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a b s t r a c t

The present work proposes a novel class of multifield nested tunable metadevices that serve as high
performance acoustic metafilters. The designed metafilter is characterized by a multiscale, hierarchical
structure. At the mesoscale, the metamaterial consists of a sequence of two different periodically
alternating layers: a polymeric homogeneous layer, which exhibits a viscoelastic constitutive response,
and a microstructured one. The latter is based on the periodic repetition of a multiphase microscale
cell that is composed by a stiff elastic external coating, a viscoelastic phase and an internal disk of
piezoelectric material shunted by an external electrical circuit having a tunable impedance/admittance
This tuning parameter affects the constitutive elastic properties of the piezoelectric phase and, in turn,
the overall response of the microscale cell, thereby ultimately enabling to achieve an optimal filtering
performance for the metadevice. Due to the periodicity of the multiphase cell at the microscale, a
two-scale variational-asymptotic homogenization technique is exploited in the frequency domain in
order to obtain the frequency-dependent overall constitutive properties of the microstructured layer.
Subsequently, in-plane free wave propagation inside the periodic multilayered metamaterial at the
mesoscale is investigated by means of Floquet–Bloch theory, together with the transfer matrix method.
By triggering the shunting effect, a stiffening of the piezoelectric phase can be achieved, which is
demonstrated to open low frequency band gaps in the metamaterial frequency spectrum. The filtering
capability of the metadevice has been assessed as a function of its geometrical features and the
tuning parameter, thus paving the way towards the design of sophisticated and topologically optimized
acoustic filters.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Metamaterials are a class of composite materials that are
rtificially designed to exhibit extraordinary wave manipulation
roperties, for which the effective material constitutive response
ubstantially exceeds that of classical materials. The exotic prop-
rties of metamaterials enable to exploit them in several relevant
ngineering applications, which include acoustic filtering [1–
], wave guiding and polarization [5–8], self-collimation [9–11],
nergy transfer, harvesting, and sensing [12–18] and passive
and gap control [19–25]. In order to target the desired ef-
ective response, metamaterials may be in general architected
y tailoring their geometry and composing phases to achieve
pecific mechanical properties, such as mass density, inertia and
tiffness [26–31]. Alternatively, when focusing in particular on
coustic metamaterials, the design may depart from a periodic
attice material or from a periodic microstructure consisting of a
atrix with embedded inclusions, to which inertial or Helmholtz
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spatially-local resonators are added [32–42]. These local res-
onators allow to generate a strong coupling to the propagating
wave in the sub-wavelength regime, whereby the wavelength is
much larger than the characteristic size of the microstructure,
while the frequency approximates the natural frequency of the
resonators. These features enable to circumvent typical limita-
tions of standard materials, thereby offering the possibility to
exploit phenomena as negative refraction [17,43–45], invisibility
of defects embedded into lattice and continuous systems [27,46,
47], and to overcome the diffraction limit [48,49].

In recent years, acoustic metamaterials composed of active
phases have received growing research interest, as discussed in
the comprehensive review presented in [50]. The use of active
elements, such as e.g. piezoelectric, piezomagnetic, and magne-
tostrictive materials, particularly allows to take advantage of the
intrinsic couplings between mechanical deformation and electric
or magnetic fields, which opens new opportunities in physical
and technical applications. In this context, in piezoelectric acous-
tic metamaterials, the mechanical and the electrical fields are
coupled by means of piezoelectric patches shunted by electrical
networks, generally referred to as shunted piezoelectric phases.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Three-dimensional view of the proposed multiscale shunted piezoelectric acoustic metafilter. (a) Generic portion of the multilayer domain, which is infinitely
extended along two perpendicular directions and consists of two different alternating layers: a homogeneous polymeric viscoelastic layer (yellow color) and a
microstructured layer. (b) Detail of the multiphase cell composing the microstructured layer, which comprises a rigid phase (gray color), a polymeric viscoelastic
phase (yellow color) and a shunted piezoelectric core (red color).
Accordingly, the effective response of the metamaterial can be
tuned to control its dynamic effective density [51], bulk mod-
ulus [52], or both material properties [53], which is typically
achieved by integrating piezoelectric elements into Helmholtz
resonator systems. This enables shunted piezoelectric metamate-
rials to reveal extraordinary acoustic and mechanical properties
that can be applied in noise, vibration and wave propagation
control technologies [54–57].

In this paper, a tunable multiscale piezoelectric metadevice is
designed with the aim of obtaining an exceptional filtering per-
formance. The metamaterial is based on a multilayer hierarchical
structure consisting of two different periodically alternating lay-
ers, as illustrated in Fig. 1. The first layer, which is indicated by
the yellow color in Fig. 1(a), is made of a homogeneous polymeric
material characterized by a viscoelastic constitutive response. The
second layer consists of a heterogeneous microstructured mate-
rial that is obtained by the periodic in-plane repetition of a mul-
tiphase cell, depicted in Fig. 1(b), which contains a piezoelectric
phase shunted by an electrical circuit. In detail, the multiphase
cell is characterized by a heavy, elastic stiff structure consisting
of an external coating connected to an internal ring by means of
connecting elements, as identified by the gray colored domain
in Fig. 1(b). The regions located between the coating and the
ring are made of a viscoelastic polymeric material, while the
internal disk is composed by the shunted piezoelectric material
connected to the electrical circuit. These two phases are respec-
tively denoted by the yellow and the red colors in Fig. 1(b). By
exploiting the piezoelectric coupling, a variation in the equivalent
impedance/admittance of the electrical circuit enables to tune
the constitutive properties of the shunting piezoelectric phase.
Consequently, the overall constitutive response of the multiphase
cell, and further of the entire multiscale metamaterial, can be
fully tailored as a function of the parameters of the electrical cir-
cuit, without the need of modifying the microstructural geometry
and/or the material properties of the non-shunted components.

In this setting, the effective mechanical properties of the mi-
crostructured layer are first derived by means of asymptotic
homogenization [58,59]. Asymptotic homogenization applies to
heterogeneous domains characterized by an underlying periodic
microscale structure. This multiscale framework allows to repre-
sent the heterogeneous medium with rapidly oscillating material
properties as an equivalent homogeneous domain, whereby the
effective material response is obtained from the microscale fields
2

through an averaging procedure based on rigorous mathematical
principles. The method departs from writing the displacement
field as an asymptotic expansion, and next inserting it into the
equilibrium equation. This leads to the definition of boundary
value problems defined on the microstructural domain (the so-
called cell problems), which are typically resolved numerically
by means of finite elements, for specific geometries of the mi-
croscale cell. From the solution of the cell problems, the effective
material properties are obtained, together with the local mi-
crostructural displacement, strain and stress fields. The method
is thus appealing for a broad range of applications, including
thermo-mechanical [60–62], thermo-diffusive [63] and elasto-
diffusive [64], thermo-piezoelectric [65–67], hygro-mechanical
[68–70], and chemo-diffusive-mechanical [71] problems. By ap-
plying a bilateral Laplace transform in time [72] to governing
equations at the microscale, the effective response of the mi-
crostructured layer considered in this communication will be de-
termined as a function of the tuning parameter of the piezoelec-
tric phase, while simultaneously accounting for the frequency-
dependency of the properties of the viscoelastic constituent. Fur-
ther, once the effective response of the microstructured material
is known, the multilayered structure at the mesoscale will be
treated as if each layer is homogeneous.

This enables to investigate dispersive free wave propagation
within the multilayer domain. By further adopting a Floquet–
Bloch decomposition [73] of the transformed displacement field
and by means of a generalization of the transfer matrix method
[74,75], an eigenproblem is obtained that allows to investigate
propagation and spatial damping of Bloch waves in the metafilter.
From this, the complex frequency spectrum of the first-order
equivalent multilayered medium is derived, thereby demonstrat-
ing that, as a function of the tuned response of the piezoelectric
phase, high performance wave control can be achieved.

This paper is organized as follows. In Section 2, the multiscale
geometry of the proposed tunable piezoelectric acoustic metade-
vice is described, followed by the constitutive characterization
of the piezoelectric and viscoelastic phases. Section 3 presents a
review of the asymptotic homogenization framework, by defining
the governing field equations at the microscale, the asymptotic
expansion of the displacement field, the cell problems and the
effective constitutive properties. The derivation of the complex
frequency spectrum of the equivalent macroscopic domain is next
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utlined in Section 4. The performance of the piezoelectric acous-
ic metamaterial is demonstrated in Section 5, which presents
he tunable frequency-dependent effective and local mechanical
esponse of the multiphase cell and the complex frequency spec-
rum of the effective medium. Finally, the main conclusions of the
tudy are summarized in Section 6.

