Local resonance, therefore, can be wisely exploited in

order to attain different desirable effects fascinating from both the fundamental and practical points of view

such as filtering, transmission amplification, image lensing, modal localization, wave trapping, and edging

[61–64]. In this regard, this paper is devoted to attaining the largest multiplicative trade-off between the

first band gap and the pass band of optical branches of acoustic metamaterials, whose local resonators are

coupled to the periodic non-dissipative microstructure through a viscoelastic phase [65]. Resulting linear

integro-differential equations of motion are described in Section 2. In the same Section, thanks to the

periodicity of the medium at hand, wave propagation of in-plane Bloch waves is investigated according

to the Floquet-Bloch theory, after the transformation of the governing equations in the Z-Laplace space.

The dispersion relation is obtained by solving a non-polynomial eigenproblem, properly de-rationalized,

and determining complex frequencies in terms of real wavevectors (temporal damping). The achievement

of the optimal filtering performance is mathematically formalized in Section 3, where the solution of a
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Figure 1: Mechanical model for the beam lattice metamaterial: (a) quadrilateral cellular topology, (b) periodic cell of size a, (c)

coordination lines.

unilaterally-constrained maximization problem is sought for. Real-valued microstructural parameters are

selected as optimization variables and a subset of constraints is taken into account in the corresponding

penalized objective function by means of a suitable penalty term. Numerical optimization is performed

through a gradient-based optimization algorithm, where PCA is exploited in order to accurately approx-

imate the penalized objective function gradient directions. The computational efficiency of the adopted

machine learning-based algorithm is demonstrated and discussed in Section 4, where successful perfor-

mances of the optimization method in the design of mechanical metafilters are shown. Final remarks are

reported in Section 5.

2. Mechanical model of a viscoelastic beam lattice metamaterial

Mechanical metamaterials with viscoelastic resonators are characterized by a periodic microstructure

based on spatial repetition of a certain cellular topology along n/2 lattice coordination lines, with n an

even integer number representing the lattice coordination number. If the periodic cell, whose characteristic

size is denoted as a, is centrosymmetric and quadrilateral, its coordination number is n = 4 (see figure 1).

Each cell is characterized by a stiff ring having a mean radius equal to R, mass M1, and rotational inertia

J1. With reference to the configuration node located at its centroid, the ring is modeled as a rigid body

whose in-plane motion is described by displacement vector u and rotation φ. n identical light and flexible

massless ligaments having length L= a−2 R and width w connect each massive ring to the adjacent ones.

They are modeled as linear unshearable beams having Young modulus E and their joints with the

stiff rings are assumed as perfectly rigid. Local resonance is obtained by enhancing each stiff ring with

a co-centered heavy stiff disk having radius r, mass M2, and rotational inertia J2. The local resonator is

embedded in a soft annular matrix exhibiting a viscoelastic material behavior and characterized by the time-

dependent relaxation function kd(t) for the relative ring-resonator displacement and ka(t) for the relative

ring-resonator rotation. Each massive resonator is modeled as a rigid body whose in-plane motion is

described by displacement vector v and rotation θ, again with reference to the configuration node located

at the disk centroid, that results to be geometrically coincident with the heavy ring one (two-node lattice

point). Finally, the mechanical model of the periodic cell is assumed to have a unitary depth d along

the out-of-plane direction. In-plane external nodal force vector f and moment g represent the dynamic
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excitations acting on the ring, while the local resonator is considered as unloaded. If ωr and Lr denote,

respectively, a known reference frequency and a known reference length, according to [65], the following

dimensionless variables can be conveniently defined

t̃=ωrt, τ̃=ωrτ, ũ=
u

Lr

, ṽ=
v

Lr

, f̃ =
f

ω2
r M1Lr

, g̃=
g

ω2
r M1L2

r

, (1)

together with the following suitable number of dimensionless mechanical parameters

̺2 =
M2

M1

, χ2
1 =

J1

M1L2
r

=
R2

L2
r

, χ2
2 =

J2

M2L2
r

=
r2

2L2
r

, η2 =
Ea

ω2
r M1

,

κd =
kd

Ea
, κa =

ka

EaL2
r

, α=
a

Lr

, δ=
d

a
, µ=

w

L
. (2)

The forced dynamics of the beam lattice metamaterial is described by a set of integro-differential equations

of motion, whose dimensionless form reads

¨̃uJ +
∫ t̃

−∞
η2κd(t̃− τ̃) d

dτ̃

(

ũJ − ṽJ
)

dτ̃+
∑

P[j]

(

r̃+J[j]
+ r̃−J[j]

)

= f̃J ,

χ2
1φ̈J +

∫ t̃

−∞
η2κa(t̃− τ̃) d

dτ̃

(

φJ −θJ
)

dτ̃+
∑

P[j]

(

c̃+J[j]
+ c̃−J[j]

)

= g̃J ,

̺2 ¨̃vJ +
∫ t̃

−∞
η2κd(t̃− τ̃) d

dτ̃

(

ṽJ − ũJ
)

dτ̃= 0,

̺2χ2
2θ̈J +

∫ t̃

−∞
η2κa(t̃− τ̃) d

dτ̃

(

θJ −φJ
)

dτ̃= 0. (3)

In equation (3), dots denote derivatives with respect to dimensionless time t̃, J = (i1, ..., in/2) repre-

sents the set of lattice coordination lines and it is used to select a specific node of the lattice, while

J[j] = (i1, ..., ij, ..., in/2) identifies the i-th node along coordination line j. P[j] allows identifying the j−th

coordination line since it collects the integer j-values belonging to the range [1, n/2]. Dimensionless inter-

nal forces acting on lattice node J[j] are expressed as

r̃+J[j]
= K̃+[j]

(

ũJ[j]
− ũJ+

[j]

)

+ k̃+[j]
(

φJ[j]
+φJ+

[j]

)

,

r̃−J[j]
= K̃−[j]

(

ũJ[j]
− ũJ−

[j]

)

+ k̃−[j]
(

φJ[j]
+φJ−

[j]

)

,

c̃+J[j]
= k̃+[j] ·

(

ũJ[j]
− ũJ+

[j]

)

+ K̃a

(

φJ[j]
+φJ+

[j]

)

+ K̃ℓ
(

φJ[j]
−φJ+

[j]

)

,

c̃−J[j]
= k̃−[j] ·

(

ũJ[j]
− ũJ−

[j]

)

+ K̃a

(

φJ[j]
+φJ−

[j]

)

+ K̃ℓ
(

φJ[j]
−φJ−

[j]

)

, (4)

where stiffness coefficients have the following dimensionless form

K̃±[j] = η
2δµ

[(

d±[j]⊗d±[j]
)

+µ2
(

t±[j]⊗ t±[j]
)]

, k̃±[j] =
1
2
αη2δµ3t±[j], K̃a =

1

4
α2η2δµ3, K̃ℓ =

1

12
(α−2χ1)2η2δµ3.

