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The interplay between spin transport and thermoelectricity offers several novel ways of generating,
manipulating, and detecting nonequilibrium spin in a wide range of materials. Here, we formulate a
phenomenological model in the spirit of the standard model of electrical spin injection to describe the electronic
mechanism coupling charge, spin, and heat transport and employ the model to analyze several different geometries
containing ferromagnetic (F) and nonmagnetic (N) regions: F, F/N, and F/N/F junctions, which are subject to
thermal gradients. We present analytical formulas for the spin-accumulation and spin-current profiles in those
junctions that are valid for both tunnel and transparent (as well as intermediate) contacts. For F/N junctions, we
calculate the thermal spin-injection efficiency and the spin-accumulation-induced nonequilibrium thermopower.
We find conditions for countering thermal spin effects in the N region with electrical spin injection. This
compensating effect should be particularly useful for distinguishing electronic from other mechanisms of
spin injection by thermal gradients. For F/N/F junctions, we analyze the differences in the nonequilibrium
thermopower (and chemical potentials) for parallel and antiparallel orientations of the F magnetizations, as
evidence and a quantitative measure of the spin accumulation in N. Furthermore, we study the Peltier and spin
Peltier effects in F/N and F/N/F junctions and present analytical formulas for the heat evolution at the interfaces

of isothermal junctions.
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I. INTRODUCTION

The central theme in spintronics is the generation and con-
trol of nonequilibrium electron spin in solids.'~* Until recently,
the spin generation has been done by optical, magnetic, and,
most important for device prospects, electrical means.>> In a
typical device, spin-polarized electrons from a ferromagnetic
conductor are driven by electromagnetic force to a nonmag-
netic conductor. There the spin accumulates, with the steady
state facilitated by spin relaxation. (There are also novel
ways to generate pure spin currents, without accompanying
charge currents.®!) The concept of electrical spin injection
was first proposed by Aronov,!' and experimentally confirmed
by Johnson and Silsbee,'> who also formulated the problem
from a nonequilibrium thermodynamics and drift-diffusion
view.!>!* An equivalent description in terms of quasichemical
potentials, convenient to treat discrete (junction) systems, was
formulated systematically by Rashba.'> This model, which
we call the standard model of spin injection, is widely
used to describe electrical spin injection into metals and
semiconductors'>° and can also be extended to ac currents. '

Until recently, one particularly interesting possibility of
generating spin, by spin-heat coupling, has been largely
neglected. The generation of nonequilibrium spin by heat
currents and the opposite process of generating heat currents by
spin accumulation has already been proposed by Johnson and
Silsbee'® based on nonequilibrium thermodynamics concepts
(see also Ref. 17). The spin-heat coupling is now the central
point of spin caloritronics (or spin calorics).'®!” Although
the theory of thermoelectricity has long been known,*?! only
experimental improvements over the past few years have made
its application in the context of generating and transporting
spin appear possible.?>%0

At the heart of spin caloritronics is the spin Seebeck
effect (see Fig. 1).27~2° The conventional Seebeck effect, also
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called thermopower,”” describes the generation of an electric
voltage if a thermal gradient is applied to a conductor. In
analogy, the spin Seebeck effect describes the generation of
spin accumulation in ferromagnets by thermal gradients. The
effect was originally observed in the ferromagnetic conductor
NiFe,?”-* where indication of spin accumulation over large
length scales (millimeters), independent of the spin-relaxation
scales in the ferromagnet, was found. Since it also exists at
room temperature, the spin Seebeck phenomenon may have
some technological applications.?!

However, the spin Seebeck effect is not limited to metals.
It has also been observed in ferromagnetic insulators® as well
as in the ferromagnetic semiconductor (Ga,Mn)As.?> This
suggests that the spin Seebeck effect does not need to be
connected with charge flow. In (Ga,Mn)As, the sample was
even cut preventing charge redistribution over the whole slab;
the spin Seebeck signals were unaffected and in both cases,
of compact and disconnected samples, the Pt stripes pick up
the same inverse spin Hall signals.>>** The evidence points
to a mechanism of magnon-assisted spin pumping from the
ferromagnet into the Pt, producing spin currents there. A theory
for this spin pumping from a ferromagnetic insulator was
suggested in Ref. 35. It was predicted that phonons can play an
important role in the spin Seebeck effect, leading to its huge
enhancement.’® Recent measurements of the spin Seebeck
effect in multiple (Ga,Mn)As samples also suggest that the
spin Seebeck effect can be driven by phonons.’’ In order
to explain the main trends of the observed temperature and
spatial dependence of the spin Seebeck effect in (Ga,Mn)As, a
phenomenological model involving phonon-magnon coupling
was introduced.?’

In addition to the Seebeck effect, there is also another
thermoelectric effect, the Peltier effect, which refers to the
evolution of heat across an isothermal junction of two different
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FIG. 1. (Color online) Schematic illustrations of the (a) Seebeck
and (b) spin Seebeck effects. Here, AT is the temperature difference,
V the voltage, j the charge current, j; the spin current, and vertical
arrows denote up and down spin projections.

'(T)‘

materials due to an electric current being passed through the
junction.??! Recently, a spin caloritronics analog to the Peltier
effect, termed spin Peltier effect, has been predicted and exper-
imentally observed in a permalloy (NiggFe,)(PY)/copper/PY
valve stack.’®3° The spin Peltier effect describes the heating or
cooling at the interface between a ferromagnetic and normal
conductor driven by a spin current (see Fig. 2).

Another fascinating discovery is that of the thermally driven
spin injection from a ferromagnet to a normal conductor.*’
In this experiment, thermal currents in permalloy drive spin
accumulation into copper, detected in a nonlocal geometry.>>
The structures were of submicron sizes, so it is plausible
that the effects are electronic in nature, although magnon
contributions to such thermal spin-injection setups could also
be sizable. A practical model was introduced in Refs. 38 and 41
to find, with a finite elements numerical scheme, the profiles
of temperature and spin accumulation in the experimental
devices. Recently, yet another form of thermal spin flow,

(a) Peltier

Jg1 F Jq2 Jg2

(b) Spin Peltier ;
qF

qu =0 qu

FIG. 2. (Color online) Schematic illustrations of the (a) Peltier
and (b) spin Peltier effects, where j and j; denote the charge and spin
currents. The thermal current j, is different in each region. Small
vertical arrows denote up and down spin projections.
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coined Seebeck spin tunneling, has been demonstrated in
ferromagnet-oxide-silicon tunnel junctions.*> Here, a temper-
ature difference between the ferromagnet and silicon causes
a transfer of spin angular momentum across the interface
between both materials.