. Multiscale metamaterial description

The proposed metamaterial is characterized by a multiscale
nd multiphase structure, which is described in detail in Sec-
ion 2.1. The constitutive characterization of the material phases
omposing the metadevice is further presented in Section 2.2.

.1. Multiscale geometry of the metamaterial

Consider the multilayer hierarchical metamaterial, unlimited
n plane, which is sketched in Fig. 1(a). It is made of a stack
f two different types of layers, which are periodically repeated
long one in-plane direction and are characterized by the same
hickness w in the out-of-plane direction. Perfect kinematic com-
atibility (i.e., perfect bonding) at the interface between the two
ayers is assumed to hold. One of the layers (indicated by the yel-
ow color in Fig. 1(a)) is composed of a homogeneous polymeric
aterial. The second layer is a heterogeneous microstructured

ayer, which is obtained by spanning a multiphase cell Am along
two perpendicular in-plane directions. The microscopic periodic
cell Am, which is depicted in Fig. 1(b), is composed of an external
stiffening coating of thickness d that is connected to an internal
ring of mean radius R, by means of eight connecting elements.
Both the internal ring and the connecting elements are charac-
terized by the same thickness d. The coating, the connections
and the internal ring are all made of steel (indicated by the gray
color in Fig. 1(b)). The region between the external coating and
the internal ring is occupied by the same polymeric material
constituting the homogeneous layer and it is identified by a
yellow color in Fig. 1(b). The internal disk of the periodic cell Am
depicted with red color in Fig. 1(b)), has a radius equal to r , and
s made by a piezoelectric material, which is separated from the
teel phase by a thin dielectric insulator interface. As proved in
he following, the described hierarchical multilayer metamaterial
an be tuned in order to design high performance filters.
The intrinsically multiscale structure of the proposed meta-

aterial allows the identification of three different characteristic
ength scales: the structural or macroscopic one ℓS , the meso-
copic one ℓM , and the microstructural one ℓm. As depicted in
ig. 2, the hierarchical material can be described from a two-
imensional perspective, where vector x = x1e1 + x2e2 iden-
ifies the position vector of each material point in a Cartesian
oordinate system {e1, e2}. The multilayer structure is suitably
haracterized at the macrostructural level. At the mesoscale, a
omain CM = [0, L] × [0, δL2] is defined, where L = L1 + L2 with
1 and L2 the lengths of the homogeneous and microstructured
ayer, respectively, along direction e2 perpendicular to the lay-
ring, and δ ∈ R+. Within domain CM , a cluster of microcells

= [0, L2] × [0, δL2] is identified, which can be considered
s a true representative portion of the microstructured material.
rom this representation, a periodic cell of the microstructured
ystem Bm = [0, L] × [0, ε] is recognized, whereby ε is the size
f the microscopic cell Am along both e1 and e2. Because of scale
eparation requirements, conditions L2 ≫ ε and δL2 ≫ ε must
old. The micro periodic cell Am, which is properly described at
he microscale, is characterized by two periodicity vectors v1 =

e1 and v2 = εe2. In this scenario, homogenization techniques
an be wisely exploited in order to describe material behavior
n a concise and, at the same time, accurate way, by properly
3

aking into account the effects of heterogeneities upon the global
ystem response. In particular, a two-scale variational-asymptotic
omogenization method is here employed at the microscale in
rder to derive the governing field equations for the homogenized
quivalent medium at the mesoscale, together with the closed
orm of its constitutive and inertial properties. Therefore, at the
esoscale the material is heterogeneous and composed by two
ifferent homogeneous layers. A meso periodic cell AM can be
hus identified, with AM = [0, L] × [0, ζ L2], where ζ → 0
ecause of translational invariance existing along direction e1
f the model at hand. The meso periodic cell AM , therefore, is
haracterized by a single periodicity vector vM2 = Le2.

.2. Constitutive characterization of the metamaterial phases

As introduced in Section 2, the external coating, the connect-
ng elements and the internal ring of the micro periodic cell Am
re made of steel, which is assumed to exhibit a linear elastic
sotropic constitutive response. The polymeric material forming
he homogeneous layer at the mesoscale and filling the region
etween the external coating and the internal ring at the mi-
roscale is considered to be characterized by a linear isotropic
iscoelastic constitutive behavior. Accordingly, denoting with t
he temporal variable, the components of the elastic relaxation
ensor G(x, t) = Gijhk(x, t)ei ⊗ ej ⊗ eh ⊗ ek are expressed in terms
f a Prony series as

ijhk(x, t) = G(∞)
ijhk (x)

[
1 +

N∑
n=1

µnexp
(

−
t

τ n
r (x)

)]
, (1)

where G(∞)
ijhk refers to the long term response of the material, µn

represents the nth viscosity ratio of the relaxation function, and
τ n
r is the nth relaxation time. The bilateral Laplace transform of an
arbitrary, time-dependent, real-valued function f is introduced as

L (f (t)) = f̂ (s) =

∫
R
f (t) exp(−st) dt, (2)

where Laplace argument s ∈ C, with C denoting the set of
complex numbers, and the Laplace transform is a complex-valued
function, namely f̂ : C → C. Laplace transform of Eq. (1) leads to

Ĝijhk = G(∞)
ijhk (x)

(
1
s

+

N∑
n=1

µnτ n
r (x)

sτ n
r (x) + 1

)
. (3)

Finally, the piezoelectric phase, which is present within the in-
ternal disk of cell Am, is assumed to exhibit a linear piezoelectric
onstitutive behavior and to be polarized along the out-of-plane
irection. All the piezoelectric phases in the microcells are con-
ected in parallel to an external electrical circuit by means of
lectrodes. This circuit is characterized by a tunable equivalent
dmittance/impedance, which affects the constitutive response of
he shunting piezoelectric material ultimately enabling to modify
he spectral properties of the acoustic metamaterial. Departing
rom the field equations in the transformed Laplace space for a
hree-dimensional orthotropic piezoelectric material with out-of-
lane polarization, the in-plane components of the transformed
tress tensor σ̂ij and the transformed electric displacement D̂i,
ith i, j = 1, 2, can be obtained by means of a proper condensa-
ion of the corresponding three dimensional constitutive law. This
rocedure is detailed in [76]. Denoting with subscript 3 the tensor
omponents in the out-of-plane direction, and in the assumption
f a plane stress state characterized by conditions σ̂i3 = 0, with
= 1, 2, 3, and Î3 = 0, where Î3 is the transformed current along

the out-of-plane direction, the in-plane constitutive equations
read

EL
ˆ
σ̂ij = Cijhk(λ(s))uh,k, (4)
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Fig. 2. Multiscale representation of the metamaterial: structural, meso and microscales having characteristic lengths ℓS , ℓM , and ℓm , respectively, with ℓS ≫ ℓM ≫ ℓm .
he different periodic cells at the appropriate scales and the corresponding periodicity vectors are indicated.
Y
r

λ

ˆ
α = −βEL

αα(λ(s))
∂φ̂

∂xα

, (5)

with i, j, h, k, α = 1, 2. In Eq. (4), ûh and CEL
ijhk denote the compo-

nents of the transformed displacement field and the components
of the equivalent fourth-order elasticity tensor, respectively. Fur-
ther, in Eq. (5), φ̂ is the transformed electric potential and βEL

αα is
the equivalent second-order dielectric permittivity tensor com-
ponent. Note that from Eq. (5) onward, no summation of index α
will be employed. The equivalent fourth-order elasticity tensor
and the equivalent second-order dielectric permittivity tensor
depend on the tuning parameter λ, which is in turn a function
of the complex frequency s as

λ(s) =
w Y33(s)
sβ33A(P) , (6)

where w represents the thickness of the piezoelectric disk along
the out-of-plane direction and A(P) is the area of the disk. With
reference to periodic cell Am of Fig. 2, A(P)

= π r2. Moreover,
Y33(s) is the s-dependent equivalent shunting admittance that
may, in turn, be a function of one or more tuning parameters
characterizing the external electrical circuit.

