1,413 research outputs found

    The Modal mu-Calculus and The Gödel-Löb Logic

    Get PDF
    We show that the modal µ-calculus over GL collapses to the modal fragment by showing that the fixpoint formula is reached after two iterations and answer to a question posed by van Benthem in [vBe06]. Further, we introduce the modal µ∼-calculus by allowing fixpoint constructors for any formula where the fixpoint variable appears guarded but not necessarily positive and show that this calculus over GL collapses to the modal fragment, too. The latter result allows us a new proof of the de Jongh, Sambin Theorem and provides a simple algorithm to construct the fixpoint formula

    The Modal μ-Calculus Hierarchy on Restricted Classes of Transition Systems

    Get PDF
    We discuss the strictness of the modal µ-calculus hierarchy over some restricted classes of transition systems. First, we show that the hierarchy is strict over reflexive frames. By proving the finite model theorem for reflexive systems the same results holds for finite models. Second, we prove that over transitive systems the hierarchy collapses to the alternation-free fragment. In order to do this the finite model theorem for transitive transition systems is also proved. Further, we verify that if symmetry is added to transitivity the hierarchy collapses to the purely modal fragment

    Experimental study of vapor-cell magneto-optical traps for efficient trapping of radioactive atoms

    Full text link
    We have studied magneto-optical traps (MOTs) for efficient on-line trapping of radioactive atoms. After discussing a model of the trapping process in a vapor cell and its efficiency, we present the results of detailed experimental studies on Rb MOTs. Three spherical cells of different sizes were used. These cells can be easily replaced, while keeping the rest of the apparatus unchanged: atomic sources, vacuum conditions, magnetic field gradients, sizes and power of the laser beams, detection system. By direct comparison, we find that the trapping efficiency only weakly depends on the MOT cell size. It is also found that the trapping efficiency of the MOT with the smallest cell, whose diameter is equal to the diameter of the trapping beams, is about 40% smaller than the efficiency of larger cells. Furthermore, we also demonstrate the importance of two factors: a long coated tube at the entrance of the MOT cell, used instead of a diaphragm; and the passivation with an alkali vapor of the coating on the cell walls, in order to minimize the losses of trappable atoms. These results guided us in the construction of an efficient large-diameter cell, which has been successfully employed for on-line trapping of Fr isotopes at INFN's national laboratories in Legnaro, Italy.Comment: 9 pages, 7 figures, submitted to Eur. Phys. J.

    A FORTRESS BETWEEN ARTIFICE AND NATURE: THE LASER SCANNING SURVEY OF THE CASTLE OF PESCOPAGANO AS AN INSTRUMENT OF KNOWLEDGE, CONSERVATION AND ENHANCEMENT

    Get PDF
    Abstract. The castle of Pescopagano, a small village located on the border between Basilicata and Campania, is a complex of great historical and landscape value, for the inseparable combination that binds its stones to the rock where it stands. Founded perhaps in the Byzantine times, but certainly renovated and built in its current forms between the 11th and 12th century, the castle had considerable military importance under Frederick II of Swabia. Seriously damaged by the earthquake of 1694, the fortress underwent a partial reconstruction, but ended up suffering further collapses caused by the Irpinia earthquake of 1980, such as to motivate the first interventions of securing and, above all, the application of the listing process. Today the castle is still largely in ruins and is only partially accessible thanks to a limited intervention on the paths. The present research aims at deepening the knowledge of the state of conservation, the damage mechanisms and the previous restoration interventions of the castle, in order to define possible strategies for its restoration and enhancement. The analysis work uses the most advanced laser scanning and drone detection systems, in order to document, as accurately as possible, the complex patrimonial system of the castle. Thanks to the combined use of these techniques, the objective is also to define methods that can be replicated in other contexts where the relationship between geomorphology and construction is so relevant that it jeopardizes the use of any other traditional survey system

    Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis

    Get PDF
    International audienceIn this paper, we study the transport of air masses to San Pietro Capofiume (SPC) in Po Valley, Italy, by means of back trajectories analysis. Our main aim is to investigate whether air masses originate over different regions on nucleation event days and on nonevent days, during three years when nucleation events have been continuously recorded at SPC. The results indicate that nucleation events occur frequently in air masses arriving from Central Europe, whereas event frequency is much lower in the air transported from southern directions and from the Atlantic Ocean. We also analyzed the behaviour of meteorological parameters during 96 h transport to SPC, and found that, on average, event trajectories undergo stronger subsidence during the last 12 h before the arrival at SPC than nonevent trajectories. This causes a reversal in the temperature and relative humidity (RH) differences between event and nonevent trajectories: between 96 and 12 h back time, temperature is lower and RH is higher for event than nonevent trajectories and between 12 and 0 h vice versa. Boundary layer mixing is stronger along the event trajectories compared to nonevent trajectories. The absolute humidity (AH) is similar for the event and nonevent trajectories between about 96 h and about 60 h back time, but after that, the event trajectories AH becomes lower due to stronger rain. We also studied transport of SO2 to SPC, and conclude that although sources in Po Valley most probably dominate the measured concentrations, certain Central and Eastern European sources also make a substantial contribution