An important goal for both theory and experiment of
the spin Seebeck phenomena is to decipher the roles of the
electronic and nonelectronic contributions. It is yet unclear
under which circumstances the electronic contribution may
dominate. It seems likely that when going to smaller, sub-
micron structures in which the spin accumulation will be
a bulk effect, the spin phenomena carried by electrons will
become important. Similarly, in materials with strong magnon
damping, such that magnons are in local equilibrium with
the given temperature profile, electrons may ultimately carry
the entire spin Seebeck effect. It is thus important to set the
benchmarks for the electronic contributions in useful device
geometries. This is what this paper does: we explore the role
of the electronic contributions in F/N and F/N/F junctions,
which are subjected to thermal gradients, and derive useful
analytical formulas for various spin-injection efficiencies.

Our purpose is twofold: First, we use the drift-diffusion
framework of the standard model of spin injection presented
in Refs. 1, 2, and 5 and generalize it to include electronic
heat transport and thereby derive a theory for charge, spin,
and heat transport in electronic materials. Second, we apply
this theory to describe F/N and F/N/F junctions placed in
thermal gradients. While the Peltier and Seebeck effects in
such structures have been investigated in Ref. 43, we focus
here on the description of thermal spin injection and the
investigation of the corresponding spin accumulation. We also
look at the spin injection in the presence of both electric
and thermal currents, and find the conditions under which the
resulting spin current in N vanishes. In all junctions studied,
we present, as general as possible, analytical formulas for the
spin-accumulation and spin-current profiles, as well as for the
thermal spin-injection efficiency and the nonequilibrium (spin-
accumulation-driven) spin Seebeck coefficient. Moreover, we
look at several different setups of the Peltier and spin Peltier
effects and calculate their respective contributions to the
heating or cooling at the interfaces in F/N and F/N/F
junctions.

The paper is organized as follows: Following the intro-
duction of the formalism and the basic equations in Sec. II,
the electronic contribution to the spin Seebeck effect in a
ferromagnetic metal is discussed within the framework of this
formalism in Sec. III, while Secs. IV and V are devoted to the
discussion of thermal spin injection and related thermoelectric
effects in F/N and F/N/F junctions, respectively. A short
summary concludes the paper.

II. SPIN-POLARIZED TRANSPORT IN THE PRESENCE
OF THERMAL FLUCTUATIONS: CONCEPTS AND
DEFINITIONS

A. Spin-unpolarized transport equations

As afirst step, we will restrict ourselves to the description of
transport in an electronic system that consists only of electrons
of one species, that is, either of spin-up or spin-down electrons
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(denoted by the subscript A =1 or | throughout this paper).
The derivation presented here is a textbook matter’* and is
given here to introduce the terminology needed for the spin-
polarized case and to match the concepts from the standard
spin-injection model of Ref. 2.

If this system is in thermodynamic equilibrium, the tem-
perature 7 and the chemical potential n(7") are uniform
throughout the system. Knowing the chemical potential (the
chemical potential is not only a function of the temperature
but also of the total electron density), one can calculate the
density of the respective electron species under consideration
from

ey

—n(T
n® [n(T).T] = / de g, (8) fo [8—””} ,

kgT

where k denotes the Boltzmann constant, g, (¢) the electronic
density of states at the energy ¢, and fj the equilibrium Fermi-
Dirac distribution function. Similarly, the equilibrium energy
density is given by

(@)

e ()T = f de £g,. () fo [8_—’7(T)} :

kpT

The system is not in equilibrium if an electric field —V ¢(x)
is present in its bulk. In this case, the chemical potential
becomes space dependent. This is taken into account by
replacing n(7T') with n(T) + e, (x), where the quasichemical
potential w,(x) now contains the space dependence. {In
general, u; also depends on the temperature 7. If we
consider different, space-dependent local equilibrium tem-
peratures T(x), the gradient of the quasichemical potential
reads as Vyu, [x,T(x)] = % + %‘%VT. Since we are only
interested in first-order effects, the temperature dependence
of w;, which leads to a second-order contribution [in the
nonequilibrium quantities u; [x,7T (x)], ¢(x), and VT (x)], can
be omitted.} Since we want to incorporate the effects of
thermal gradients into our formalism, we furthermore allow
for different local equilibrium temperatures by replacing the
constant temperature 7 by a space-dependent temperature
T(x). As a consequence, there is an additional position
dependence of the chemical potential due to the temperature,
that is, n(T) has to be replaced by n [T (x)]. Thus, the total
chemical potential is given by n [T (x)] + eu,(x). Assuming
the local nonequilibrium distribution function to be only
energy dependent because momentum relaxation happens on
length scales much smaller compared to the variation of the
electric potential ¢(x), one obtains

file,x) = fo {8 —n[T(x)] —eps(x) — e@(x)} B

kpT(x)

Therefore, the nonequilibrium electron and energy densities
read as

n(x) = /degx(S)fx(E,X)
= n) T+ e () + ep(x), T(X)}, @)
ex(x) = fde £8:(€) fa(e.x)

= )T )]+ epn(x) + e9(x), T(x)}. ()
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The electrostatic field gives rise to an electric current.
This charge current consists of two parts: the drift current,
proportional to the electric field E(x) = —V¢(x) and the
diffusion current, proportional to the gradient of the local
electron density.