Denoting with eijh the third-order piezoelectric stress-charge
coupling tensor and with ẽhij = eijh its transpose, the equivalent
elasticity and permittivity tensors read

CEL
ijhk(λ(s)) = Cijhk +

eij3ẽ3hk
βEL
33(λ(s))(

Cij33 +
eij3ẽ333

βEL
33(λ(s))

)⎛⎜⎜⎝C33hk +
e333ẽ3hk
βEL
33(λ(s))

C3333 +
e333ẽ333
EL

⎞⎟⎟⎠ , (7)
β33(λ(s))
4

βEL
αα(λ(s)) = βαα +

eα3α ẽαα3

Cα3α3
, (8)

where i, j, h, k, α = 1, 2, and

βEL
33(λ(s)) = β33

[
1 +

w Y33(s)
sβ33A(P)

]
= β33 (1 + λ(s)) . (9)

From Eq. (7), it is evident that CEL
ijhk preserves minor and ma-

jor symmetries and that component CEL
1212 turns out to be s-

independent. It is further worth noting that in-plane constitutive
Eqs. (4) and (5) written for a piezoelectric medium having an
out-of-plane polarization, result to be uncoupled, thus formally
resembling the linear elastic dielectric material equations [77].

Because of its technological relevance, from now onward, it is
assumed that the equivalent electrical circuit is purely capacitive
(or non dissipative). In this case, the corresponding purely capac-
itive equivalent admittance βEL

33 results to be s-independent and
equal to

βEL
33 = β33 +

C w

A(P) = β33 (1 + λ) , (10)

with C the capacitance following from relation Y33(s) = s C, with
33(s) defined by Eq. (9). Tuning parameter λ, therefore, becomes
eal and linearly dependent upon the capacitance according to

=
C w

β33A(P) . (11)

In the case of negative capacitance circuits, λ becomes negative
as well [78]. Furthermore, if the equivalent circuit is purely ca-
pacitive, the components of the equivalent elastic tensor CEL

ijhk(λ)
defined in Eq. (7), reduce to be independent of s. The constitutive
properties of the piezoelectric shunting element, therefore, can be
controlled by regulating the equivalent impedance of the external
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lectrical circuit and, in Section 5, it will be demonstrated how
his affects the spectral response of the acoustic metadevice at
and. As detailed in [76], for a negative value of λ, which corre-
ponds to a negative purely capacitive equivalent admittance, the
tiffness components are characterized by a vertical asymptote in
orrespondence with the resonance value

R = −

(
1 +

e2333
C3333β33

)
. (12)

urthermore, the stiffness components exhibit horizontal asymp-
otes for λ → ±∞, which leads to

CEL∞
ijhk = lim

λ→±∞

CEL
ijhk(λ) = Cijhk −

Cij33Chk33

C3333
. (13)

inally, the open circuit case occurs when disconnecting the circuit
apacitor from the piezoelectric phase or when calibrating a zero
apacitance for the equivalent electrical circuit. This corresponds
o λ = 0, for which the stiffness components CEL

ijhk read

EL
ijhk(λ = 0) = Cijhk +

eij3ehk3
β33

−

(
β33Cij33 + eij3e333

)
(β33Chk33 + ehk3e333)

β33
(
β33C3333 + e2333

) . (14)

. Two-scale modeling of the microstructured layer

In this Section, the two-scale asymptotic homogenization
echnique exploited to derive the overall constitutive and iner-
ial properties of the microstructured layer is summarized. The
icroscale governing equations are first given in Section 3.1.
he asymptotic expansion of the transformed displacement field
s detailed in Section 3.2, together with the definition of the
ell problems and the down- and up-scaling relations. Finally,
he governing field equations for the equivalent homogenized
edium and the closed form of its effective constitutive and

nertial properties are given in Section 3.3.

.1. Governing equations

With reference to the micro periodic cell Am represented in
ig. 2, the constitutive and inertial properties at the microscale
ill be denoted by superscript (m,ε), being ε the size of cell Am
long e1 and e2. In each phase of cell Am, the transformed micro-

scopic displacement field û = ûiei is governed by the equilibrium
quation in the transformed Laplace space:

D
Dxj

(
Ĉ (m,ε)
ijhk (s)

Dûh

Dxk

)
+ b̂i = ρ(m,ε)s2ûi . (15)

ere, if the phase is linear viscoelastic, the components of the
lastic tensor are written in terms of the components of the
icro relaxation tensor as Ĉ (m,ε)

ijhk (s) = s Ĝ(m,ε)
ijhk . Conversely, if the

hase is linear elastic, the components of the elastic tensor are
-independent and reduce to C (m,ε)

ijhk . In Eq. (15), ρ(m,ε) represents
he mass density of the material and b̂i are the components of
he transformed body forces, which are assumed to have a spatial
ariability much larger than the microstructural characteristic
ength scale, consistently with the scale separation condition. In
articular, body forces are assumed to be periodic over the cluster
f cells L depicted in Fig. 2, which has characteristic size L2 (with
2 ≫ ε), and to have a vanishing mean value on L. By virtue
f Am-periodicity of the elasticity tensor and material density, it
ollows that

ˆ (m,ε)
ijhk (x + n vl, s) = Ĉ (m,ε)

ijhk (x, s) , ρ(m,ε) (x + n vl) = ρ(m,ε) (x) ,

x ∈ Am, l = 1, 2, n ∈ Z. (16)
5

As usually done in asymptotic homogenization, the micro peri-
odic cell Am can be rescaled by its size ε, thus obtaining a unit
cell Q = [0, 1] × [0, 1]. Accordingly, periodicity of constitutive
and inertial properties can be reformulated as

Ĉ (m,ε)
ijhk (x + n vl, s) = Ĉm

ijhk

(
ξ =

x
ε
, s
)

,

ρ(m,ε) (x + n vl) = ρm
(
ξ =

x
ε

)
, ∀ξ ∈ Q, l = 1, 2, n ∈ Z. (17)

This allows to mathematically express the separation of scales by
means of two variables: the slow (or mesoscopic) one x ∈ Am
and the fast (or microscopic) one ξ =

x
ε

∈ Q. Consequently,
he transformed microscale displacement results to be a func-
ion of both the slow and the fast space variables and of the
omplex frequency s, namely û = û

(
x, x

ε
, s
)
. In the following,

the field equations for an equivalent homogeneous medium will
be derived in terms of the transformed displacement Û(x, s) =

ˆ i(x, s)ei at the mesoscale.

.2. Asymptotic expansion, cell-problems, down-scaling and
p-scaling relations

The transformed microscale displacement field can be asymp-
otically expanded [58,59] in a series of powers of ε as

ûk

(
x,

x
ε
, s
)

=

∞∑
l=0

εlû(l)
k

(
x,

x
ε
, s
)

= û(0)
k

(
x,

x
ε
, s
)

+ εû(1)
k

(
x,

x
ε
, s
)

+ ε2û(2)
k

(
x,

x
ε
, s
)

+ O(ε3). (18)

ecalling that the generalized derivative of a generic function g
ith respect to variable xj takes the form

D
Dxj

g
(
x, ξ =

x
ε

)
=

(
∂g
∂xj

+
1
ε

∂g
∂ξj

) ⏐⏐⏐⏐
ξ= x

ε

=

(
∂g
∂xj

+
1
ε
g,j

) ⏐⏐⏐⏐
ξ= x

ε

,

(19)

by substituting expansion (18) into the microscale field Eq. (15)
and gathering the terms of equal order of ε, a series of recursive
differential problems is obtained:

1
ε2 f

(0)
i (x, s) +

1
ε
f (1)i (x, s) + ε0f (2)i (x, s) + εf (3)i (x, s)

+ ... + εlf (l+2)
i (x, s) + b̂i(x, s) = 0. (20)

n Eq. (20), terms f (α)i , with α = 0, 1, . . . , l + 2 represent the
volume forces of the relative differential problem at the order
εα−2, which thus depend in space upon the slow variable only.

