100 research outputs found

    Pseudospin excitations in coaxial nanotubes

    Get PDF
    In a 2DEG confined to two coaxial tubes the `tube degree of freedom' can be described in terms of pseudospin-1/2 dynamics. The presence of tunneling between the two tubes leads to a collective oscillation known as pseudospin resonance. We employ perturbation theory to examine the dependence of the frequency of this mode with respect to a coaxial magnetic field for the case of small intertube distances. Coulomb interaction leads to a shift of the resonance frequency and to a finite lifetime of the pseudospin excitations. The presence of the coaxial magnetic field gives rise to pronounced peaks in the shift of the resonance frequency. For large magnetic fields this shift vanishes due to the effects of Zeeman splitting. Finally, an expression for the linewidth of the resonance is derived. Numerical analysis of this expression suggests that the linewidth strongly depends on the coaxial magnetic field, which leads to several peaks of the linewidth as well as regions where damping is almost completely suppressed.Comment: 11 pages, 7 figure

    Probing topological transitions in HgTe/CdTe quantum wells by magneto-optical measurements

    Get PDF
    In two-dimensional topological insulators, such as inverted HgTe/CdTe quantum wells, helical quantum spin Hall (QSH) states persist even at finite magnetic fields below a critical magnetic field BcB_\mathrm{c}, above which only quantum Hall (QH) states can be found. Using linear-response theory, we theoretically investigate the magneto-optical properties of inverted HgTe/CdTe quantum wells, both for infinite two-dimensional and finite-strip geometries, and possible signatures of the transition between the QSH and QH regimes. In the absorption spectrum, several peaks arise due to non-equidistant Landau levels in both regimes. However, in the QSH regime, we find an additional absorption peak at low energies in the finite-strip geometry. This peak arises due to the presence of edge states in this geometry and persists for any Fermi level in the QSH regime, while in the QH regime the peak vanishes if the Fermi level is situated in the bulk gap. Thus, by sweeping the gate voltage, it is possible to experimentally distinguish between the QSH and QH regimes due to this signature. Moreover, we investigate the effect of spin-orbit coupling and finite temperature on this measurement scheme.Comment: 14 pages, 13 figure

    Excitonic Stark effect in MoS2_2 monolayers

    Full text link
    We theoretically investigate excitons in MoS2_2 monolayers in an applied in-plane electric field. Tight-binding and Bethe-Salpeter equation calculations predict a quadratic Stark shift, of the order of a few meV for fields of 10 V/μ\mum, in the linear absorption spectra. The spectral weight of the main exciton peaks decreases by a few percent with an increasing electric field due to the exciton field ionization into free carriers as reflected in the exciton wave functions. Subpicosecond exciton decay lifetimes at fields of a few tens of V/μ\mum could be utilized in solar energy harvesting and photodetection. We find simple scaling relations of the exciton binding, radius, and oscillator strength with the dielectric environment and an electric field, which provides a path to engineering the MoS2_2 electro-optical response.Comment: 9 pages, 7 figure

    Monte Carlo simulations of the inside-intron recombination

    Full text link
    Biological genomes are divided into coding and non-coding regions. Introns are non-coding parts within genes, while the remaining non-coding parts are intergenic sequences. To study the evolutionary significance of recombination inside introns we have used two models based on the Monte Carlo method. In our computer simulations we have implemented the internal structure of genes by declaring the probability of recombination between exons. One situation when inside-intron recombination is advantageous is recovering functional genes by combining proper exons dispersed in the genetic pool of the population after a long period without selection for the function of the gene. Populations have to pass through the bottleneck, then. These events are rather rare and we have expected that there should be other phenomena giving profits from the inside-intron recombination. In fact we have found that inside-intron recombination is advantageous only in the case when after recombination, besides the recombinant forms, parental haplotypes are available and selection is set already on gametes.Comment: 12 pages inc. 5 Figs., for Int. J. Mod. Phys. C 17, issue 4 (2006