    Gaia DR2 view of the Lupus V-VI clouds: the candidate diskless young stellar objects are mainly background contaminants

    Get PDF
    Extensive surveys of star-forming regions with Spitzer have revealed populations of disk-bearing young stellar objects. These have provided crucial constraints, such as the timescale of dispersal of protoplanetary disks, obtained by carefully combining infrared data with spectroscopic or X-ray data. While observations in various regions agree with the general trend of decreasing disk fraction with age, the Lupus V and VI regions appeared to have been at odds, having an extremely low disk fraction. Here we show, using the recent Gaia data release 2 (DR2), that these extremely low disk fractions are actually due to a very high contamination by background giants. Out of the 83 candidate young stellar objects (YSOs) in these clouds observed by Gaia, only five have distances of 150 pc, similar to YSOs in the other Lupus clouds, and have similar proper motions to other members in this star-forming complex. Of these five targets, four have optically thick (Class II) disks. On the one hand, this result resolves the conundrum of the puzzling low disk fraction in these clouds, while, on the other hand, it further clarifies the need to confirm the Spitzer selected diskless population with other tracers, especially in regions at low galactic latitude like Lupus V and VI. The use of Gaia astrometry is now an independent and reliable way to further assess the membership of candidate YSOs in these, and potentially other, star-forming regions.Comment: Accepted for publication on Astronomy&Astrophysics Letter

    Toward a personalized therapy in soft-tissue sarcomas: State of the art and future directions

    Get PDF
    Soft-tissue sarcomas are rare tumors characterized by pathogenetic, morphological, and clinical intrinsic variability. Median survival of patients with advanced tumors are usually chemo-and radio-resistant, and standard treatments yield low response rates and poor survival results. The identification of defined genomic alterations in sarcoma could represent the premise for targeted treatments. Summarizing, soft-tissue sarcomas can be differentiated into histotypes with reciprocal chromosomal translocations, with defined oncogenic mutations and complex karyotypes. If the latter are improbably approached with targeted treatments, many suggest that innovative therapies interfering with the identified fusion oncoproteins and altered pathways could be potentially resolu-tive. In most cases, the characteristic genetic signature is discouragingly defined as “undruggable”, which poses a challenge for the development of novel pharmacological approaches. In this review, a summary of genomic alterations recognized in most common soft-tissue sarcoma is reported together with current and future therapeutic opportunities

    A Root in Synapsis and the Other One in the Gut Microbiome-Brain Axis: Are the Two Poles of Ketogenic Diet Enough to Challenge Glioblastoma?

    Get PDF
    Glioblastoma is the most frequent and aggressive brain cancer in adults. While precision medicine in oncology has produced remarkable progress in several malignancies, treatment of glioblastoma has still limited available options and a dismal prognosis. After first-line treatment with surgery followed by radiochemotherapy based on the 2005 STUPP trial, no significant therapeutic advancements have been registered. While waiting that genomic characterization moves from a prognostic/predictive value into therapeutic applications, practical and easy-to-use approaches are eagerly awaited. Medical reports on the role of the ketogenic diet in adult neurological disorders and in glioblastoma suggest that nutritional interventions may condition outcomes and be associated with standard therapies. The acceptable macronutrient distribution of daily calories in a regular diet are 45–65% of daily calories from carbohydrates, 20–35% from fats, and 10–35% from protein. Basically, the ketogenic diet follows an approach based on low carbohydrates/high fat intake. In carbohydrates starvation, body energy derives from fat storage which is used to produce ketones and act as glucose surrogates. The ketogenic diet has several effects: metabolic interference with glucose and insulin and IGF-1 pathways, influence on neurotransmission, reduction of oxidative stress and inflammation, direct effect on gene expression through epigenetic mechanisms. Apart from these central effects working at the synapsis level, recent evidence also suggests a role for microbiome and gut-brain axis induced by a ketogenic diet. This review focuses on rationales supporting the ketogenic diet and clinical studies will be reported, looking at future possible perspectives
    corecore