The solution of problem at the order ε−2 is independent of ξ

and reads

û(0)
k (x, ξ, s) = Ûk(x, s), (21)

because of its solvability condition in the class of Q−periodic
functions. For details on the derivation of the solutions of the
recursive differential problems (20), the reader may refer to [64,
65]. Taking into account solution (21) at order ε−2 and the Q-
periodicity of tensor Ĉm

= Ĉm
ijhk ei ⊗ ej ⊗ eh ⊗ ek, solvability

condition for the problem at order ε−1 implies that the solution
has the form

û(1)
k (x, ξ, s) = N (1)

kpq1
(ξ, s)

∂Ûp(x, s)
∂xq1

, (22)

where N (1)
kpq1

is the corresponding perturbation function. Analo-
gously, considering solution (21) of problem at order ε−2 and
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olution (22) of problem at order ε−1, the solution at order ε0

eads

ˆ
(2)
k (x, ξ, s) = N (2)

kpq1q2
(ξ, s)

∂2Ûp(x, s)
∂xq1∂xq2

+ N (2,2)
kp (ξ, s)s2 Ûp(x, s), (23)

here N (2)
kpq1q2

and N (2,2)
kp are the corresponding perturbation func-

ions.
In general, perturbation functions are smoothQ-periodic func-

ions that illustrate the role of the microstructural heterogeneities
n û and, as such, depend upon ξ (as well as upon the complex
requency s). In order to guarantee the uniqueness of solution of
the relative differential problem, the perturbation functions are
required to vanish on average on the unit cell, according to the
normalization condition

⟨(·)⟩ =
1

|Q|

∫
Q

(·) dξ = 0 , (24)

where |Q| is the area of the unit cell.
Perturbation functions are obtained by solving the correspond-

ing non-homogeneous differential problems called cell problems.
In particular, functions N (1)

kpq1
are the solution of the order ε−1 cell

problem, i.e.(
Ĉm
ijhkN

(1)
hpq1,k

)
,j

+ Ĉm
ijpq1,j = 0 . (25)

Two different cell problems arise at order ε0. The first one is
in terms of N (2)

kpq1q2
and has the following expression, symmetrized

with respect to indices q1 and q2:

Ĉm
ijhkN

(2)
hpq1q2,k

)
,j

+
1
2

[(
Ĉm
ijhq2N

(1)
hpq1

+ Ĉm
ijhq1N

(1)
hpq2

)
,j

+Ĉm
iq1pq2 + Ĉm

iq2pq1 + Ĉm
iq2hjN

(1)
hpq1,j + Ĉm

iq1hjN
(1)
hpq2,j

]
=

1
2

⟨
Ĉm
iq1pq2 + Ĉm

iq2hjN
(1)
hpq1,j + Ĉm

iq2pq1 Ĉ
m
iq1hjN

(1)
hpq2,j

⟩
. (26)

he second cell problem provides perturbation function N (2,2)
hp and

eads(
Ĉm
ijhkN

(2,2)
hp,k

)
,j

− ρmδip = −
⟨
ρm⟩ δip . (27)

Higher-order cell problems are not specified for the sake of
riefness, but they can be determined by carrying out a similar
rocedure to that detailed above. Once the solution of the cell
roblems is known, the expansion (18) can be rewritten in the
orm of the so-called down-scaling relation, namely

ˆh

(
x,

x
ε
, s
)

=

[
Ûh(x, s) + ε N (1)

hpq1
(ξ, s)

∂Ûp(x, s)
∂xq1

ε2

(
N (2)

hpq1q2
(ξ, s)

∂2Ûp(x, s)
∂xq1∂xq2

+

+ N (2,2)
hp (ξ, s)s2Ûp(x, s)

)
+ O(ε3)

] ⏐⏐⏐⏐
ξ= x

ε

, (28)

where the microscale transformed displacement û is related to
the corresponding mesoscopic variable Û and its gradients.

The up-scaling relation defines transformed mesoscopic dis-
placement as the mean value of the microscale displacement over
Q, namely

Ûh(x, s)
.
=

⟨
ûh

(
x,

x
ε

+ ζ, s
)⟩

ζ
. (29)

ranslation variable ζ in Eq. (29) is defined such that εζ ∈ Am and
as the role of removing rapid fluctuations of coefficients [79,80].
6

Invariance property

⟨g (ξ + ζ)⟩ζ =
1

|Q|

∫
Q
g (ξ + ζ) dζ =

1
|Q|

∫
Q
g (ξ + ζ) dξ, (30)

roved to hold for each Q-periodic function, together with con-
ition (24), leads to up-scaling relation (29).

.3. Overall constitutive and inertial properties

In the following, a variational-asymptotic procedure is em-
loyed to derive the field equations for the equivalent homoge-
eous continuum in terms of the overall constitutive and iner-
ial properties. Generally speaking, by imposing the stationarity
f the first-order variation of a suitable functional (truncated
t a proper order) it is possible to obtain, in an energetically-
onsistent manner, local and non-local constitutive and inertial
erms that automatically satisfy symmetry and positive definite-
ess requirements [79,81]. In this context, the field equation for
first-order equivalent medium is provided. To this purpose,

unctional Φ̂ is defined in terms of the transformed microscopic
nergy density φ̂

(
x, x

ε
, s
)
as

Φ̂ =

∫
L

φ̂

(
x,

x
ε
, s
)
dx

=

∫
L

(
1
2
s2ρmû · û +

1
2
∇û : Ĉm

: ∇û − b̂ · û
)
dx . (31)

The corresponding Euler–Lagrange equation is the micro field
Eq. (15). Symbol : in Eq. (31) represents the tensorial double con-
traction inner product. The transformed energy density satisfies
the condition φ̂

(
x, x

ε
, s
)

= φ̂
(
x, x

ε
+ ζ, s

)
, for which functional

ˆ can be consequently expressed in terms of the translation
ariable ζ as

ˆ ζ
= Φ̂(ζ) =

∫
L

φ̂ζ
(
x,

x
ε
, s
)
dx =

∫
L

φ̂

(
x,

x
ε

+ ζ, s
)
dx . (32)

aking into account that

φ̂

(
x,

x
ε

+ ζ, s
)⟩

=
1

|Q|

∫
Q

φ̂

(
x,

x
ε

+ ζ, s
)
dζ

=
1

|Q|

∫
Q

φ̂ (x, ξ, s) dξ =

⟨
φ̂ (x, ξ, s)

⟩
, (33)

the average functional Φ̂m at the microscale is defined as

Φ̂m
.
=

⟨
Φ̂ζ
⟩
=

1
|Q|

∫
Q

Φ̂ζdζ =

∫
L

⟨
φ̂

(
x,

x
ε

+ ζ, s
)⟩

dx, (34)

here the order of integration has been changed in virtue of
ubini’s theorem. By using down-scaling relation (28), functional
31) can be expressed in terms of the transformed mesoscopic
isplacement Û as

ˆ m =
1
2
s2
⟨
ρm⟩ ∫

L
ÛhÛhdx +

⟨
1
2
B(1)
ijlr1

Ĉm
ijhkB

(1)
hkpq1

⟩ ∫
L

∂Ûl

∂xr1

∂Ûp

∂xq1
dx

−

∫
L
Ûh b̂h dx + O(ε2), (35)

where, recalling derivation rule (19), generalized derivative of û
can be expressed as

Dûh

Dxk
= B(1)

hkpq1

∂Ûp

∂xq1
+ O(ε). (36)

Formula (36) introduces the localization tensor B(1)
hkpq1

, which is
a function of the perturbation function N (1)

hpq1
and, consequently,

is Q-periodic. More specifically, B(1) is defined as B(1)
=
hkpq1 hkpq1
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hpδkq1 + N (1)
hpq1,k. By exploiting the divergence theorem and the

-periodicity of the localization tensor B(1)
hkpq1

and of the micro
constitutive tensor Ĉm

ijhk, it is possible to prove that the Euler–
Lagrange equation of functional Φ̂m, truncated at the zero-th
order in ε, is

Ĉlr1pq1
∂2Ûp

∂xq1∂xr1
+ b̂l = ρ s2 Ûl, (37)

hich is exactly the field equation of the first-order homogenized
edium. The transformed overall constitutive tensor Ĉlr1pq1 and

he overall density ρ, therefore, have the form

Ĉlr1pq1 =

⟨
B(1)
ijlr1

Ĉm
ijhkB

(1)
hkpq1

⟩
, (38)

=
⟨
ρm⟩ . (39)

. Frequency band structure for the multilayered medium

The two-scale homogenization technique described in Sec-
ion 3 allows to treat the multilayered material at the mesoscale
s if each layer is homogeneous. Recalling Fig. 2, at the mesoscale,
he periodic cell AM can be identified, which is composed of
= 2 different layers and is characterized by a periodicity vector
M
2 = Le2 perpendicular to material layering and by a vanishing
haracteristic size along the layering because of translational
nvariance along e1 direction. Since free Bloch wave propagation
nside the metamaterial will be investigated, in case of vanishing
ody forces b̂, from Eq. (37), the transformed mesoscale field
quation governing the behavior of the resulting heterogeneous
ultilayered medium reads

∂

∂xj

(
Ĉijhk(x2, s)

∂Ûh(x1, x2, s)
∂xk

)
− s2ρ(x2)Ûi(x1, x2, s) = 0 . (40)

In Eq. (40), Ĉijhk are the components of the relaxation tensor
and ρ is the mass density. These properties are defined at the
mesoscale; accordingly, their values depend upon the specific
layer they refer to. Therefore, relaxation tensor Ĉ(x2, s) = Ĉijhk
(x2, s)ei⊗ej⊗eh⊗ek and density ρ(x2) are AM-periodic and do not
depend upon coordinate x1 because of translational invariance
characterizing the meso cell AM along e1 direction. By virtue of
the AM-periodicity of the medium, solution Û of Eq. (40) can be
written by employing the Floquet–Bloch decomposition as

Û(x1, x2, s) = ÛB(x2, s) exp[i(k · x)], (41)

where k = kiei is the wave vector and vector ÛB(x2, s) =

ÛB
i (x2, s)ei contains theAM-periodic Bloch amplitudes, and i is the

imaginary unit. Once again, the latter does not depend upon x1
because of the translational invariance of periodic cell AM along
the direction parallel to material layering. It spatially depends
only upon the coordinate perpendicular to the material layering
(in this case x2) when the phases of the multilayered material are
orthotropic with the orthotropy axis parallel or perpendicular to
the layering.