(5)

According to the adopted notation, in equation (4),J±
[j]
= (i1, ..., ij±1, ..., in/2) is the set of coordination lines

that allows to identify the i±1 node of the lattice along coordination line j. Dimensionless time-dependent

relaxation functions can be expressed in terms of the Prony series as [66]

κd(t̃)= κde

















1+

Np
∑

n=1

βn
d exp

(

−ηt̃
t̃n
r

)

















, κa(t̃)= κae

















1+

Np
∑

n=1

βn
a exp

(

−ηt̃
t̃n
r

)

















, (6)
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where κde and κae refer to nondimensional long term response of the material for the relative displacement

and relative rotation, respectively, while βn
d

and βn
a represent the corresponding n-th viscosity ratios. The n-

th dimensionless relaxation time that governs the exponential decay rate of the relative relaxation function

is denoted in equation (6) as t̃n
r .

2.1. Free propagation of in-plane Bloch waves

In order to investigate the propagation of elastic Bloch waves inside the metamaterial, a bilateral

Laplace transform in time and a bilateralZ-transform in space are applied to the dimensionless equations

of motion (3). If q̃(t̃) is a real-valued, non dimensional, time-dependent function, denoting with s̃ = s/ωr

the dimensionless complex Laplace argument, bilateral Laplace transform of q̃(t̃) is defined as

L [

q̃(t̃ )
]

= q̂(s̃)=

∫

R

q̃(t̃ ) exp
(−s̃t̃

)

dt̃, (7)

with q̂(s̃) : C→ C. Accounting for the spatial periodicity of the lattice, bilateral Z-transform [67, 68] of

function qJ :Zn/2→C is defined as

Z[qJ ]=Z[q(i1,...,in/2)]=
∑

J∈Zn/2

q(i1,...,in/2)z
−i1
1
...z
−in/2
n/2
= q̌(z1...zn/2)= q̌(z), (8)

with z = (z1 ... zn/2 )T ∈ Cn/2 and q̌(z) a complex-valued function. Making use of the Laplace transform

properties L[
∂nq̃(t̃)

∂t̃n ] = s̃nL[q̃(t̃)] and L[q̃1(t̃) ∗ q̃2(t̃)] = L[q̃1(t̃)]L[q̃2(t̃)], and of the Z-transform property

Z[q(i1±m1,...,in/2±mn/2)]= z
±m1

1
...z
±mn/2

n/2
Z[q(i1,...in/2)], equations (3) are transformed into

s̃2ů(z, s̃)+ s̃η2κ̂d(s̃)
(

ů(z, s̃)− v̊(z, s̃)
)

+
∑

P[j]

(

r̊+J[j]
+ r̊−J[j]

)

= f̊(z, s̃),

χ2
1 s̃2φ̊(z, s̃)+ s̃η2κ̂a(s̃)

(

φ̊(z, s̃)− θ̊(z, s̃)
)

+
∑

P[j]

(

c̊+J[j]
+ c̊−J[j]

)

= g̊(z, s̃),

̺2 s̃2v̊(z, s̃)+ s̃η2κ̂d(s̃)
(

v̊(z, s̃)− ů(z, s̃)
)

= 0,

̺2 s̃2χ2
2θ̊(z, s̃)+ s̃η2κ̂a(s̃)

(

θ̊(z, s̃)− φ̊(z, s̃)
)

= 0, (9)

where q̊(z, s̃) =Z[q̂J (s̃)] =Z[L[q̃J (t̃ )]] stands for the Z-transform of the Laplace transform of function

q̃J (t̃ ). Doubly-transformed inter-cellular internal forces in equation (9) acting on the J-th node have the

following expressions

r̊+J[j]
= (1−zj) K̃+[j] ů(z, s̃)+ (1+zj) k̃+[j] φ̊(z, s̃),

r̊−J[j]
= (1−z−1

j ) K̃−[j] ů(z, s̃)+ (1+z−1
j ) k̃−[j] φ̊(z, s̃),

c̊+J[j]
= (1−zj) k̃+[j] · ů(z, s̃)+ (1−zj) K̃a φ̊(z, s̃)+ (1−zj) K̃ℓ φ̊(z, s̃),

c̊−J[j]
= (1−z−1

j ) k̃−[j] · ů(z, s̃)+ (1−z−1
j ) K̃a φ̊(z, s̃)+ (1−z−1

j ) K̃ℓ φ̊(z, s̃). (10)

In equation (9), κ̂d(s̃) and κ̂a(s̃) refer to the dimensionless transformed relaxation functions for the rela-

tive displacement and relative rotation, respectively. The linear system of algebraic equations (9) can be

concisely expressed in matrix form as

C(z, s̃) Ů(z, s̃)= F̊(z, s̃), (11)
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where vectors Ů(z, s̃) =
(

ů(z, s̃) φ̊(z, s̃) v̊(z, s̃) θ̊(z, s̃)
)T

and F̊(z, s̃) =
(

f̊(z, s̃) g̊(z, s̃) 0 0
)T

collect the trans-

formed six components of displacement and rotation and external forces and moments, respectively. Dy-

namic stiffness matrix C(z, s̃ ), therefore, is expressed as

C(z, s̃)=



















































A(z, s̃)+ s̃2I a−(z) −s̃η2κ̂d(s̃)I 0

a+(z) B(z, s̃)+ s̃2χ2
1

0 −s̃η2κ̂a(s̃)

−s̃η2κ̂d(s̃)I 0 s̃η2κ̂d(s̃)I+ s̃2̺2I 0

0 −s̃η2κ̂a(s̃) 0 s̃η2κ̂a(s̃)+ s̃2̺2χ2
2



















































, (12)

where, denoting with I the identity matrix, one has

A(z, s̃)= s̃η2κ̂d(s̃)I+
∑

P[j]

[

(1−zj)K̃
+
[j]+ (1−z−1

j )K̃−[j]
]

,

a−(z)=
∑

P[j]

[

(1+zj)k̃
+
[j]+ (1+z−1

j )k̃−[j]
]

,

a+(z)=
∑

P[j]

[

(1−zj)k̃
+
[j]+ (1−z−1

j )k̃−[j]
]

,

B(z, s̃)= s̃η2κ̂a(s̃)+
∑

P[ j]

[

(1+zj)K̃a+ (1−zj)K̃ℓ+ (1+z−1
j )K̃a+ (1−z−1

j )K̃ℓ
]

. (13)