Since the proportionality factor of the diffusion current,
the diffusivity D, (¢), is energy dependent, it is convenient to
treat electrons with different energies separately. The spectral
diffusion current density reads as

Jpi(x,8)de = eD;(e)V [g:.(e) (e, x)] de, (6)

from which the complete diffusion current can be obtained by
integrating over the entire energy spectrum. The total charge
current for electrons of spin A is given by

Ju(6) = —0, V(x) + / de D)5, ()Y fu(e.x).,  (T)

where o; is the conductivity. By inserting Eq. (3) into Eq. (7),
using the Einstein relation [the Einstein relation is obtained by
requiring that j, =0 ifV{M 4+ u;(x)} =0and VT (x) =
0] and keeping only terms linear in the nonequilibrium
quantities u; (x) and ¢(x), we find

n[T(x)]

hx) =0V { + MA(X)} = 85.0.VT(x). (8)

Here, the conductivity is given by the Einstein relation

)
o, = & f de Dy (#)g,(6) (—%) ~ EDyeng(er) )

and the Seebeck coefficient by

S, =~ [ de Dy ()gi(e)

< 8fo) e —n[Tx)]

o e T(x)
~ —LeT(x) [—gﬁ(‘”) —Di(”)} | (10)
gi(er)  Di(er)

In both cases, the integrals are calculated to the first non-
vanishing order in the Sommerfeld expansion.”’ The Lorenz
number is £ = (72/3)(kp/e)* and g, (¢r) and D} (eF) are the
derivatives of the density of states and the diffusivity with
respect to the energy evaluated at the Fermi level ¢.

In addition to the charge current, there is a heat current
in nonequilibrium. A treatment similar to that of the charge
current above yields

T
Jor@) = S0 T()V {"[ e(x)] + m(x)}

— Lo, T(x)VT (x). (11

If the charge and heat currents are defined as in Eqs. (8) and
(11), currents j,(x) > 0 and j; 5(x) > O flow parallel to the x
direction.

At sharp contacts, the chemical potential and the temper-
ature are generally not continuous. Thus, instead of Egs. (8)
and (11), discretized versions of these equations are used. The
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charge current at the contact (C) is given by

1
jkc = Z)Lc (ZAnc + AMAC) - SACEACATC (12)

and the heat current by

1
jq)w = TSACEAC (_Anc + A//L)w) - CTE)\.CATC7 (13)
e

where An. + eAu,. and AT, denote the drops of the total
chemical potential and the temperature at the contact, respec-
tively. The (effective) contact conductance and the contact
thermopower are given by X, and S, ., respectively, while T
is the average temperature of the system.

B. Spin-polarized transport equations

We now consider spin-polarized systems, which we treat as
consisting of two subsystems, one of spin-up and one of spin-
down electrons; each subsystem is described by the equations
from Sec. ITA.

Energy as well as particles can be exchanged between
the two spin pools (by collisions and spin-flip processes,
respectively). As energy relaxation (tens of femtoseconds)
happens usually on much shorter time scales than spin
relaxation (picoseconds to nanoseconds), we assume that a
local equilibrium exists at each position x. Consequently,
both subsystems share a common local equilibrium chemical
potential n [T (x)] and temperature 7'(x). On the other hand,
the local nonequilibrium quasichemical potentials w;(x) can
be different for each spin subsystem.

From Eq. (4), we obtain

n(x) = n{ (T ()] + ey (x) + e(x), T (x)}
+nlT)] + ey (x) + ep(x), T(x)}  (14)

for the complete local electron density of the system. By
expanding the electron density up to the first order in the
local nonequilibrium quantities 14 (x), uy(x), and ¢(x), and
using the Sommerfeld expansion subsequently to calculate the
integrals that enter via Eq. (1), we can write the electron density
as

n(x) = ng + én(x). (15)

Here, we have introduced the local equilibrium electron den-
sity no = n{{n [T()],T(x)} +nf{n[T(x)],T(x)}, and the
local nonequilibrium electron density fluctuations

dn(x) = eg[u(x) + @(x)] + egs iy (x). (16)

Additionally, we have introduced the quasichemical potential
= (uy + wy)/2, the spin accumulation py = (y — py)/2,
as well as the densities of states g = g4(er) + g, (eF) and
8s = g1(er) — g, (er) at the Fermi level. We further assume
that there is no accumulation of charge inside the conductor
under bias ¢(x). This assumption of local charge neutrality is
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valid for metals and highly doped semiconductors and requires
n(x) = no.* Hence, Eq. (15) yields the condition

dn(x) = 0. a7
The local spin density

s(x) = n{{nIT ()] + epy(x) + e(x).T (x)}
—n) [T )] + epy(x) + ep(x),T(x)}  (18)

can be evaluated analogously to the local electron density:
First, Eq. (18) is expanded in the local nonequilibrium
quantities up to the first order. The resulting integrals are
performed employing the Sommerfeld expansion up to the
first nonvanishing order and, as a final step, the charge
neutrality condition, Eq. (17), is used to simplify the result.
This procedure yields

s(x) = so(x) + 8s(x), (19)

with the local equilibrium spin density so(x) =
n?{n [T(x)],T(x)} — n(i{n [T(x)],T(x)} and the Ilocal
nonequilibrium spin density
2_ 2
3s(x) = eg Es s (). (20)
8

It is important to note that so(x) is determined by the local
temperature 7' (x) as a result of the rapid energy relaxation as
compared to the spin relaxation.

The same procedure can be applied to calculate the energy
density from Eq. (5):

e(x) = AT ()] + epey(x) + ep(x), T(x)}
+ eV T )] + ey (x) + ep(x), T(x)}, (1)

which can be split in a local equilibrium energy density
eo(x) = e {n[T()],T(x)} + €} {n[T(x)],T(x)}, and local
energy density fluctuations §e(x), that is,

e(x) = ep(x) + e(x). (22)

By calculating de(x) in the same way as és(x), we find that
de(x) =0, (23)

consistent with our assumption of fast energy relaxation to the
local quasiequilibrium.

Next, we consider the currents flowing through the system.
Since our goal is to calculate the quasichemical and spin-
quasichemical potentials, as well as the temperature profile,
we not only derive transport equations based on Egs. (8) and
(11), but also continuity equations for each of the currents
considered, that is, charge, spin, and heat currents.