By inserting decomposition (41) into Eq. (40), and by applying
simple algebraic derivations, it is possible to obtain a system of
second-order ordinary differential equations that express field
equations for each single layer in terms of Bloch amplitude as

Ĉ1212ÛB
1,22 + 2ik2Ĉ1212ÛB

1,2 + ik1
(
Ĉ1212 + Ĉ1122

)
ÛB
2,2

+

(
−ρs2 − k21Ĉ1111 − k22Ĉ1212

)
ÛB
1 +

−k1k2
(
Ĉ1212 + Ĉ1122

)
ÛB
2 = 0 , (42)

Ĉ ÛB
+ 2ik Ĉ ÛB

+ ik
(
Ĉ + Ĉ

)
ÛB
2222 2,22 2 2222 2,2 1 1212 1122 1,2

7

+

(
−ρs2 − k21Ĉ1212 − k22Ĉ2222

)
ÛB
2 +

k1k2
(
Ĉ1212 + Ĉ1122

)
ÛB
1 = 0 , (43)

here derivatives with respect to x2 are now classical derivatives.
ystem of Eqs. (42)–(43) can be expressed in operatorial form as

ÛB
, 22 + B ÛB

,2 + C ÛB
= 0 , (44)

here matrices A, B, and C read

A =

(
Ĉ1212 0
0 Ĉ2222

)
,

B =

(
2ik2Ĉ1212 ik1(Ĉ1212 + Ĉ1122)

ik1(Ĉ1122 + Ĉ1212) 2ik2Ĉ2222

)
,

C =

⎛⎝−ρs2 − k21Ĉ1111 − k22Ĉ1212 −k1k2
(
Ĉ1122 + Ĉ1212

)
−k1k2

(
Ĉ1122 + Ĉ1212

)
−ρs2 − k21Ĉ1212 − k22Ĉ2222

⎞⎠ . (45)

efining vector r =

(
ÛB

,2 ÛB
)T

, it is possible to reduce the order
f system (44) doubling its dimension as

r,2 + Nr = 0, (46)

ith M a 4 × 4 non singular square diagonal block matrix and N
square block matrix defined as

=

(
A 0
0 I

)
, N =

(
B C
−I 0

)
, (47)

here I is the identity matrix. First-order ordinary differential
ystem of Eqs. (46) admits the general solution

= exp
[
M−1Nx2

]
c, (48)

n which c is a vector of constants and exp [·] indicates the ex-
onential matrix, which can be computed by following different
echniques [82]. Vector Ŝ(x1, x2, s) contains the transformed stress
omponents Ŝ12(x1, x2, s) and Ŝ22(x1, x2, s) expressed resorting
loquet–Bloch decomposition and is expressed as

ˆ(x1, x2, s) =

(
ŜB12(x2, s) Ŝ

B
22(x2, s)

)T
exp [i (k · x)] , (49)

with ŜB12 and ŜB22 the corresponding AM-periodic Bloch ampli-
tudes. Gathering expressions (41) and (49) into vector Ŷ results
in

Ŷ(x1, x2, s) =

(
Û(x1, x2, s)
Ŝ(x1, x2, s)

)
= exp [i(k · x)]

(
0 I
A iAk2

)
r,

(50)

where A is the diagonal matrix defined in Eq. (45). If the thickness
of the generic qth layer of the multilayered material along direc-
tion e2 is denoted as Lq, and Ŷ+

q and Ŷ−
q refer to vector Ŷ computed

at the upper and lower boundaries of the layer, respectively,
simple algebraic manipulations lead to

Ŷ+

q =

(
0 I
A iAk2

)
exp

[
−M−1NLq

] ( 0 I
A iAk2

)−1

× exp
[
i k2 Lq

]
Ŷ−

q = Tq Ŷ−

q . (51)

Formula (51) introduces the frequency-dependent transfer matrix
of the qth layer Tq, which is a symplectic matrix with a unitary
determinant [83]. The condition of perfect bond assumed at the
interface between two adjacent layers, namely Ŷ+

q = Ŷ−

q+1, en-
ables to express vector Ŷ+

n at the upper boundary of the last nth
layer in terms of the same quantity at the lower boundary of the



F. Fantoni, E. Bosco and A. Bacigalupo Extreme Mechanics Letters 56 (2022) 101885

f
m

w
a
F

Y

w
c(
E
i
t

D

T
s
r
o
k
p
m
t
a
p

P

i

w

e
o
F

I

w
m
t
1

(
t
[

b
I

(
o
m

w

5

p
i
a
h
m
t
S
b
o

5

h
ε
e
t

irst layer Ŷ−

1 through the frequency- and k1-dependent transfer
atrix of the entire periodic cell AM as

Ŷ+

n = T(1,n)Ŷ−

1 , (52)

ith T(1,n) =
∏n−1

i=0 Tn−i. Furthermore, periodicity of cell AM
long the x2 direction links the two previous vectors through the
loquet–Bloch boundary condition as

ˆ+

n = exp [i k2 L] Ŷ−

1 , (53)

here L =
∑n

q=1 Lq is the total length of cell AM along x2. The two
onditions (52) and (53) result in the non-linear eigenproblem

T(1,n) − γ I
)
Ŷ−

1 = 0 . (54)

q. (54) allows to investigate in-plane propagation of waves by
mposing the singularity of the coefficients matrix, which leads
o the characteristic equation

(k, s) = Det
(
T(1,n) − γ I

)
= 0 . (55)

his relation characterizes in an implicit form the frequency band
tructure of the composite material. Because of its technological
elevance, from now on, it will be assumed that waves propagate
nly in the direction perpendicular to material layering (namely
1 = 0). As a consequence, Eq. (54) becomes a standard eigen-
roblem with eigenvalue γ , which also plays the role of Floquet
ultiplier, and eigenvector Ŷ−

1 , which is the polarization vector of
he propagating wave. In this case, the characteristic polynomial
ssociated to dispersion relation (55), due to the simplecticity
roperty of transfer matrix T(1,n) [84,85], specializes into the form

(γ ) = γ 4
+ I1 γ 3

+ I2 γ 2
+ I1 γ + 1, (56)

n terms of invariants I1 and I2. Furthermore, if γk is the kth
eigenvalue of problem (54), also 1/γk is an eigenvalue for it,
because of palindromy property of the characteristic polyno-
mial. Polynomial (56) can be decomposed as the product of two
2nd-order polynomials as

P(γ ) =
(
γ 2

+ IL1 γ + 1
) (

γ 2
+ IS1 γ + 1

)
, (57)

ith IL1 and IS1 representing the first invariants related to longi-
tudinal and shear waves, respectively. They read Iα1 = −Trace(
Tα
(1,n)

)
, with α = L or S and Tα

(1,n) the transfer matrix for the
corresponding waves propagation problem. Invariant Iα1 , can be
xpressed in terms of the constitutive and geometrical properties
f the multilayered structure at the mesoscale, as depicted in
ig. 2, and in terms of frequency ω as

α
1 =

1

Ĉ [1]
β2β2 ρ[1]Ĉ [2]

β2β2 ρ[2]

×

⎡⎣sin

⎛⎝ L1 ω

√
Ĉ [1]

β2β2 ρ[1]

Ĉ [1]
β2β2

⎞⎠√Ĉ [1]
β2β2 ρ[1] Ĉ [2]

β2β2 ρ[2] ×

×

(
Ĉ [1]

β2β2 ρ[1]
+ Ĉ [2]

β2β2 ρ[2]
)
sin

⎛⎝ L2 ω

√
Ĉ [2]

β2β2 ρ[2]

Ĉ [2]
β2β2

⎞⎠
− 2 Ĉ [1]

β2β2 ρ[1] Ĉ [2]
β2β2 ρ[2]

×

× cos

⎛⎝ L1 ω

√
Ĉ [1]

β2β2 ρ[1]

Ĉ [1]
β2β2

⎞⎠ cos

⎛⎝ L2 ω

√
Ĉ [2]

β2β2 ρ[2]

Ĉ [2]
β2β2

⎞⎠⎤⎦ , (58)

here superscripts [1] and [2] indicate quantities related to the ho-
ogeneous polymeric layer and to the homogenized microstruc-

ured layer, respectively. For the stiffness components Ĉβ2β2, β =

for shear waves (α = S) and β = 2 for longitudinal waves
8

α = L). Further, L1 and L2 are the lengths of the polymeric and of
he microstructured layer, respectively, along direction e2. If Iα1 ∈

−2, 2], the corresponding angular frequency ranges identify pass
ands for the related wave problem, while ω intervals for which
α
1 values fall outside of [−2, 2] denote the presence of band gaps.