Denoting with n[j] the unit vector along the j-th coordination line, which, because of cellular topology at

hand, coincides with unit vector d[j], complex variables zj, with j = 1, ..., n/2 can be mapped on the unit

circle as zj = exp
(

i
(

n[j] ·b
))

, where b = (β1 β2)T represents the dimensionless wavevector. System (11),

therefore, can be written making explicit its b-dependence as

C(b, s̃) Ů(b, s̃)= F̊(b, s̃). (14)

With the aim of investigating temporal damping for the metamaterial at hand, dispersion relation s̃(b) is

sought for, describing the behavior of the complex dimensionless frequency in terms of the real-valued

dimensionless wavevector, this last belonging to the dimensionless first Brillouin zone. From equation

(14), the dispersion relation is obtained from the solution of the rational eigenvalue problem

C(b, s̃) Ů(b, s̃)= 0, (15)

where vector F̊(b, s̃) = 0 because of the imposed free wave propagation condition. As usual, non-trivial

solutions Ů(b, s̃) of the homogeneous equation of motion (15) are determined by imposing the singularity

of system matrix C(b, s̃) and complex eigenvalues s̃ are the roots of characteristic equation det(C(b, s̃))= 0.

Their real and imaginary components are associated to damping and propagation modes, respectively, of

damped waves propagating inside the medium.

2.2. De-rationalization of the rational eigenvalue problem

In order to find the exact solution s̃(b) of the rational eigenvalue problem (15), a de-rationalization

procedure is adopted [69]. To this aim, equation (15) is conveniently rewritten detailing the dependence of

terms on dimensionless complex frequency s̃ as

6





















s̃2M+
η2

∏Np

i=1

(

η

t̃i
r
+ s̃

)

(

s̃Np GNp
+ ...+G0

)

+H(b)



















Ů(b, s̃)= 0, (16)

where it is worth recalling that Np represents the number of terms considered in the Prony series (6).

Denoting with S(s̃)=
η2

∏Np

i=1(η/t̃
i
r+s̃)

I, its inverse can be wisely written as

S−1(s̃)=
1

η2

Np
∏

i=1

(

s̃+
η

t̃i
r

)

I=
1

η2

Np
∑

i=0

(

αi s̃
i
)

I. (17)

Coefficients αi of equation (17) are such that αNp
= 1 and

αNp−k = (−1)k
∑

P[1,Np ]

k
( j1,..., jk)

















k
∏

i=1

(

− η
t̃

ji
r

)

















, (18)

being P[1,Np]

k
( j1, ..., jk) the set of all combinations of order k of indexes j1, ..., jk in the range [1,Np], with

integer k ∈ [1,Np] (see [70] for details). Examples of application of equation (18) can be found in Section

A.2 of the supplementary material. In this way, equation (16) takes the form of a polynomial eigenvalue

problem expressed as

















Np
∑

i=0

s̃i















0 0

Gi − αi

η2 I















+ s̃2















M 0

0 0















+















H(b) I

0 0













































Ů(b, s̃)

Q̊(b, s̃)















=















0

0















, (19)

being Q̊(b, s̃) =
(

S(s̃)
∑Np

i=0
s̃iGi

)

Ů(b, s̃) = η2
(

∑Np

i=0
s̃i αi

)−1
I
(

∑Np

i=0
s̃iGi

)

Ů(b, s̃) an auxiliary vectorial vari-

able. Characteristic equation associated to polynomial eigenvalue problem (19), which could also be lin-

earized following, for example, a procedure analogous to that exploited in [71, 72] for the linearization

of higher-order ordinary differential equations, allows determining the complex frequency spectrum of the

periodic metamaterial. Considering from now on Prony series (6) truncated at Np = 1, matrices involved in

system (19) read

M=



















































I 0 0 0

0 χ2
1

0 0

0 0 ̺2I 0

0 0 0 ̺2χ2
2



















































, G1 =



















































κde(1+βd)I 0 −κde(1+βd)I 0

0 κae(1+βa) 0 −κae(1+βa)

−κde(1+βd)I 0 κde(1+βd)I 0

0 −κae(1+βa) 0 κae(1+βa)



















































,

G0 =
η

t̃r



















































κdeI 0 −κdeI 0

0 κae 0 −κae

−κdeI 0 κdeI 0

0 −κae 0 κae



















































, H(b)=



















































A0(b) a−(b) −η2κdeI 0

a+(b) B0(b) 0 −η2κae

−η2κdeI 0 η2κdeI 0

0 −η2κae 0 η2κae



















































, (20)

with
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A0(b)= η2κdeI+
∑

P[j]

[

(1−exp[ı(n[j] ·b)])K̃+[j]+ (1−exp[−ı(n[j] ·b)])K̃−[j]
]

,

B0(b)= η2κae+
∑

P[j]

[

(1+exp[ı(n[j] ·b)])K̃a+ (1−exp[ı(n[j] ·b)])K̃ℓ +

+ (1+exp[−ı(n[j] ·b)])K̃a+ (1−exp[−ı(n[j] ·b)])K̃ℓ
]

. (21)

Taking into account the quadrilateral topology of figure 1 for the beam lattice metamaterial, complex-

(c)

(d)(a) (b)

Figure 2: (a) 3D complex frequency spectrum obtained for the beam lattice metamaterial having parameters specified in Section

2.2. Dissecting it with the plane ξ = π/2, spectral branches are ordered in increasing order according to the value of I(s̃η). (b) Two-

dimensional view of the complex frequency spectrum in the plane {I(s̃η); ξ} . (c) Zoomed view of the frequency spectrum in the plane

{I(s̃η); ξ} with 0≤I(s̃η)≤ 0.2. (d) Zoomed view of the pure-damping spectral branches in the plane {R(s̃η); ξ} with 0.5≤−R(s̃η)≤ 1.

valued spectrum obtained solving the eigenvalue problem (19) is represented in figure 2, where the real

and imaginary components of the normalized frequency s̃η = s̃/η, denoted as R(s̃η) and I(s̃η), respectively,

are computed in terms of the curvilinear abscissa ξ ∈ [0, π(2+
√

2)]. This last spans the closed boundary

of triangular subdomain B1 ⊂B, where B= [−π, π]× [−π, π] denotes the dimensionless first Brillouin zone

and B1 has vertices pointed by dimensionless wave vectors b1 = (0 0)T ,b2 = (π 0)T , and b3 = (π π)T .