The charge current consists of the electric currents carried
by spin-up and spin-down electrons

J) = jp(x) + jy(x)

=0V {@ + u(x)} + 0o, Viug(x)

- %(SG + 8500 VT (x), (24)

where the conductivities are given by o = 04 + 0| and o, =
o4 — oy, and the Seebeck coefficients by S = S + §, and
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Sy =S4 — §,. In nonmagnetic materials, oy, = 0 and S, = 0.
In our model, we consider a steady state, which requires

Vj(x) =0, (25)

that is, a uniform electric current j(x) = j.
The spin current is the difference between the electric
currents of spin-up and -down electrons

n[T(x)]
e

Js(x) = jr(x)— j,(x)=0,V { +M(x)} +oVu(x)

- % (S0 + So,) VT (x). (26)

As we have seen, the spin density s(x) deviates from its
local equilibrium value so(x). Unlike charge, spin is not
conserved and spin-relaxation processes lead to a decrease
of the local nonequilibrium spin to sop(x). Therefore, the
continuity equation for the spin current is given by

Vi =, @7

s

where t; is the spin-relaxation time. We will not distinguish
between different spin-relaxation mechanisms in our model.
Instead, we treat 7 as an effective spin-relaxation time, which
incorporates all the different spin-relaxation mechanisms. We
stress that spin-relaxation processes bring the nonequilibrium
spin s(x) to the (quasi)equilibrium value sy(x), defined locally
by T(x). Here, we deviate from the treatment given in
Ref. 30.
The heat current

jq(x) = jq,?(x) + jq,i(x)

_ T(So + SSGS)V { T (x)] + M(x)}
2 e
$ TETEI0G )~ LT0VT) @8)

is the heat carried through the system by the electrons of both
spin species. Closely related is the energy current

n[T(x)]
e

Ju(x) = jg(x) — { + M(x)} J = s js(x). (29)

By inserting Eqgs. (24), (26), and (28) and using that the
divergence of the charge current vanishes in a steady state,
that is, Eq. (25), we find

, T(x) , . .
Viju(x) = TV [Sj + Ssjs ()] — s (X)V js(x)

2 2
v/ [EaT(x) (1 5SS 42255513” )VT(x):|

@) i)
O’¢ oy ’

(30)

where P, = o;/0 is the conductivity spin polarization. The
above formula contains Thomson (first term) as well as Joule
heating (final two terms). Equation (23) can be used to
formulate the continuity equation for the energy current by
enforcing the energy conservation

Vju(x) = 0. 3D
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Thus, if j is treated as an external parameter, the transport
equation for the charge current [Eq. (24)], as well as the trans-
port and continuity equations for the spin and heat
currents [Eqs. (26)—(28) and (31)], form a complete set
of inhomogeneous differential equations to determine the
quasichemical potentials p(x) and u(x), the temperature
profile T'(x), as well as the currents j(x) and j,(x). The
solution to this set of differential equations, that couple charge,
spin, and heat transport, will be discussed in the next section.

C. Spin-diffusion equation and its general solution

In the following, the general solutions to the equations
introduced in Sec. II B will be discussed. Inserting Eq. (26) into
the spin-current continuity equation (27), and using Eqgs. (20),
(24), and (25) generalizes the standard***’ spin-diffusion
equation
ps(x) 1

S+ 5 VIS VT (32)

V2 ug(x) =

Here, we have introduced the spin-diffusion length'-

=yngo(l- P)/[e(e - )] ()

As we are primarily interested in linear effects, we neglect the
position dependence of the spin Seebeck coefficient S, which
enters via T (x), and arrive at a simplified diffusion equation
for the spin accumulation:

Ms(x) S,

+ Z2V2T(x), (34)

V2 us(x) =
Hs(x) 2 >

where S; is evaluated at the mean temperature 7. In order to
solve this equation, we need the temperature profile, which
can be determined from Eq. (31). If only first-order effects are
taken into account, Eq. (31) gives the differential equation

28,(1 = P2)

a

V2T (x) =
= Gr—s—si-255,7,

) ms(x),  (35)

deforming the typically linear profile of 7'(x). The solution to
the coupled differential Eqgs. (34) and (35) reads as

X X
ws(x) = Aexp (7) + Bexp <_X_> , 36)

s s

28,(1 - P?)

T AL (St S.Py)
with the modified spin-diffusion length

T(x)

sus(x) +Cx + D,  (37)

AL — 82 — §2 — 288, P,
= Ay (38)

X =
‘ 4L — (S + S;P,)?
Integration of Eq. (24) yields the total chemical potential

nI70) StSPs
e 2

+ u(x) = éx — Popug(x) + T(x)+ E.

(39)

The integration constants A, B, C, D, and E have to be
determined by including the respective boundary conditions
of the system under consideration.

085208-5



SCHARF, MATOS-ABIAGUE, ZUTIC, AND FABIAN
If S, < /L (see the next section), it is often possible to
assume a uniform temperature gradient, that is,
T(x)=Cx + D. (40)

Then, Eq. (34) reduces to the standard spin-diffusion equation
and its solution is given by

ws(x) = Aexp X + Bexp _x , 41
As As
while integration of Eq. (24) yields the total chemical potential
T(x i S+ SPs
w + o) = (é n Tc> X — P, j(x)+ E.

(42)

As before, A, B, C, D, and E are integration constants to
be specified by boundary conditions. However, assuming a
constant temperature gradient in ferromagnets is not consistent
with Eq. (31) and therefore this approximation can not be used
in situations that depend crucially on the heat-current profile
(see next section).

The spin and heat currents can be obtained by inserting the
solutions found above into Egs. (26) and (28).

D. Contact properties

To find the specific solution for a system consisting of
different materials, such as a F/N junction, we have to know
the behavior of the currents at the interfaces between two
different materials. The currents at a contact can be obtained
by applying Egs. (12) and (13), giving

. . . 1
Je = Jte T Jie = 2 (zAnc + A,uc) + Xse Aphge

1
- E(Sczc + Ssczsc)ATCa
(43)

. . . 1
Jse = Jre = Jie = Zse (;Anc + AMC) + XA
1
- _(Ssczc + Sc ESC)ATCa (44)
2 T 1
jqc = jCITC + jqic = E(Sczc + Sse Xset) (;Ar]c + AMC)

T
+ E(Ssczc + Se X )Apge — LTE AT, (45)

where AT, is the temperature drop at the contact, and An,,
A, and Apg, are the drops of the local equilibrium chemical,
quasichemical, and spin-quasichemical potentials. Moreover,
the contact conductances X, = Xy, + X and X = Xy, —
3. as well as the contact thermopowers S, = Sy + S and
Ssc = Sye — Sy have been introduced. Equations (43)—(45)
will be used in Secs. IV and V to fix the integration constants
of the general solutions (40)—(42) and (36)-(42) found in
Sec. IIC.