Once the invariants Iα1 have been computed through relation
58), considering Eq. (57), complex eigenvalue γ α can be simply
btained as the root of a second-order equation, whereby the
agnitude can be expressed as⏐⏐γ α
±

⏐⏐ =
1
16

(
±

√⏐⏐Iα1 2
− 4

⏐⏐sgn (Iα1 2
− 4

)
+ 2 Iα1 ±

√⏐⏐Iα1 2
− 4

⏐⏐)2

+

+
1
16

⏐⏐Iα1 2
− 4

⏐⏐ (−1 + sgn
(
Iα1

2
− 4

))2
, (59)

where sgn(·) represents the signum function. By imposing that⏐⏐γ α
±

⏐⏐ = 1, the limit values of Iα1 in correspondence of which there
is a pass band, are obtained. In particular, pass bands are detected
for −2 ≤ Iα1 ≤ 2. Values of Iα1 outside of the interval [−2, 2]
denote stop bands for progressive or reversive waves. In order
to obtain the complete frequency spectrum for the metamaterial,
Eq. (55) has to be solved in terms of wave vector k and angular
frequency s, which can be both complex — see for details [86,87].
With the aim of investigating spatial damping for the metadevice
at hand, Eq. (55) specializes to the case of a complex wave vector
(i.e. kα = kαr + i kαi with α = 1, 2) and frequency s = iω
with ω ∈ R. It is worth noting that in this case, where k1 is
fixed, matrix T(1,n) results to be independent of component k2.
Therefore, since k2 = ln(γ )/(i L), real and imaginary components
of k2 can be obtained from the real and imaginary parts of the
Floquet multiplier γ , with γ = γr + iγi, as

k2r = Arg
γr + i γi

L
, k2i = −

1
2
ln
(
γ 2
r + γ 2

i

)
L

, (60)

here Arg(·) denotes the argument of a complex number.

. Results

This Section illustrates the filtering properties of the pro-
osed metadevice. The geometrical and material parameters used
n the analyses are first introduced in Section 5.1. The over-
ll tunable frequency-dependent constitutive properties for the
omogenized material at the mesoscale and the corresponding
icroscopic local fields, which have been determined according

o the asymptotic homogenization procedure, are discussed in
ection 5.2. Finally, Section 5.3 presents the obtained frequency
and structure for the metadevice, with emphasis on the effects
f the tuning parameter on the filtering features.

.1. Geometrical and material input parameters for the analyses

Consider the micro periodic cell Am, illustrated in Fig. 2, which
as been assumed to be a square domain with edge size equal to
. The external coating, the internal ring, and the eight connecting
lements have all thickness d, which is defined with respect to
he cell size such that d/ε = 0.0250. The mean radius R of the
internal ring is also prescribed in terms of ε, with R/ε = 0.4400,
from which the inner radius r follows as r = R − d/2, i.e. r/ε =

0.4275. Finally, the ratio between the out-of-plane thickness w
and the size ε is prescribed as w/ε = 1.

The external coating, the internal ring, and the connecting
elements (gray color in Fig. 2) are made of steel, which is assumed
as a linear elastic isotropic material with Young’s modulus E =

210 GPa, Poisson’s ratio ν = 0.3, and mass density ρ = 7500
kg/m3. The polymeric phase, indicated by the yellow color in
Fig. 2, is considered to be made of Epotex 301, which shows a
linear viscoelastic isotropic constitutive behavior, with Young’s
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odulus E = 3.6 GPa, Poisson’s ratio ν = 0.35, and mass
ensity ρ = 1150 kg/m3. Truncating Prony series (1) at N = 1,
he viscosity ratio of the relaxation function µ is here assumed
o have a unit value, while the relaxation time τr is equal to
0−3 s. Note that this polymeric material is present both in the
icro periodic cell Am and in the homogeneous layer at the
esoscale. Lastly, the shunting piezoelectric phase constituting

he internal disk of the micro periodic cell Am (red color in
ig. 2) is made by Polyvinylidene fluoride (PVDF), which exhibits a
inear piezoelectric constitutive behavior. The electromechanical
roperties of PVDF, which is considered to be polarized along
he out-of-plane direction, are represented by the non-vanishing
omponents of the fourth order elasticity tensor C1111 = C2222 =

.84 GPa, C3333 = 4.63 GPa, C1122 = 2.72 GPa, C1133 = C2233 =

.22 GPa, C1212 = 1.06 GPa and C1313 = C2323 = 5.26 · 107 Pa,
f the third order stress-charge coupling tensor e113 = e223 =

1.999 · 10−3 C/m2, e311 = e322 = 4.344 · 10−3 C/m2, and
333 = −1.099 · 10−3 C/m2, and of the second-order dielectric
ermittivity tensor β11 = β22 = 6.641 · 10−11 C/V m and β33 =

.083 · 10−11 C/V m. Finally, the mass density of PVDF is taken as
= 1780 kg/m3.

.2. Local and effective tunable frequency-dependent response of the
ultiphase microscopic cell

The local and effective response of the microscale piezoelectric
hunting cell Am are computed for a set of values of the tuning
arameter λ, which vary in the range λ ∈ [−3, λR) ∪ (λR, 1].
he resonance value λR is obtained according to Eq. (12) and, for
he material properties given in Section 5.1, specifies as λR ≈

1.03682961. Further, the results are presented in terms of the
imensionless angular frequency ω∗

= ω/ωref , with the reference
requency ωref = 1 rad/s and ω∗

∈
1

τrωref
[0, 2 · 104

] = [0, 2 · 107
].

As introduced in Section 3.2, perturbation functions N (1)
kpq1

are
olutions of cell problem (25) and describe the microfluctuation
f the displacement field component ûk, due to the gradient of
he mesoscopic displacement ∂Ûp(x, s)/∂xq1 . Fig. 3 illustrates the
erturbation function component N (1)

111 over the microscale unit
ell Q in the case of ω∗

= 0, which refers to the quasi-static
esponse of the viscoelastic phase, for two different values of the
uning parameter λ, corresponding to the case of an open circuit
λ = 0) and to the resonance value (λ → λ+

R ). Note that for
∗

= 0, the perturbation function is characterized by the real part
nly, with N (1)

kpq1
= Re(N (1)

kpq1
). Moreover, it can be observed from

ig. 3 that the choice of the tuning parameter λ strongly affects
he local displacement field in the microscale cell, whereby the
agnitude of the perturbation function substantially increases
hen approaching the resonance value λR.
In the general case of ω∗ > 0, the perturbation function

(1)
kpq1

is a complex number. The imaginary part Im(N (1)
111) and the

agnitude |N (1)
111| of the perturbation function component N (1)

111 are
resented in Fig. 4 for ω∗

= 104, and considering λ = 0 and
λ → λ+

R . The real part of the perturbation function is qualitatively
comparable to that shown in Fig. 3 and is thus omitted for brevity.
Note that the magnitude of the function, contrary to the real and
imaginary parts, is characterized by a non vanishing average over
the unit cell.