    Theory of thermal spin-charge coupling in electronic systems

    Get PDF
    The interplay between spin transport and thermoelectricity offers several novel ways of generating, manipulating, and detecting nonequilibrium spin in a wide range of materials. Here we formulate a phenomenological model in the spirit of the standard model of electrical spin injection to describe the electronic mechanism coupling charge, spin, and heat transport and employ the model to analyze several different geometries containing ferromagnetic (F) and nonmagnetic (N) regions: F, F/N, and F/N/F junctions which are subject to thermal gradients. We present analytical formulas for the spin accumulation and spin current profiles in those junctions that are valid for both tunnel and transparent (as well as intermediate) contacts. For F/N junctions we calculate the thermal spin injection efficiency and the spin accumulation induced nonequilibrium thermopower. We find conditions for countering thermal spin effects in the N region with electrical spin injection. This compensating effect should be particularly useful for distinguishing electronic from other mechanisms of spin injection by thermal gradients. For F/N/F junctions we analyze the differences in the nonequilibrium thermopower (and chemical potentials) for parallel and antiparallel orientations of the F magnetizations, as evidence and a quantitative measure of the spin accumulation in N. Furthermore, we study the Peltier and spin Peltier effects in F/N and F/N/F junctions and present analytical formulas for the heat evolution at the interfaces of isothermal junctions.Comment: to be published in PRB (in press), 19 pages, 19 figure

    The inverse-Compton ghost HDF 130 and the giant radio galaxy 6C 0905+3955: matching an analytic model for double radio source evolution

    Full text link
    We present new GMRT observations of HDF 130, an inverse-Compton (IC) ghost of a giant radio source that is no longer being powered by jets. We compare the properties of HDF 130 with the new and important constraint of the upper limit of the radio flux density at 240 MHz to an analytic model. We learn what values of physical parameters in the model for the dynamics and evolution of the radio luminosity and X-ray luminosity (due to IC scattering of the cosmic microwave background (CMB)) of a Fanaroff-Riley II (FR II) source are able to describe a source with features (lobe length, axial ratio, X-ray luminosity, photon index and upper limit of radio luminosity) similar to the observations. HDF 130 is found to agree with the interpretation that it is an IC ghost of a powerful double-lobed radio source, and we are observing it at least a few Myr after jet activity (which lasted 5--100 Myr) has ceased. The minimum Lorentz factor of injected particles into the lobes from the hotspot is preferred to be γ103\gamma\sim10^3 for the model to describe the observed quantities well, assuming that the magnetic energy density, electron energy density, and lobe pressure at time of injection into the lobe are linked by constant factors according to a minimum energy argument, so that the minimum Lorentz factor is constrained by the lobe pressure. We also apply the model to match the features of 6C 0905+3955, a classical double FR II galaxy thought to have a low-energy cutoff of γ104\gamma\sim10^4 in the hotspot due to a lack of hotspot inverse-Compton X-ray emission. The models suggest that the low-energy cutoff in the hotspots of 6C 0905+3955 is γ103\gamma\gtrsim 10^3, just slightly above the particles required for X-ray emission.Comment: 9 pages, 3 figure

    The Galaxy Cluster Luminosity-Temperature Relationship and Iron Abundances - A Measure of Formation History ?

    Get PDF
    Both the X-ray luminosity-temperature (L-T) relationship and the iron abundance distribution of galaxy clusters show intrinsic dispersion. Using a large set of galaxy clusters with measured iron abundances we find a correlation between abundance and the relative deviation of a cluster from the mean L-T relationship. We argue that these observations can be explained by taking into account the range of cluster formation epochs expected within a hierarchical universe. The known relationship of cooling flow mass deposition rate to luminosity and temperature is also consistent with this explanation. From the observed cluster population we estimate that the oldest clusters formed at z>~2. We propose that the iron abundance of a galaxy cluster can provide a parameterization of its age and dynamical history.Comment: 13 pages Latex, 2 figures, postscript. Accepted for publication in ApJ Letter

    An XMM-Newton observation of the massive, relaxed galaxy cluster ClJ1226.9+3332 at z=0.89