Considering for mechanical material parameters the values α = 1, βd = βa = 2, χ1 = 3/10, χ2 = 1/10, κae =

1/100, κde = 1/5, µ= 9/100, ̺2 = 2, t̃r = 4/5 and δ= 1, a progressive number going from 1 to 9 is associated

to each obtained curve dissecting the three-dimensional spectrum by means of the plane ξ = π/2 in order

to clarify what is done next. It is worth mentioning that the number of complex eigenvalues computed

from (19) with Np = 1 is ne = 15 (disregarding the non admissible multiple solution s̃=−η/t̃r that violates
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the non-singularity condition) and that the six missing curves in figure (2) are the complex conjugate ones

of curves 4-9, thus having a negative imaginary part of s̃η. Curves 1−3 lie in the high damping range of

the real plane and they can be referred to as pure-attenuation or pure-damping spectral branches. Curves

4−6 in the low-frequency range correspond to spectral branches of weak attenuation because of the small

values of R(s̃η) characterizing them. Finally, curves 7−9 represent the strong attenuation spectral branches

reflecting the effect of the attenuation due to viscoelastic coupling. They lie in the high-frequency range

and are characterized by non-negligible real values of the complex frequency. In the following, a multi-

objective optimization technique based on principal component analysis is presented in order to obtain an

approximately optimal design for the metafilter at hand.

3. Computational spectral design

As mentioned above, due to the symmetry of the Floquet-Bloch spectrum with respect to the imaginary

axis, only the frequency curves with nonnegative imaginary parts are considered. Such curves are ordered

nondecreasingly according to their imaginary parts. In the case of intersections of the imaginary parts, a

locally arbitrary order is adopted for the intersected curves (e.g., a lexicographic order, or one based on the

real parts of such curves), without changing the results of the successive analysis. Indeed, the band gap and

pass band defined in the following paragraphs involve only the imaginary parts of the frequency curves.

For a positive integer k, the amplitude of the (possible) band gap between the k-th and (k+1)-th frequen-

cies is determined as the difference ∆s̃
BGk,k+1

η between the minimum of the imaginary part of the (k+1)-th

frequency (higher limit) and the maximum of the imaginary part of the k-th frequency (lower limit) over the

nondimensional wavevector b ∈ B. In order for ∆s̃
BGk,k+1

η to be really a bandgap, the condition ∆s̃
BGk,k+1

η ≥ 0

has to be met. In the following, the band gap ∆s̃
BG6,7

η between the 6-th and 7-th frequencies is considered,

having imposed the constraint ∆s̃
BG6,7

η ≥ 0 (or, equivalently, the constraint −∆s̃
BG6,7

η ≤ 0).

Similarly, for two positive integers k1 and k2, the amplitude of the (possible) pass band between the

k1-th and (k1+k2)-th frequencies is determined as the difference ∆s̃
PBk1 ,k1+k2
η between the maximum of the

imaginary part of the (k1+ k2)-th frequency (higher limit) and the minimum of the imaginary part of the

k1-th frequency (lower limit) over the nondimensional wavevector b ∈B. In order for ∆s̃
PBk1 ,k1+k2
η to be really

a pass band, no band gap between the k1-th and (k1+k2)-th frequencies can occur. In other words, for all

k ∈ {k1, k1 +1, . . . , k1 + k2 −1}, the condition ∆s̃
BGk,k+1

η ≤ 0 has to be met. In the following, the pass band

∆s̃
PB7,9

η between the 7-th and 9-th frequencies is considered, having imposed the constraints ∆s̃
BG7,8

η ≤ 0 and

∆s̃
BG8,9

η ≤ 0. The computational spectral design targeted at achieving the optimal filtering performance of

the square lattice metamaterial with viscoelastic resonators (optimal metafilter) can be physically oriented

at obtaining the largest multiplicative trade-off between the band gap ∆s̃
BG6,7

η and the pass band ∆s̃
PB7,9

η ,

likewise in [73]. Denoting with d ∈ D ⊆ R
d the d-dimensional vector collecting all the real-valued mi-

crostructural parameters that can be selected as optimizable variables, the optimal filtering performance

can be mathematically formalized as solving the following constrained maximization problem

maximize
d∈D⊂Rd ,g(d)≤0

J(d)
.
=∆s̃

BG6,7

η (d)∆s̃
PB7,9

η (d) , (22)

where the 3 components of the vector-valued function g :D→R
3 are defined as

g1(d)
.
=−∆s̃

BG6,7

η (d) , (23)
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g2(d)
.
=∆s̃

BG7,8

η (d) , (24)

g3(d)
.
=∆s̃

BG8,9

η (d) . (25)

Problem (22) is a nonlinear optimization problem [74, 75]. Its connections with multi-objective optimiza-

tion and Pareto optimality are discussed in Section A.3 of the supplementary material.The motivation for

the introduction of the constraint g(d)≤ 0 is that it makes ∆s̃
BG6,7

η (d) and ∆s̃
PB7,9

η (d) be really a band gap and

a pass band, respectively, as already discussed above.

A second optimization problem, in which only the pass band is maximized, is also considered later in

the work:

maximize
d∈D⊂Rd ,g(d)≤0

J2(d)
.
=∆s̃

PB7,9

η (d) . (26)

The admissible subsetD is the closure of an open and bounded set, and accounts for all the inequality

constraints of the optimization problem that do not involve its Floquet-Bloch spectrum. These include

both the admissible range of every single parameter (box constraints) and the geometric or mechanical

inter-parameter relationships (internal constraints). All the other constraints, which involve the Floquet-

Bloch spectrum, and whose evaluation is more expensive from a computational point of view, are reported

as g(d) ≤ 0 (see equations (23)-(25)). It may be worth remarking that, since the bounded changes in

the d-value do not topologically modify the periodic microstructure of the metamaterial, the optimization

problems considered here do not fall in the widely explored category of topology optimization problems

[76].

3.1. Proposed method: PCA-based penalized optimization

From the methodological viewpoint, the leading idea to address the microstructural optimization prob-

lem (22) by means of a PCA-based penalized optimization approach, which is essentially motivated by

the high computational cost of evaluating the objective function J(d) and each component of the constraint

function g(d) for each admissible choice of the vector d (a similar issue arises for the modified optimization

problem (26)). In the case of the objective function of the optimization problem (22), this is mainly moti-

vated by the high resolution needed to determine the dispersion functions in the entireB-domain in order to

compute the band gap and pass band, as also discussed in the case of other similar optimization problems

[77]. In this context, an analogous additional computational effort is needed to evaluate the vector-valued

function g(d) for each choice of the vector d. All this reflects also in a high computational cost needed

to evaluate numerically the gradient of the objective function J(d), and the gradient of each component of

g(d). Such a computational cost is proportional to the dimension d.