Fig. 5 illustrates the magnitude of the dimensionless effective
stiffness component |Ĉ∗

1111| as a function of the tuning parameter
λ and the dimensionless angular frequency ω∗. Here, |Ĉ∗

1111| =

|Ĉ1111|/|Ĉ
ref
1111|, whereby |Ĉ ref

1111| = 21.72 GPa and corresponds
to the effective stiffness component computed for λ = 0 and
ω∗

= 0. The results are presented in the selected interval ω∗
∈

[0, 10 · 103
], since it can be observed that the effective stiffness

∗
presents a monotonic increasing behavior as a function of ω

9

and reaches a horizontal asymptote approximately for ω∗ >

2 · 103. Consistently with the response of the shunted phase,
the curves exhibit vertical asymptotes in correspondence of the
resonance value of the tuning parameter. Additionally, horizontal
asymptotes are approached for λ → ±∞. Due to the isotropic
properties and geometry of the cell, the effective component Ĉ1111
is equal to that in the ξ2−direction. Finally, the components of the
stiffness tensor Ĉ1122 = Ĉ2211 show the same trend of Ĉ1111 as a
function of λ and ω∗, and are thus not depicted here.

5.3. Frequency band structure of the tunable multilayered medium
at the mesoscale

Once the effective properties of the microscale cell have been
computed through the asymptotic homogenization procedure de-
scribed in Section 5.2, at the mesoscale, the medium can be
considered as a stack of two alternating homogeneous layers
along e2: the polymeric layer and the homogenized microstruc-
tured layer, which have length equal to L1 and L2, respectively,
long the direction perpendicular to material layering. In this
cenario, the frequency band structure of the metamaterial is
nvestigated through the technique described in Section 4. In
articular, the effects of the tuning parameter λ upon metamate-
ial spectrum are assessed in order to control filtering properties
f the hierarchical material. As mentioned in Section 4, wave
ropagation along the e2 direction is here explored, meaning that,
rom now on, component k1 of the wave vector is assumed to be
anishing.
Consider first a geometrical configuration in which the two

ayers have the same length, i.e. L2/L1 = 1. Fig. 6 shows the
ehavior of the first invariant IL1 related to longitudinal waves, as
function of the dimensionless angular frequency ω∗

= ω/ωref ,
gain considering ω∗

∈ [0, 2 · 107
]. Figs. 6(a) and 6(b) refer to

tuning parameter λ = 0 and to λ approaching the resonance
alue λR, respectively. Recall that, as detailed in Section 4, pass
ands are detected for the first invariant IL1 included in the range
−2, 2]. Accordingly, the gray regions in Fig. 6 indicate intervals
f ω∗ corresponding to pass bands. Conversely, the green regions,
hich designate the intervals for which IL1 ̸∈ [−2, 2], define the

presence of band gaps.
It is immediately evident that the ranges of ω∗ in which low

frequency stop bands are identified are substantially wider for
λ → λ+

R with respect to the case λ = 0. The behavior of IS1 is not
epresented here, since it is conceptually analogous to that of IL1.

For the specific case of λ = 0, and again for a system
eometry with L2/L1 = 1, Fig. 7(a) illustrates the real and the
maginary components of the eigenvalue γ , obtained by solv-
ng the standard eigenvalue problem (54) in the selected range
∗

∈ [0, 2 · 107
]. Black curves refer to the Floquet multiplier

ssociated to longitudinal waves, while red curves refer to the
ultiplier corresponding to shear waves. It can be noted that

maginary components γi belong to the interval [−1, 1], while
real components γr escape from the unitary cylinder at some
frequencies ω∗. This phenomenon happens in the correspondence
of band gaps and can also be visualized in the top view shown in
Fig. 7(b). Furthermore, the effect of viscosity is evident in Fig. 7(b),
since the escapes of γr from the unitary circle are not straight
lines, but, rather, assume a sort of bell-shape. Fig. 7(c) shows
the real and the imaginary parts of the wave vector component
k2, expressed in terms of the dimensionless wave number k∗

2 =

k2 L (with L the total length of periodic cell AM ), for the same
dimensionless frequency range. The wave vector k2 has been
obtained through Eq. (60). Again, black and red colors refer to
longitudinal and shear waves, respectively. The thin black and
red curves in Fig. 7(c) represent a translation of the obtained
frequency spectrum along the k∗ axis and have been inserted
2r



F. Fantoni, E. Bosco and A. Bacigalupo Extreme Mechanics Letters 56 (2022) 101885

(

i
b
c
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T

Fig. 3. Local response at the microscale. Perturbation function component N (1)
111 = Re(N (1)

111) in the case of ω∗
= 0 for a tuning parameter (a) λ = 0; (b) λ → λ+

R .
Fig. 4. Local response at the microscale. Perturbation function component N (1)
111 in the case of ω∗

= 104 . Imaginary part Im(N (1)
111) for a tuning parameter (a) λ = 0;

b) λ → λ+

R . Magnitude |N (1)
111| for a tuning parameter (c) λ = 0; (d) λ → λ+

R .
t
n

π

n order to emphasize spectrum periodicity along that direction,
eing k∗

2r ∈ (−π, π]. Pass bands of propagating waves are
haracterized by vanishing values of k∗

2i, while values k∗

2i ̸= 0
enote material band gaps related to spatial wave attenuation.
he influence of viscosity can be further identified, by observing
10
hat different loops in Fig. 7(c), which characterize band gaps, do
ot close in correspondence with k∗

2i = 0, but remain open. If the
material was elastic, these loops would be contained in planes
(k∗

2i − ω∗) characterized by a constant value of k∗

2r (multiple of
), but this is not the case in the presence of viscous dissipation.
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Fig. 5. Effective frequency-dependent stiffness of the microscale cell. Dimensionless magnitude of the stiffness component |Ĉ∗

1111| (a) as a function of the tuning
parameter λ and the angular frequency ω∗; (b) as a function of λ and for ω∗

= 5 · 103; (c) as a function of ω∗ and for λ = 0.
Fig. 6. Response of a system with layers of equal length (L2/L1 = 1). First invariant IL1 associated to longitudinal waves as a function of ω∗ for (a) λ = 0; (b) λ → λ+

R .
It is anticipated that this feature of the viscous response can be
visualized more clearly from a two dimensional perspective, as
illustrated in Figs. 8(b) and (d) and in Figs. 9(b) and (d).

The effect of the tuning parameter λ, which modifies the
elastic properties of the shunting piezoelectric phase as discussed
in Section 5.2, on the metamaterial frequency spectrum is demon-
strated in Fig. 8. The results are again referred to a system with
equal layer lengths, i.e. L2/L1 = 1. Figs. 8(a) and 8(b) show
the material spectrum associated to compressional waves in the
planes (k∗

2r − ω∗) and (k∗

2i − ω∗), respectively. Black curves rep-
resent the results for λ = 0, while gray curves correspond to
branches for λ approaching the resonance value λR. It is evident
that for λ → λ+

R the low frequency band gaps become wider
and that the corresponding central frequency increases. This con-
firms that triggering the shunting effect has a great impact upon
metamaterial spectrum properties, particularly upon its filtering
performances. Figs. 8(c) and 8(d) show, respectively, material
frequency spectrum associated to shear waves in the planes (k∗

2r−

ω∗) and (k∗

2i − ω∗) for L2/L1 = 1, for λ = 0 (blue curves) and
λ → λ+

R (cyan curves). This further demonstrates the effect of the
tuning parameter in increasing the amplitude of band gaps and
the value of their central frequency. In the case of shear waves,
however, the tuning parameter has a lower influence on the
obtained frequency spectrum than in the case of compressional
waves.
11
Consider now the case of a material geometry for which the
layers have a different relative length, with L2/L1 = 10. Figs. 9(a)
and 9(b) represent the spectrum associated to longitudinal waves
in the plane (k∗

2r−ω∗) and (k∗

2i−ω∗), respectively, for λ = 0 (black
curves) and λ → λ+

R (gray curves). Spectra related to shear waves
in the planes (k∗

2r −ω∗) and (k∗

2i −ω∗) are plotted in Figs. 9(c) and
9(d), for λ = 0 (blue curves) and λ = λR (cyan curves). It is con-
firmed that the activation of piezoelectric shunting in the tunable
metamaterial opens band gaps, enhancing the filtering properties,
and increases the relative central frequency. The opening of band
gaps remains more substantial for longitudinal waves than for
shear waves. Further, shear waves exhibit a more pronounced
effect of viscosity.