III. FERROMAGNET PLACED IN A THERMAL
GRADIENT

As a first example, we consider a ferromagnetic metal F
of length L (—L/2 < x < L/2) subject to a thermal gradient

PHYSICAL REVIEW B 85, 085208 (2012)

AT

X

[ L 1
] 1 ||
-L/2 0 L/2
FIG. 3. (Color online) A schematic illustration of a ferromagnet

metal placed in a thermal gradient, which leads to the generation of
a spin current.

=
>

under open-circuit conditions, that is, j = 0. The gradient is
applied by creating a temperature difference AT =7, — T
between both ends of the metal, which are held at temperatures
T and T>, respectively, as shown in Fig. 3.

At the ends of the ferromagnet, we impose the boundary
conditions T(—L/2) = T;, T(L/2) = T, and set j(£L/2) =
0. Since we consider only first-order effects, the Seebeck
coefficients are assumed to be constant over the length of
the ferromagnet and are evaluated at the mean temperature
T = (T) + T)/2. Using the above boundary conditions and
Egs. (36)—-(39) yields the spin accumulation

Sy ~ AT sinh(x/Ay) 4L — (S + S, P,)?
powy = 22 5, AL Sih/hy) S5 Fe)” g
2 L cosh(L/2%,) N(L)
and the spin current
) S, Ay AT cosh(x/Xy)
== = — |1 - ————
2 R L cosh(L /2A;)
4L — §? — §2 — 2SS, P,
X s LA 47)
N(L)
where R = J;/[o(1 — P?)] and
N(L) = 4L — §* — §? — 285, P,
tanh(L/ZXS)
s (1 - pH) ——~ 48
+5:( ?) L/2% (48)

If a constant temperature gradient is assumed and the
reduced model given by Egs. (40)—(42) is used, the spin
accumulation reads as

AT sinh(x/Ag)

Ss
Ms(x) = > As T m, (49)

and the spin current

Sy Ay AT
= S A AT
Js(x) > R L [

cosh(x/Ay)

~ cosh(L /%)] G0

where R = A;/[c(1 — Pa2)] is the effective resistance of the
ferromagnet.
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FIG. 4. (Color online) Profiles of the (a) spin accumulation,
(b) the total chemical potential, and (c) the spin current for Nig; Fe,o
at T =300 K with L =100 nm and AT = 100 mK. The solid
lines show the results obtained if a constant temperature gradient
VT = AT/Lg is assumed, while the dashed lines (fully overlapping
with the solid ones) show the results obtained if the temperature
profile is determined by V j, = 0.

For metals S, <« VL and Egs. (46) and (47) reduce to
Egs. (49) and (50), that is, the assumption of a uniform
temperature gradient VI = AT/L is justified. Only at the
boundaries of the sample do both temperature profiles differ
(insignificantly) as there is a small exponential decay within
the spin-diffusion length A, ~ A, if the full model is used
compared to a perfectly linear temperature profile of the
reduced model.

Equations (49) and (50) from the reduced model correspond
to the profiles of the spin accumulation and spin current
found in Ref. 48, where a Boltzmann equation approach
has been used to describe thermoelectric spin diffusion in a
ferromagnetic metal.

In Fig. 4, the results calculated for a model Nig Fejg
film with realistic parameters®® [A, =5 nm, o =2.9 x
106 I/Qm, SQ = (STGT + Siai)/(GT + Ul) =-2.0x 10_5
V/K with P, =0.7, and Ps = (54 — §,)/(S3 +S,) =3.0]
at a mean temperature 7 =300 K are displayed. The
length of the sample is L =100 nm and the temper-
ature difference is AT =100 mK. As can be seen in
Fig. 4, the agreement between both solutions is very
good.

Figure 4(b) shows an almost linear drop of the total
chemical potential between both ends of the ferromagnet.
Only at the contacts is this linear drop superimposed by an
exponential decay. It is also at the contacts that nonequilibrium
spin accumulates and decays within the spin-diffusion length
[see Figs. 4(a) and 4(c)]. Thus, only near the contacts is there
an electronic contribution to the spin voltage and our electronic
model does not reproduce the linear inverse spin Hall voltage
observed in this system,”’ which suggests that a mechanism
different from electronic spin diffusion is responsible for
the detected spin Hall voltage.*® Also, the “entropic” terms
in the spin accumulation as introduced in Ref. 30, which
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would lead to a uniform decay of the spin accumulation
across the whole sample, not just at the distances of the
spin-diffusion lengths off of the edges, do not arise in our
theory.

IV. F/N JUNCTIONS

A. F/N junctions placed in thermal gradients

In this section, we investigate an open (j = 0) F/N junction
under a thermal gradient. The F/N junction consists of a
ferromagnet and a nonmagnetic conductor, denoted by the
additional subscripts F and N in the quantities defined in
the previous sections. The extension of the ferromagnet is
given by —Lg < x < 0, whereas the nonmagnetic conductor
is described by values 0 < x < Ly. We also assume that the
properties of the contact region C, located at x = 0, are known.
By coupling the F and N regions to reservoirs with different
temperatures 7, and T}, respectively, a temperature gradient
is created across the junction. The model investigated in the
following is summarized in Fig. 5.

As in the previous section, we can assume uniform (but
for each region different) temperature gradients V7 and V Ty
and use the simplified spin-diffusion equation (34) and the cor-
responding solutions (40)—(42) to describe the total chemical
potential, the spin accumulation, and the temperature profile
in each region separately. The integration constants are solved
invoking the following boundary conditions: 7(—Lg) = Tj,
T(Lx) =T,, and ji(—Lg) = js(Ln) = 0. Furthermore, we
use Egs. (43)-(45) and assume, as in the standard spin-
injection model,” that the charge, spin, and heat currents are
continuous at the interface, giving us five additional equations
for the integration constants. From this set of equations, the
integration constants, including the gradients V7% and V Ty,
can be obtained. Depending on the choice of the direction of
the gradient, one finds that spin is either injected from the F
region into the N region or extracted from the N region by a
pure spin current, that is, a spin current without accompanying
charge current.

In order to measure the efficiency of the thermal spin
injection [ j;(0) < 0] and extraction [ j;(0) > O] at the interface,
we calculate the thermal spin-injection efficiency k = js(x =
0)/VTn, which corresponds to a spin thermal conductivity.