To address the issues above, the adopted optimization approach is based on replacing, for some large

positive penalty parameter ϕ, the optimization problem (22) with the penalized optimization problem

maximize
d∈D⊂Rd

Jϕ(d)
.
= J(d)−ϕp(d) , (27)

where p : D → R is a penalty function which penalizes the violation of the constraint g(d) ≤ 0, and is

defined as follows:

p(d)=max{g1(d), g2(d), g3(d), 0} . (28)
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Figure 3: Flowchart of the proposed PCA-based penalized optimization algorithm.

Then, to do the optimization numerically, a suitable iterative gradient-based optimization algorithm (namely,

Sequential Linear Programming, or SLP) is applied. Instead of using the true gradient of the penalized ob-

jective function Jϕ(d), an approximation of that gradient is used (after replacing the vector d with its

suitable normalization d′, as detailed in the following), based on PCA applied to its suitably sampled field

of gradient directions. In the specific case, gradient directions are used instead of gradients, in order to

reduce the influence of the penalty parameter ϕ on the results (as the penalty part −ϕp(d) of the penalized

objective Jϕ(d) may dominate the other part J(d), for a vector d ∈ D for which the constraint g(d) ≤ 0 is

not satisfied).

The proposed algorithm is illustrated in figure 3 and can be synthesized as follows. First, each com-

ponent of the admissible vector d is mapped affinely into the interval [0, 1], where 0 corresponds to the

minimum value of that component achieved on D, and 1 to its maximum value. The so-obtained nor-

malizations of d and D are referred in the following as d′ and D′, respectively. Such normalizations are

performed in order to give a-priori the same importance to each component of the admissible (normalized)

vector when PCA is applied to the sampled gradient field of the penalized objective function, expressed

now as a function Jϕ(d
′). Then, a low-discrepancy Sobol’ sequence [78] is used to generate a training
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sample set S of M admissible elements (or points) d′
i
∈D′, for i= 1, . . . ,M. These are the first M elements

of the sequence that also satisfy the constraint g(d′)≤ 0 (expressed now in terms of the vector d′ of normal-

ized variables). At this point, several statistics are computed, starting from the M values d′
i
. Specifically,

centered difference approximations of the components of the gradient ∇Jϕ(d
′) of the penalized objective

function Jϕ(d
′
i
) are computed, for several choices of the stepsize ǫ = 10−h (where −h represents the stepsize

order of magnitude). These approximations are called numerical gradients in the following and are denoted

as ∇hJϕ(d
′
i
). Then, for N = 1, . . . ,M, PCA is applied to the centered sampled field of numerical gradient

directions {∇hJϕ(d
′
i
)/‖∇hJϕ(d

′
i
)‖2}Ni=1

(i.e., the empirical mean 1/N
∑N

i=1 ∇hJϕ(d
′
i
)/‖∇hJϕ(d

′
i
)‖2 of the nu-

merical gradient directions ∇hJϕ(d
′
i
)/‖∇hJϕ(d

′
i
)‖2 is subtracted from all such numerical gradient directions

before applying PCA to them). Finally, the optimal number N◦ is chosen as the minimal training subset size

N for which the eigenvalues obtained by PCA applied to the centered sampled field of numerical gradient

directions do not change significantly by increasing that value (independently of the value of the parameter

h used for numerical gradient evaluation). As a successive step, the optimal stepsize ǫ◦ = 10−h◦ is chosen,

by applying the rule of thumb ǫ◦ = 3
√

u reported in Section A.4 of the supplementary material, where u is

the machine precision. As an additional check of optimality of the related value h◦ = log10(ǫ◦), the quantity

f ◦(N, h)= lim
∆h→0

1

N◦

N◦
∑

i=1

∥

∥

∥

∥

∥

∥

∇h+∆hJϕ(d
′
i
)

‖∇h+∆hJϕ(d
′
i
)‖2
−
∇hJϕ(d

′
i
)

‖∇hJϕ(d
′
i
)‖2

∥

∥

∥

∥

∥

∥

2

is computed and minimized over h, to confirm that −h◦ is the optimal stepsize order of magnitude also for

this minimization problem (i.e., loosely speaking, that the directions of the numerical gradients are highly

stable for this choice of h). This check is motivated by the fact that closed-form expressions for the exact

(non-numerical) gradient directions are not available. Next, the normalized penalized objective function

Jϕ(d
′) is maximized on D′, using a gradient-based iterative optimization algorithm, namely SLP with an

adaptive trust region, likewise in [77] (details of that algorithm are provided therein). The difference with

respect to the implementation presented in [77] is that at each iteration of the algorithm, which is associated

with a feasible choice of d′ ∈D′, instead of evaluating the numerical gradient ∇hJϕ(d
′), one computes its

projection on the (at most) (p◦+1)-dimensional subspace generated by both the average

a◦ =
1

N◦

N◦
∑

i=1

∇hJϕ(d
′
i
)

‖∇hJϕ(d
′
i
)‖2

of the numerical gradient directions and the selected p◦ principal directions (the average of the numerical

gradient directions is re-introduced here, as it is clearly important for a good reconstruction of the numerical

gradient directions through their projections on the selected subspace). The procedure above is repeated by

initializing the SLP algorithm N◦ times, each time using as initialization a different element d′
i

generated

from the Sobol’ sequence. Finally, the normalized point d′
d

corresponding to the largest original objective

value J(d′) computed during all the iterations is mapped back to the corresponding unnormalized point

dd (applying the inverse of the affine map used to generate the normalized points d′ starting from the

unnormalized points d). This point dd is taken as the numerical solution to the band gap optimization

problem (22). Consequently, dd can be referred to as best design point in the admissible parameter space.

It is worth observing that, by increasing the sample size M, the algorithm convergence to the optimal value

of the objective function is guaranteed by the low-discrepancy of the Sobol’ sequence with respect to the

unit hypercube in R
d. A similar algorithm is used for the second optimization problem (26), for which the
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Table 1: Box constraining limits, design values of the metamaterial parameters, and corresponding band gap and pass band amplitudes

for ϕ= 1000.

βa χ1 χ2 κae κde µ ρ t̃r ∆s̃
BG6,7
η ∆s̃

PB7,9
η

dmin 1
100

1
10

1
10

1
1000

1
1000

1
50

1
10

1
1000

– –

dbase case 2 0.3 0.1 0.01 0.2 0.09 2 0.8 0.4030 0.2768

d◦
problem (22), no PCA

6.1786 0.3207 0.1425 0.0098 0.1000 0.1000 9.9998 0.8356 0.4789 0.3562

d◦
problem (22),p◦=3

6.3246 0.4200 0.2000 0.0260 0.1000 0.1000 7.0912 0.8166 0.4761 0.3467

d◦
problem (26), no PCA

8.7810 0.4068 0.1941 0.0024 0.0790 0.0999 9.9039 0.6368 0.0046 0.7597

d◦
problem (26),p◦=3

7.8651 0.4196 0.1871 0.0044 0.0915 0.1000 9.5582 0.6401 0.0528 0.7259

dmax 10 1
2

1

2
√

2

1
10

1
10

1
10

10 1 – –

penalized objective function becomes J2(d)−ϕp(d) and p(d) is defined as above. In Section A.1 of the

supplementary material, a detailed theoretical motivation of the proposed method can be found.