The influence of the geometrical configuration on the obtained
material spectrum is explored in more detail, by considering
systems characterized by different relative layer lengths, which
vary in the range L2/L1 ∈ [0.1, 10]. Figs. 10(a) and 10(b) show
the dimensionless amplitude A∗

= A/ωref and the dimensionless
central frequency ω̄∗

= ω̄/ωref of the first band gap, as a function
of the ratio L2/L1 between the length of the microstructured layer
and that of the homogeneous layer. Black and red colors indicate
longitudinal and shear waves, respectively; further, continuous
lines refer to λ = 0, while dashed lines to λ → λ+

R . In all the
examined cases, A∗ and ω̄∗ present a peak in correspondence
with L /L = 1. On the contrary, when one layer is much longer
2 1
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f
d

Fig. 7. Response of a system with layers of equal length (L2/L1 = 1), for a tuning parameter λ = 0. (a) Floquet multiplier components γr and γi as a function of ω∗

or longitudinal waves (black curves) and shear waves (red curves). (b) 2D view of Floquet multiplier components γr and γi . (c) 3D frequency spectrum representing
imensionless components k∗

2r and k∗

2i as a function of dimensionless frequency ω∗ for longitudinal waves (black curves) and shear waves (red curves).
Fig. 8. Response of a system with layers of equal length (L2/L1 = 1). 2D material spectrum associated to longitudinal waves (a) in the plane (k∗

2r − ω∗) and (b) in
the plane (k∗

2i −ω∗) for λ = 0 (black curves) and λ → λ+

R (gray curves). 2D material spectrum associated to shear waves (c) in the plane (k∗

2r −ω∗) and (d) (k∗

2i −ω∗),
for λ = 0 (blue curves) and λ → λ+

R (cyan curves). The results are shown in selected frequency ranges to emphasize the tuning effect, with ω∗
∈ [0, 2 · 107

] for
compressional waves and ω∗

∈ [0, 107
] for shear waves.
or much shorter than the other, the resulting material response
approximates the behavior of an elastic homogeneous medium,
which does not exhibit band gaps in the frequency spectrum.
12
Further, for any value of L2/L1, it is evident that the amplitude A∗

and the relative central frequency ω̄∗ are larger for λ → λ+

R than
for λ = 0. Additionally, it can be noted that an increase of the
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Fig. 9. Response of a system with different relative layer lengths (L2/L1 = 10). 2D material spectrum associated to longitudinal waves (a) in the plane (k∗

2r − ω∗)
nd (b) in the plane (k∗

2i − ω∗), for λ = 0 (black curves) and λ → λ+

R (gray curves). 2D material spectrum associated to shear waves (c) in the plane (k∗

2r − ω∗) and
d) in the plane (k∗

2i − ω∗), for λ = 0 (blue curves) and λ → λ+

R (cyan curves). The results are shown in selected frequency ranges to emphasize the tuning effect,
ith ω∗

∈ [0, 3 · 106
] for compressional waves and ω∗

∈ [0, 1.5 · 106
] for shear waves.
Fig. 10. Influence of relative layer length L2/L1 on the response of the metamaterial. (a) Dimensionless amplitude A∗ of the first band gap and (b) dimensionless
entral frequency ω̄∗ of the first band gap, as a function of the ratio L2/L1 ratio between the thicknesses of the layers. Black curves refer to longitudinal waves,
while red curves to shear waves. Continuous lines refer to λ = 0, while dashed lines to λ → λ+

R .
f
c
a
d

hickness of the microstructured layer, which thereby increases
he shunting effect, results in an increase of the ratio between the
and gap amplitude at λ → λ+

R and at λ = 0. For example, taking
nto account compressional waves, one has A∗(λ → λ+

R )/A
∗(λ =

) = 6.03 for L2/L1 = 10 and A∗(λ → λ+

R )/A
∗(λ = 0) = 2.35 for

2/L1 = 1. This feature is not immediately evident from Fig. 10(a),
ut is highly relevant to assess the filtering performance of the
etamaterial.
Finally, the influence of the considered number of cells AM of

he multilayered material on the value of the transmission coef-
icient ct is explored. Without loss of generality, for this purpose,
system geometry with equal layer length, i.e. L2/L1 = 1, is

onsidered. Fig. 11 illustrates the transmission coefficient ct for
he longitudinal displacement Û in terms of the dimensionless
2

13
requency ω∗, for the case of a multilayered material made by one
ell (black curves), five cells (gray curves), ten cells (blue curves)
nd twenty cells (cyan curves). The transmission coefficient is
efined as ct = −20log10

(⏐⏐T(1,n)22⏐⏐) , see e.g. [88,89], where⏐⏐T(1,n)22⏐⏐ is the absolute value of component 22 of the transfer
matrix relative to periodic cell AM . It is evident that, by increasing
the number of periodic cells AM , the transmission coefficient be-
comes negative and with progressively larger absolute values for
frequency ranges associated to the presence of material band gaps
(here identified by the light gray areas), which corresponds to a
closer agreement with the hypothesis underlying Floquet–Bloch
theory of infinite material.
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Fig. 11. Response of a system with layers of equal length (L2/L1 = 1). Transmission coefficient ct for the longitudinal displacement Û2 in terms of ω∗ . The different
colors refer to a number of cells AM equal to one (black curves), five (gray curves), ten (blue curves), and twenty (cyan curves). Light gray areas identify frequency
ranges corresponding to a band gap in the frequency spectrum for a tuning parameter (a) λ = 0, and (b) λ → λ+

R .
. Conclusions

The present work has proposed a class of tunable nested
etadevices, for which the filtering properties are controlled
y means a tunable parameter, thereby enabling to obtain high
erformance wave propagation control. The proposed metafilter
s characterized by different periodicities at different scales, and
s therefore investigated within a multiscale framework. At the
icroscale, a square periodic cell is identified, which is made
f an external rigid and heavy steel coating, connected by steel
lements to an internal steel ring. A light and soft polymeric
aterial occupies the space between the external coating and

he internal ring. Inside the steel ring, a disk made of piezoelec-
ric material is present, with a thin dielectric insulator interface
eparating the two phases. Piezoelectric phase is shunted by an
lectric external circuit characterized by a variable capacitance.
he latter represents the tunable parameter able to alter the
lastic constitutive properties of the piezoelectric material. Due
o the periodicity of the metadevice microstructure, a two-scale
irst-order variational-asymptotic homogenization technique has
een adopted to obtain frequency-dependent overall constitutive
roperties of the multiphase micro periodic cell, whereby the
overning equations are written in the frequency domain by
eans of a bilateral Laplace transform. At the mesoscale, the
etamaterial appears as a stack of two subsequent alternating

ayers: a polymeric homogeneous layer and the homogenized
icrostructured layer. These two layers are periodically repeated

n plane along one direction and are infinitely extended along
he perpendicular one. Material periodicity at the mesoscale al-
ows to exploit Floquet–Bloch theory in order to investigate the
ispersive free wave propagation inside the medium. Focusing
n wave propagation along the direction perpendicular to ma-
erial layering and to spatial damping, dispersion relation, which
llows obtaining metamaterial frequency spectrum, has been de-
ermined by equating to zero the determinant of the coefficients
atrix of an eigenproblem in standard form involving the transfer
atrix of the periodic meso cell. Floquet multiplier plays the role
f the eigenvalue of this eigenproblem, while wave polarization
ector is the corresponding eigenvector.
By modifying the capacitance of the external electrical cir-

uits, which are considered as characterized by equivalent purely
apacitive admittance, the constitutive elastic properties of the
iezoelectric shunting phase are consequently changed. This af-
ects the overall constitutive behavior of the micro periodic cell
hat ultimately enables to obtain an adjustable frequency band
tructure of the metamaterial. The performance of the designed
etafilter has been assessed numerically, by investigating the

nfluence of geometrical features and of the tuning parameter on
14
the resulting Floquet–Bloch spectrum. Triggering the shunting ef-
fect has entailed the opening of metamaterial low frequency band
gaps in all the studied cases, with a consequent increase of both
corresponding central frequency and amplitude. For a tuning pa-
rameter approaching the so-called resonance value, the shunted
phase gets progressively stiffer, which leads to an enlargement of
the corresponding low frequency band gaps, whereby the max-
imum filtering effect is obtained when the homogeneous poly-
meric layer and the microstructured layer have the same thick-
ness along the direction perpendicular to the layering. In con-
clusion, the designed hierarchical metafilter has demonstrated to
effectively enable passive wave propagation control in periodic
materials, thereby representing a promising tool to design high
performance acoustic filters.

While in this contribution a specific geometry of the mul-
tiphase microcell has been proposed, the performance of the
metamaterial can be possibly improved by means of advanced
parametric and topological optimization techniques [90–97]. Fur-
thermore, more sophisticated and/or dissipative electrical circuits
could be considered for the shunted phase. These interesting
developments may be the topics of future research.
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