X

1 N
—
L N
FIG. 5. (Color online) A schematic illustration of a F/N junction
placed in a thermal gradient.
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Our model gives

K =

oy tanh(Ln/An)]{ tanh(Lg/Ap)SseRe(1 — P2) + [1 — cosh™ ' (Lp/Ap)1SskRe(1 — PX) }
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; 619}

2 R tanh(LN/AsN) + R tanh(Ln/AsN) tanh(Lg/Agg) + Ry tanh(Lg/Agp)

with the effective resistances for the F, N, and contact regions

RN = )»SN/O’N, (52)
RF = )\-sF/[UF(l - Pc?F)]’ (53)
R.=1/[=.( - P})]. (54)

and the contact conductance spin polarization
Py = Esc‘/zc- (55)

Equation (51) has been derived in the limit of S)r/n/c < VL,
in which the temperature gradients are given by

vi = AL (56)
oFREN
v = AT (57)
oNREN
where
RFNzﬁ‘l‘i—Fﬂ. (58)

o X, ON

If the sample sizes are large, that is, if Lg >> A;p and Ly >
AsN, as is usually the case (but not in Figs. 6 and 7 where
Ln < Agn), the situation at the interface is not sensitive to the
boundary conditions far away from the interface and Eq. (51)
reduces to

_on SscRe(1 = P§) + SseRp(1 = Ply)

K =
2 Re 4+ R. + Rx
ON
= —7<SX(1 = P2))ps (59)
2
: F
N N
1 [ e —r—r—r—r—r—
— | /I O; 7(b) W
'T> ,/’ = ,/,
S04 =1
'—‘m // ) L
= 5-2 L1 L
! 40 20 0 20 40
-1, X [nm]
] — R~10"" Qm’
--R~10"" Qm’
-2

\ \ \ \ \ \ \
-50 -40 -30 -20 -10 0 10 20 30 40 50

X [nm]

FIG. 6. (Color online) Profiles of the (a) spin accumulation and
the (b) total chemical potential for a Nig,Fe;9/Cu junction at 7 =
300 K with Lg = Ly = 50 nm and AT = —100 mK. The solid lines
show the results for R, = 1 x 107'® Qm?, the dashed lines for R, =
1 x 107 Qm?.

where (- - - ) g denotes an average over the effective resistances.
The above expressions for the spin-injection efficiency and the
gradients, Egs. (51)—(59), could have also been obtained by
using Egs. (36)—(39) to calculate the profiles and taking the
limit Syp/n/e K VL. Equation (59) is the spin-heat coupling
equivalent of the well-known formula for the electrical spin-
injection efficiency.!*

Using the spin-injection efficiency equation (51) [or
Eq. (59) for large devices], the profiles of the spin current and
accumulation in the N region (0 < x < Ly) can be written
compactly as

sinh[(x — Ln)/AsN]

Js(x) = =« VI sinh(Ln/AN) 0

and
cosh[(x — Ln)/AsN]

ts(x) = —Rni VIN Snh(In /o) (61)
which reduce to
Js(x) =k VIN exp(—x/AsN) (62)
and
ts(x) = —Rni VTN exp (—x/AN) (63)

for Ly > AN In particular, at the contact, the spin accumu-
lation in the nonmagnetic material can be calculated as

145(0%) = — Rk V Ty coth (Ln/2AsN) - (64)

Equation (51) also makes it clear that whether there is spin
injection or extraction depends not only on the direction of the
temperature gradient, but also on the specific materials chosen.

vy | n | n " | L 1
—-4 40 20 0 20 40
X [nm]
-5 — R~10"" Qm’
1 - R=10"" Qm’

-6 I S T
-50 -40 -30 -20 -10 O 10 20 30 40 50
X [nm]

FIG. 7. (Color online) Profiles of the (a) spin current and the
(b) heat current for a Nig;Fe q/Cu junction at 7 = 300 K with Lg =
Ly =50 nm and AT = —100 mK. The solid lines show the results
for R, = 1 x 107! Qm?, the dashed lines for R, = 1 x 10~'* Qm?.
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Another quantity of interest is the total drop of the chemical
potential across the F/N junction:

A(m/e+ ) = [n(T2) — n(T)l/e + p(Ln) — p(—Lg), (65)

because, in analogy to the calculation of the total resistance of
the F/N junction in the case of the electrical spin injection,’
it allows us to define the total Seebeck coefficient S of the
device, which can be separated into an equilibrium and a
nonequilibrium contribution:

A(m/e+ ) = SAT = (Sp + 6S)AT. (66)
Here,

(Se + S Por) 55 + (Se + Ssc Pe) g + Sn g

= 67
0 R (67)

denotes the Seebeck coefficient of the F/N junction in the
absence of spin accumulation, whereas

Porlps(—Lr) — pus(07)] + P [p5(07) — ps(01)]
AT

88 =

(68)

is the nonequilibrium contribution to the Seebeck coefficient
due to spin accumulation. If the extensions of the F/N
junction are much larger than the spin-diffusion lengths, the
nonequilibrium Seebeck coefficient can be expressed as

SspAse(Py —2PoF) + k[(Ps —Pyr)Rr+Ps RN

58S = 205 N ) 69
e (69)

For illustration, the profiles of the total chemical potential
and the spin accumulation are displayed in Fig. 6 for a junction
consisting of Nig;Fejg (see Sec. III for the corresponding
parameters) and Cu (Asny = 350 nm, ox = 5.88 x 107 1/Q2m,
Sy = 1.84 x 1076 V/K) with a temperature difference AT =
T, — Ty = —100 mK between both ends of the junction and the
mean temperature 7 = 300 K.3%404° Figure 7 shows the spin
and heat currents for the same system. In Figs. 6 and 7, we have
chosen R, =1 x 1071° Qm? and R, =1 x 1071* Qm?, as
wellas Py, = 0.5, S. = —1.0 x 107° V/K, and S,. = 0.5S,.%
There is a drop of the total chemical potential across the
junction [see Fig. 6(b)]. For the chosen parameters, spin
is injected from the F region into the N region, where
nonequilibrium spin accumulates at the F/N interface and
decays within the spin-diffusion length [see Figs. 6(a) and
7(a) where Ly < AgN]. By applying the temperature difference
AT into the opposite direction, that is, by choosing 7} < T,
the situation reverses and spin would be extracted from the N
region. Figure 6(a) also illustrates that the spin accumulation
in the N region decreases with increasing contact resistance.
The heat current flows from the hot to the cold end of the
junction [ j,(x) > 0], as can be seen in Fig. 7(b). Furthermore,
one can observe that in the F region, the heat current is not
perfectly constant and decreases at x = — L as well as at the
contact (this is due to the assumption of constant temperature
gradients and would not be the case if the full model was used),
while in the N region, the heat current remains constant.