4. Results and discussion

In the following, results obtained from the application of the multi-objective optimization technique via

PCA presented in Section 3, are illustrated with the aim of obtaining an approximately optimal design for

the beam lattice metamaterial described in Section 2. In the specific case, the vector d of design parameters

has the form

d=
(

βa χ1 χ2 κae κde µ ρ t̃r
)⊤
.

The other parameters have been fixed to the following values βd = βa, α= δ= η= 1. The admissible region

D⊂Rd is formed by applying to each component of the vector d the following constraints

dmin
j ≤ d j ≤ dmax

j , ∀ j ∈ [1, d]. (29)

Internal constraints are expressed as

µ≤ 1

4

χ1

1−2χ1

, (30)

χ2 ≤
χ1

2
. (31)

Table 1 reports the lower and upper bounds on the components of the vector d, together with their values

achieved in correspondence to some choices of d introduced in the following. The associated band gap and

pass band amplitudes are also reported in the table. A non-optimized case characterized by the parameter

values reported in the second row of Table 1, is considered as a base case (dbase case), and the resulting

Floquet-Bloch spectrum is the one plotted in figure 2. In this case, although one gets both a positive band

gap and a positive pass band, their amplitudes are not optimized. It is the goal of the proposed algorithm

to improve this base case, by finding an optimized choice for the vector of design parameters. The initial

steps of the proposed algorithm are illustrated in figure 4. In its left part, it reports the expression

f (N, h)
.
= lim
∆h→0

1

N

N
∑

i=1

∥

∥

∥

∥

∥

∥

∇h+∆hJϕ(d
′
i
)

‖∇h+∆hJϕ(d
′
i
)‖2
−
∇hJϕ(d

′
i
)

‖∇hJϕ(d
′
i
)‖2

∥

∥

∥

∥

∥

∥

2

(32)
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as a function of N, for several values of h, whereas its right part reports f (N, h) as a function of h, for

several choices of N (in this figure and in the next ones, the penalty parameter ϕ is chosen to be equal to

1000). Loosely speaking, a small value of f (N, h) means that on the training subset of dimension N, the

directions of the numerical gradients do not vary significantly by changing h. The figure highlights that,

for the specific case, one gets N◦ ≃ 500, and h◦ ≃ 4. The Mean Squared Error (MSE) of reconstruction

of the numerical gradient field on the training subset is illustrated in figure 5, first, as a function MS E(N)

of the training subset size N for various choices of the number of principal components kept p, then as

a function MS E(p) of p for various choices of N. Here, PCA is applied to the centered sampled field of

numerical gradient directions, after removing from each such vector the mean numerical gradient direction

a◦. Moreover, the focus is on the reconstruction of the original numerical gradient directions, by projecting

them on the subspace generated by the mean numerical gradient direction a◦ and the first p principal

directions obtained, for p= 0, 1, . . . , 7. The figure highlights that p= 3 (which corresponds to a dimension

p+1= 4 of the subspace) allows one to achieve an MSE smaller than 0.1 for N larger than 50, whereas this

is not possible for smaller values of p (in other words, for e% = 10%, the optimal choice of p is p◦ = 3).

Figure 6 further illustrates the quality of the approximations of the numerical gradients obtained in the case

p◦ = 3 of figure 5, proceeding as follows:

1. first, a specific element of the training set is considered (for illustrative purposes, the selected element

is one for which the proposed algorithm converges to the largest obtained value of the objective

function J, when the algorithm is initialized with that element);

2. then, four planes are considered (one for each subfigure), by fixing all the values of the (normalized)

parameters to the ones of the element in item 1), apart from two (normalized) parameters, which are

varied (still respecting the constraints of the optimization problem (22));

3. finally, in correspondence with every point belonging to a regular subgrid of feasible points on each

plane, one projects on each of those planes: the numerical gradient computed on that feasible point

(the resulting projection is colored in blue); its projection on the subspace generated by the mean

numerical gradient direction and the p◦ = 3 principal directions kept (the resulting projection is

colored in red).

The figure highlights that the quality of the approximation is quite good, as most of the paired directions

Figure 4: Function f (N, h) defined in eq. (32) as a function of N for different values of h (a) and as a function of h for different values

of N (b).
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Figure 5: Mean Squared Error (MSE) as a function of N for different values of p (a) and as a function of p for different values of N

(b).

form a small acute angle. Figure 7 shows, for several choices of p, the evolution of the penalized objective

value Jϕ(d
′
i,iter

) with respect to iter, where i refers to the i-th training subset example from which the

proposed algorithm is initialized, and iter the iteration number of SLP (to avoid burdening the notation, the

dependence on p is not highlighted in Jϕ(d
′
i,iter

)). Different curve colors correspond to distinct choices of

p. Figure 7-(a) shows the whole evolution of Jϕ(d
′
i,iter

), whereas figure 7-(b) shows its zoom, obtained by

restricting the focus on iter ≥ 50. More precisely, figure 7-(a) focuses on 5 specific initializations that lead

to the respective best design point for each among 6 selected values of p, i.e., p◦ (p= 3), two values smaller

than p◦ (p = 1, 2), other two values larger than p◦ (p = 4, 5), and its largest possible value (p = 7). In two

cases, the same initialization is obtained, so it turns out that there are only 5 initializations to consider,

instead of 6. Starting from each initialization, the evolution of the penalized objective value Jϕ(d
′
i,iter

) is

reported for each of the 6 selected cases for p. It is worth mentioning that the green horizontal curve in

figure 7-(a) refers to a situation in which, for p= 2, there is no convergence to the corresponding best design

point. However, such a convergence is achieved, still for p= 2, for one of the other 4 initializations reported.

Since most of the curves in figure 7-(a) are highly overlapped, 7-(b) shows a zoom (near convergence) on

the curves that lead to the respective best design point, for each of the 6 cases considered for p. Figure 7-(b)

shows that, with the selection p◦ = 3, one achieves almost the same largest penalized objective value as

the one obtained by not approximating the numerical gradients through PCA (or equivalently, by choosing

p= 7, which corresponds to a subspace of the same dimension p+1= 8 as the vector of design parameters).