    Get PDF
    A detailed X-ray analysis of an XMM-Newton observation of the high-redshift (z=0.89) galaxy cluster ClJ1226.9+3332 is presented. The X-ray temperature is found to be 11.5{+1.1}{-0.9}keV, the highest X-ray temperature of any cluster at z>0.6. In contrast to MS1054-0321, the only other very hot cluster currently known at z>0.8, ClJ1226.9+3332 features a relaxed X-ray morphology, and its high overall gas temperature is not caused by one or several hot spots. The system thus constitutes a unique example of a high redshift, high temperature, relaxed cluster, for which the usual hydrostatic equilibrium assumption, and the X-ray mass is most reliable. A temperature profile is constructed (for the first time at this redshift) and is consistent with the cluster being isothermal out to 45% of the virial radius. Within the virial radius (corresponding to a measured overdensity of a factor of 200), a total mass of (1.4+/-0.5)*10^15 M_solar is derived, with a gas mass fraction of 12+/-5%. The bolometric X-ray luminosity is (5.3+/-0.2)*10^45 erg/s. The probabilities of finding a cluster of this mass within the volume of the discovery X-ray survey are 8*10^{-5} for Omega_M=1 and 0.64 for Omega_M=0.3, making Omega_M=1 highly unlikely. The entropy profile suggests that entropy evolution is being observed. The metal abundance (of Z=0.33{+0.14}{-0.10} Z_solar), gas mass fraction, and gas distribution are consistent with those of local clusters; thus the bulk of the metals were in place by z=0.89.Comment: 13 pages, 8 figures. Accepted for publication in MNRA

    Common nonlinear features and spin-orbit coupling effects in the Zeeman splitting of novel wurtzite materials

    Get PDF
    The response of semiconductor materials to external magnetic fields is a reliable approach to probe intrinsic electronic and spin-dependent properties. In this study, we investigate the common Zeeman splitting features of novel wurtzite materials, namely, InP, InAs, and GaAs. We present values for the effective g factors of different energy bands and show that spin-orbit coupling effects, responsible for the spin splittings, also have noticeable contributions to the g factors. Within the Landau level picture, we show that the nonlinear Zeeman splitting recently explained in magnetophotoluminescence experiments for InP nanowires by D. Tedeschi et al. [Phys. Rev. B 99, 161204 (2019)] is also present in InAs, GaAs, and even the conventional GaN. Such nonlinear features stem from the peculiar coupling of the A and B valence bands as a consequence of the interplay between the wurtzite crystal symmetry and the breaking of time-reversal symmetry by the external magnetic field. Moreover, we develop an analytical model to describe the experimental nonlinear Zeeman splitting and apply it to InP and GaAs data. Extrapolating our fitted results, we found that the Zeeman splitting of InP reaches a maximum value, which is a prediction that could be probed at higher magnetic fields

    Hydrodynamic simulations of merging clusters of galaxies

    Get PDF
    We present the results of high-resolution AP3M+SPH simulations of merging clusters of galaxies. We find that the compression and shocking of the core gas during a merger can lead to large increases in bolometric X-ray luminosities and emission-weighted temperatures of clusters. Cooling flows are completely disrupted during equal-mass mergers, with the mass deposition rate dropping to zero as the cores of the clusters collide. The large increase in the cooling time of the core gas strongly suggests that cooling flows will not recover from such a merger within a Hubble time. Mergers with subclumps having one eighth of the mass of the main cluster are also found to disrupt a cooling flow if the merger is head-on. However, in this case the entropy injected into the core gas is rapidly radiated away and the cooling flow restarts within a few Gyr of the merger. Mergers in which the subcluster has an impact parameter of 500 kpc do not disrupt the cooling flow, although the mass deposition rate is reduced by ∼30 per cent. Finally, we find that equal mass, off-centre mergers can effectively mix gas in the cores of clusters, while head on mergers lead to very little mixing. Gas stripped from the outer layers of subclumps results in parts of the outer layers of the main cluster being well mixed, although they have little effect on the gas in the core of the cluster. None of the mergers examined here resulted in the intracluster medium being well mixed globally
    corecore