We now discuss two important cases: transparent and
tunnel contacts in large F/N junctions where Lg > Az and

PHYSICAL REVIEW B 85, 085208 (2012)

Lx > AgN. For transparent contacts R. < Rg,RN and the
spin-injection efficiency reduces to

_ _ON SseRe(1 — P2;) a0

2 Re+ Ry

Thermal electronic spin injection from a ferromagnetic
metal to a semiconductor, that is, the case of Rn > Rp,
would suffer from the same conductivity/resistance mismatch
problem’!33%1 a5 the usual electrical spin injection does. The
nonequilibrium Seebeck coefficient can then be written as

SspAsE Py R
- FAsELoF <1+—N). (71)
20p(Ly/or + Ln/onN) Rr + Ry

In this case, « and &S are restricted only by the individual
effective resistances Rg and Ry of the F and N regions. More-
over, the spin accumulation p, is continuous at transparent
contacts, that is, u;(0%) = uy(07) and Eq. (64) yields the
expression found in Ref. 40 for w,(0)/V T [here, we use that
VTy = (or/on)VTF].

Tunnel contacts, on the other hand, have very large effective
resistances R, > Rp, Ry for which Egs. (59) and (69) reduce
to

8§ =

K = —%N Sie(1— P2) (72)
and
Sphe(Pg—2Pyp) | Sse(1=P2)[Por Re— Ps(Re+Ry)]
SS — 261: + 2 (73)
Ren

The thermal spin injection efficiency for the tunnel junction is
determined by the spin-polarization properties of the contact,
and the conductivity mismatch issue does not arise in this case.
A similar result has also been obtained recently in Ref. 53.

B. Interplay between thermal gradients and simultaneous
charge currents

Another interesting effect is the interplay between a thermal
gradient across the F/N junction and a simultaneous charge
current (see Fig. 8). To analyze this process, we take Egs. (40)—
(42), this time with a finite charge current j, and replace
the boundary condition for the spin current at x = —Lp by
Js(—Lg) = Pyrj while leaving the boundary conditions for the
temperature unchanged and also taking j;(Ln) = O as before.

X

1 ~

—>
L N
FIG. 8. (Color online) A schematic illustration of a F/N junction

placed in a thermal gradient with a charge current being simultane-
ously driven through the junction.
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FIG. 9. (Color online) Profiles of the (a) spin accumulation
and the (b) total chemical potential for a Nig;Fe q/Cu junction at
T =300 K with Lg = Ly =50 nm and AT = —100 mK if an
electric current compensates the spin accumulation due to the thermal
gradient. The solid lines show the results for R, = 1 x 107'® Qm?,
the dashed lines for R, = 1 x 107! Qm>.

By choosing the charge current j = j.om appropriately, the
effects of the charge current and the thermal gradient, each
by itself applicable for injecting spin into the N region or
extracting spin from it, can cancel each other out. As a result,
we find that for Lg > A, a charge current

Re(1 — P%) Sk + Ro(1 — P3)S¢
2RFN(RFPO'F + RL'PE)

extracts (injects) the spin injected (extracted) through a given
temperature difference AT with no net spin current in the N
region.

This effect is shown in Figs. 9 and 10 for the Nig;Fe;9/Cu
junction investigated in this section (see above). We find
that a current density of jeom = 7.6 X 107 A/m? (eom =
1.9 x 107 A/m?) is needed to compensate a temperature
difference of AT = —100 mK if R, = 1 x 107! Qm? (R, =
1 x 107" Qm?). Figures 9(a) and 10(a) show that there is
no spin accumulation and no spin current in the nonmagnetic
material under the compensating electric current condition.
The drop of the chemical potential across the F/N junction is
shown in Fig. 9(b) and the heat current flowing from the hot to
the cold end of the junction in Fig. 10(b). The spin-injection
compensation should be useful for experimental investigation
of the purely electronic contribution to the spin Seebeck
effect.

Moreover, we remark that j.,, can be used to describe
the efficiency of thermal spin injection if one investigates an
open-circuit F/N junction (j = 0) placed in a thermal gradient
as above. In this case, the spin current at the interface j;(x = 0)
is described by Egs. (51) or (59), respectively. We can then
define the ratio between the spin current at the interface and
the charge current one would have to drive through the junction
to cancel the thermal spin injection P = ji(x = 0)/jcom- For
large devices and Syp/n/e K «/Z, this ratio can be calculated
as

AT (74)

Jecom =

P = —(Fs)r, (75)
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FIG. 10. (Color online) Profiles of the (a) spin current and the
(b) heat current for a Nig;Fe;9/Cu junction at 7 = 300 K with L =
Ly =50nmand AT = —100 mK if an electric current compensates
the spin accumulation due to the thermal gradient. The solid lines
show the results for R, = 1 x 107'® Qm?, the dashed lines for R, =
1 x 107 Qm?.

which represents the negative spin-injection efficiency of the
electrical spin injection.’

C. Peltier effects in F/N junctions

As mentioned above, the spin Peltier effect describes the
heating or cooling at the interface between a ferromagnetic and
normal conductor driven by a spin current.?® In the following,
we study several different setups in which a spin current passes
through the interface of an isothermal (or nearly isothermal)
F/N junction and which therefore give rise to the spin Peltier
effect.