It is also worth observing that, after performing the initial PCA training phase, the computational effort

needed for the approximate evaluation of each numerical gradient is reduced by one-half by diminishing

from p+1= 8 to p◦+1= 4 the dimension of the subspace used to represent such numerical gradients. Figure

7-(c) provides further details on the quality of the approximation of the numerical gradients ∇Jϕ(d
′
i,iter

), by

plotting sin(ϑ) as a function of iter, where ϑ is the angle between the numerical gradient ∇Jϕ(d
′
i,iter

) and its

PCA approximation. The red curve is associated with ϑ= 0, because in that case each ∇Jϕ(d
′
i,iter

) coincides

with its PCA approximation. Again, the quality of the approximation looks quite good for p = p◦ = 3.

Figure 8 reports the Floquet-Bloch spectrum in correspondence of the best design point obtained by solving

the optimization problem (22) without applying the PCA approximation (i.e., by choosing p = 7). The

values of the parameters of such a design point (referred to as d◦
problem (22), no PCA

) are reported in the third
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Figure 6: Comparison between projections on the planes identified by four couples of normalized parameters of the numerical gradient

∇hJϕ(d
′) (blue arrows) and projections on the same planes of the approximation of the gradients ∇hJϕ(d

′) obtained by projecting the

numerical gradients onto the subspace generated by the mean direction a◦ of the numerical gradient and by p◦ = 3 principal directions

(red arrows). The values of the other mechanical parameters refer to the initialization that leads to the optimum in figure 8. (a) t̃′r vs

χ′
1
, (b) t̃′r vs ρ′, (c) t̃′r vs κ′

de
, (d) t̃′r vs κ′ae.

row of Table 1. As one can notice, both the band gap amplitude ∆s̃
BG6,7

η and the pass band one ∆s̃
PB7,9

η

have been greatly increased with respect to the base case of figure 2. Similarly, figure 9 reports the

Floquet-Bloch spectrum in correspondence of the best design point obtained by solving the optimization

problem (22) by applying the PCA approximation (with p= p◦ = 3). The values of the parameters of such

a design point (referred to as d◦
problem (22),p◦=3

) are reported in the fourth row of Table 1. A comparison

of figures 8 and 9 shows that similar optimized values of the band gap and pass band amplitudes are

obtained in these two cases. Figure 10 shows the real and imaginary components of the dimensionless

normalized frequency s̃η obtained in the vertices of B1, namely b1 = (0 0)T ,b2 = (π 0)T and b3 = (π π)T ,

by varying only the value of dimensionless relaxation time t̃r (from 1/1000 to 1 as reported in Table 1),

whereas all the other parameters values are fixed to the corresponding ones of the best design point. In
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Figure 7: (a) Penalized objective value Jϕ(d
′
i,iter

) with respect to iteration number iter of SLP. (b) Zoomed view of subfigure (a) for

iter ≥ 50. (c) sin(ϑ) vs iter. Light blue curves refer to p = 1, green curves to p = 2, magenta curves to p = 3, black curves to p = 4,

blue curves to p= 5, and red curves to p= 7. Penalty parameter ϕ= 1000.

particular, figure 10-(a) refers to design point identified as d◦
problem(22),no PCA

, and figure 10-(b) refers to

design point denoted as d◦
problem(22),p◦=3

. Big dots in the figure correspond, for each vertex, to the value of

t̃r of the corresponding optimized case (the one plotted in figure 8 for points in subfigure 10-(a) and the

one plotted in figure 9 for points in subfigure 10-(b)). It is worth mentioning that as t̃r increases, curves

are swept counterclockwise and that optical branches present points characterized by a vertical tangent,

representing the maximum value of −R(s̃η) for these curves, or in other words, the maximum damping for

the wave propagating inside the medium. Figure 11 reports the Floquet-Bloch spectrum in correspondence

to the best design point obtained by solving the optimization problem (26) without applying the PCA

approximation (i.e., by choosing p = 7). The values of the parameters of such a design point (referred to

as d◦
problem (26), no PCA

) are reported in the fifth row of Table 1. Similarly, figure 12 reports the Floquet-Bloch

spectrum in correspondence to the best design point obtained by solving the optimization problem (26)
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(c)

(d)(a) (b)

Figure 8: Complex frequency spectrum obtained by solving the optimization problem (22) without the PCA approximation (p = 7).

The values of the parameters of this design point (denoted as d◦
problem(22),no PCA

) are the ones reported in the third row of Table 1. (a)

3D Floquet Bloch spectrum, (b) 2D view in the plane {I(s̃η); ξ}, (c) zoomed view in the plane {I(s̃η); ξ} with 0≤I(s̃η)≤ 0.03, (d) 2D

view in the plane {−R(s̃η); ξ}.

by applying the PCA approximation (also in this case with p = p◦ = 3). The values of the parameters

of such a design point (referred to as d◦
problem (26),p◦=3

) are reported in sixth row of Table 1. Again, a

comparison of figures 11 and 12 shows that similar optimized values of the pass band amplitude ∆s̃
PB7,9

η are

obtained in these two cases. As clearly noted, in both these cases the amplitude of the pass band ∆s̃
PB7,9

η

is greatly increased, specifically almost tripled, with respect to the base case of figure 2, while the band

gap amplitude ∆s̃
BG6,7

η is enormously reduced. Optimization problem (26) in fact, is the one in which only

∆s̃
PB7,9

η is maximized and it leads to pass bands much wider, specifically more than doubled, with respect

to optimization problem (22), as highlighted from a comparison between figures 11 and 12 and figures

8 and 9. Finally, figure 13-(a) shows the three sections (corresponding to b1 = (0 0)T ,b2 = (π 0)T and

b3 = (π π)T ) of the Floquet-Bloch spectrum, obtained by varying only the value of the parameter t̃r in the

range [1/1000, 1], whereas all the other parameter values are fixed to the corresponding ones of the best

design point of figure 11. Similarly, figure 13-(b) shows the same three sections of the Floquet-Bloch

spectrum, obtained by varying only the value of the parameter t̃r, whereas all the other parameter values

are fixed to the corresponding ones of the best design point of figure 12. Big dots refer, again, to the

corresponding optimized case. Optical branches present, also in this case, points with a vertical tangent,

corresponding to the maximum damping for the propagating wave. It is worth mentioning that constraint

g(d)≤ 0 is not satisfied for all the points in figure 13, but this is admissible since this figure does not refer
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(c)

(d)(a) (b)

Figure 9: Complex frequency spectrum obtained by solving the optimization problem (22) with the PCA approximation (with p =

p◦ = 3). The values of the parameters of this design point (denoted as d◦
problem(22),p◦=3

) are the ones reported in the fourth row of Table

1. (a) 3D Floquet Bloch spectrum, (b) 2D view in the plane {I(s̃η); ξ}, (c) zoomed view in the plane {I(s̃η); ξ} with 0≤I(s̃η)≤ 0.045,

(d) 2D view in the plane {−R(s̃η); ξ}.

Figure 10: Real and imaginary components of s̃η for three vertices of the Brillouin zone, namely b1 = (0 0)T (black curves), b2 =

(π 0)T (blue curves), and b3 = (π π)T (red curves) obtained by varying parameter t̃r in the range [1/1000, 1] while all the other

mechanical parameters are kept fixed and equal to the ones of design point denoted as d◦
problem(22),no PCA

(a) and the ones of design

point denoted as d◦
problem(22),p◦=3

(b). Big dots correspond to the respective optimized cases for t̃r .
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(c)

(d)(a) (b)

Figure 11: Complex frequency spectrum obtained by solving the optimization problem (26) without the PCA approximation (p= 7).

The values of the parameters of this design point (denoted as d◦
problem(26),no PCA

) are the ones reported in the fifth row of Table 1. (a)

3D Floquet Bloch spectrum, (b) 2D view in the plane {I(s̃η); ξ}, (c) zoomed view in the plane {I(s̃η); ξ} with 0≤I(s̃η)≤ 0.03, (d) 2D

view in the plane {−R(s̃η); ξ}.

to a solution of optimization problem (26).

5. Conclusions

The work is devoted to presenting a machine learning-based technique conceived to obtain an approx-

imately optimal design for a mechanical metamaterial having viscoelastic resonators. Considered planar

beam lattice metamaterial is characterized by a periodic microstructure with a centrosymmetric and quadri-

lateral topology, where local resonance is achieved by means of periodic auxiliary oscillators, coupled with

the elastic beam lattice microstructure by means of a viscoelastic phase. Application of a bilateral Laplace

transform in time and a bilateralZ-transform in space to the integro-differential equations of motion gov-

erning the dynamics of the metamaterial, allows for investigation of the free in-plane propagation of elastic

waves in the medium. Dispersion relation has been obtained by solving a rational eigenvalue problem,

suitably de-rationalized and transformed into a polynomial one. With the dual purpose of obtaining the

largest multiplicative trade-off between the first low-frequency band gap and the optical branches pass

band in the metamaterial frequency spectrum on one hand and maximizing only the pass band on the other

one, the spectral problem governing the dispersion relation has been tackled as a unilaterally-constrained

optimization problem by means of an efficient algorithmic strategy based on Sequential Linear Program-
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(c)

(d)(a) (b)

Figure 12: Complex frequency spectrum obtained by solving the optimization problem (26) with the PCA approximation (p= p◦ = 3).

The values of the parameters of this design point (denoted as d◦
problem(26),p◦=3

) are the ones reported in the sixth row of Table 1. (a)

3D Floquet Bloch spectrum, (b) 2D view in the plane {I(s̃η); ξ}, (c) zoomed view in the plane {I(s̃η); ξ} with 0≤I(s̃η)≤ 0.03, (d) 2D

view in the plane {−R(s̃η); ξ}.

ming, which is a gradient-based iterative optimization algorithm. A penalty method has been exploited in

order to efficiently replace a subset of constraints (the ones that are more difficult to evaluate from a com-

putational point of view) with the associated term in the penalized objective function. More specifically,

an approximation of the optimal design solution has been achieved by means of a PCA-based penalized

optimization approach, where PCA is adopted to reduce the number of components of the numerical gra-

dient of the penalized objective function, thus greatly reducing the computational burden required by the

multi-dimensionality of the design parameter space. Optimization of dispersion properties has thus been

reached in the physically-admissible mechanical parameters range, referred to best design point, and the

adopted machine learning method demonstrated to achieve excellent performances in satisfying the desired

spectral functionalities. It is important to observe that the best design points obtained using the PCA ap-

proximation turned out to have a high quality – expressed in terms of the values achieved by the objective

functions of the respective optimization problems (22) and (26) –, comparable to the one achieved without

applying that approximation, i.e., by evaluating all the components of the numerical gradients during the

execution of Sequential Linear Programming, but at a higher computational cost. This comparison is fair

since the number of iterations needed to achieve convergence in these two cases is similar (actually, it is

even smaller for the case p = p◦ = 3 with respect to the case p = 7, as highlighted from the comparison

between the magenta curve and the red curve in figure 7-(b)).
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Figure 13: Real and imaginary components of s̃η for three vertices of the Brillouin zone, namely b1 = (0 0)T (black curves), b2 =

(π 0)T (blue curves), and b3 = (π π)T (red curves) obtained by varying parameter t̃r in the range [1/1000, 1] while all the other

mechanical parameters are kept fixed and equal to the ones of design point denoted as d◦
problem(26),no PCA

(a) and the ones of design

point denoted as d◦
problem(26),p◦=3

(b). Big dots correspond to the respective optimized cases for t̃r .
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phononic crystals: Examples and applications, Surface Science Reports 65 (8) (2010) 229–291.

doi:10.1016/j.surfrep.2010.08.002.

[31] R. Zhu, X. Liu, G. Hu, C. Sun, G. Huang, A chiral elastic metamaterial beam for broad-

band vibration suppression, Journal of Sound and Vibration 333 (10) (2014) 2759–2773.

doi:10.1016/j.jsv.2014.01.009.

[32] M. Ouisse, M. Collet, F. Scarpa, A piezo-shunted kirigami auxetic lattice for adaptive elastic wave fil-

tering, Smart Materials and Structures 25 (11) (2016) 115016. doi:10.1088/0964-1726/25/11/115016.

[33] A. Bacigalupo, L. Gambarotta, Chiral two-dimensional periodic blocky materials with elas-

tic interfaces: Auxetic and acoustic properties, Extreme Mechanics Letters 39 (2020) 100769.

doi:10.1016/j.eml.2020.100769.

[34] A. Bacigalupo, M. L. De Bellis, M. Vasta, Design of tunable hierarchical waveguides based on

fibonacci-like microstructure, International Journal of Mechanical Sciences 224 (2022) 107280.

doi:10.1016/j.ijmecsci.2022.107280.

[35] Y. Zeng, L. Cao, S. Wan, T. Guo, Y.-F. Wang, Q.-J. Du, B. Assouar, Y.-S. Wang, Seismic metamate-

rials: Generating low-frequency bandgaps induced by inertial amplification, International Journal of

Mechanical Sciences 221 (2022) 107224.

[36] M. Ma, L. Wang, Reliability-based topology optimization framework of two-dimensional phononic

crystal band-gap structures based on interval series expansion and mapping conversion method, In-

ternational Journal of Mechanical Sciences 196 (2021) 106265.
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