For every setup investigated in this section, we assume
Lk > Agngr- The first setup considered is the electrical spin
injection in a F/N junction: An electric current is driven across
an isothermal F/N junction, that is, VT = O [see Fig. 11(a)].
Since the entire junction is kept at constant temperature, the
continuity of the heat and energy current [Eq. (31)] does not

FIG. 11. (Color online) A schematic illustration of a F/N junction
in the electrical spin-injection setup, where (a) refers to an isothermal
junction and (b) to the situation where j,(x) = 0. The fact that in
(b) the temperature at one end of the junction is not given as an
external boundary condition, but has to be calculated from the model
is implied by “?”.
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apply and it is sufficient to solve just Egs. (24), (26), and (27),
that is, the formulas obtained for the electrical spin injection
can be used. The spin current at the interface is given by’

P,rRr + PsR. . ,
— = (P, . 76
Re + R, 1 Ry J = (Ps)r]J (76)

For constant temperature profiles the heat current, Eq. (28), is
not continuous at the interface and reads as

. TSe . TSy
Jo) = TFJ + TFjs(x), x<0 77)
and
. TS .
Jo@) = x>0, (78)

Therefore, the total heat produced (dissipated) per time at the
interface is given by

M = j,(07) = jy(0") =T, + T3, (79)
where
T(Sg — Sn)Jj
r, = (Sk N)J (80)
2
and
; TSSF(PO')Rj
Fjl = — 5 (81)

denote the rates of heat production (dissipation) due to the
conventional (charge) Peltier and spin Peltier effects.

If the temperature is fixed at just one end of the junction, a
temperature drop arises across the F/N junction due to the heat
evolution at the interface. In order to estimate this temperature
drop, we follow the approach used in Ref. 39 and investigate
the hypothetical situation where no heat enters or leaves the
F/N junction and no heat is generated inside the junction, that
is, jq(x) =0 [see Fig. 11(b)]. For S, « VL, the profiles of
the chemical potential, the spin accumulation, and the spin
current are nearly identical in the cases of an isothermal F/N
junction and a F/N junction with j, (x) = 0 (see the following),
and Eq. (82) should give a good estimate for the temperature
difference arising across the junction due to the heating or
cooling at the interface.

Thus, instead of VT = 0, we apply the condition j,(x) =0
for any x. This situation requires us to solve the full system of
differential equations given by Egs. (24), (26), (27), (28), and
(31). Since this situation depends crucially on the heat current
[via j,(x) = 0], the full solution given by Eqs. (36)—(39) has
to be used, which, in contrast to the assumption of constant
gradients in each region, ensures constant heat currents. The
temperature far away from the interface is fixed at a given
value for one region [for example, at 7} in the F region as
shown in Fig. 11(b)]. At the interface, we impose the boundary
conditions that the charge, spin, and heat currents given by
Egs. (43)—(45) have to be continuous. As before, we assume
that Ln/r 3> AsnyE, in which case the situation at the interface
is not sensitive to the boundary conditions far away from the
interface. Thus, we choose lim,_, 1+~ us(x) = 0 as boundary
conditions for convenience.

The quantity we are interested in is the temperature drop
across the entire junction, which can be obtained as

AT = ATy, + AT, (82)
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As usual, Syp/n/e K /L and the conventional contribution to

the temperature drop then reads as

(SF + SA‘FPO‘F)LF Sc + SscPE
2£O’F 2L EC

SnL
ATch=[ = N}j,

ZEO'N
(83)

while the contribution due to the spin accumulation in the
region around the interface can be obtained from

SsF(l — P¢72F)

ATy = 2oL M:(O_)
Se(1=P3) o -
+ T[MS(O ) — s (07)]. (84)

In this limit, the spin current at the interface is given by the
same expression as in Eq. (76) and we find

SsF(l B P{?F)

AT, = o R ({Ps)r — PoF) j
Ssc(1 — PZ) .
+ T[RFPUF — (Rr + RN)(Ps)rlj. (85)

In Fig. 12, we display the profiles of the spin accu-
mulation [Fig. 12(a)] and the spin current [Fig. 12(b)]
in Nig;Fe9/Cu junctions (Lp = Ly = 1 um, and R, = 1 X
10~'® @m?) across which a current j = 10'" A/m? is driven.
As can be seen in Fig. 12, the agreement between the solutions
of an isothermal junction at 7 = 300 K and those of a junction
where j,(x) = 0and T (—Lg) = 300 Kis very good, that s, for
S, <« /L the behavior of the spin accumulation and current
is relatively insensitive in these cases.

Having studied the spin Peltier effect in situations where
the spin current is driven by an accompanying charge current,
we now turn to a different scenario in which we are dealing
with a pure spin current (j = 0) and there, consequently, is
no contribution from the conventional Peltier effect. First,
we study heating and cooling effects at the interface of a

0
(2) )
> F
';‘ _
<
=-11 3
= —Ejf
._.O I~
-1.54=,L — VT=0
1 % 05 0 05 1
X [m]
-2 \ ‘ \
-1 -0.5 0 0.5 1

X [um]

FIG. 12. (Color online) Profiles of the spin accumulation (a) and
the spin current (b) for a Nig,Fe,o/Cu junction with Ly = Ly =
Il um, R, =1x 107! Qm?, and j = 10" A/m?. The solid lines
show the results obtained for an isothermal junction at 7 = 300 K,
whereas the dashed lines show the results obtained for a junction with
Jq(x)=0and T(—L;) =300 K.
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(@) VT =0
(b) jo=

X

L 0 Ly

FIG. 13. (Color online) A schematic illustration of a F/N junction
in the Silsbee-Johnson spin-charge coupling setup, where (a) refers to
an isothermal junction and (b) to the situation where j,(x) = 0. The
fact that in (b) the temperature at one end of the junction is not given
as an external boundary condition, but has to be calculated from the
model is implied by “?”.

F/N junction in the Silsbee-Johnson spin-charge coupling
setup,'>>? that is, we investigate the heat generated at the F/N
interface while keeping the temperature constant across the
entire structure, VT = 0 [see Fig. 13(a)]. The inverse process
of spin injection, the Silsbee-Johnson spin-charge coupling,
describes the generation of an electromotive force across the
junction due to the presence of nonequilibrium spin in the
proximity of the ferromagnet for j = 0. This nonequilibrium
spin in the N region generates a spin current, which then
drives the spin Peltier effect. For VT = 0 and the boundary
conditions s (—oo) = 0 and p, (00) # 0 (modeling the spin
accumulation in the N region), the standard model of electrical
spin injection yields

. s (00)

Js(0) Ret R+ Ry (86)
for the spin current at the interface.? Equations (77) and (78),
which apply to any case of VT = 0, show that the heat current
vanishes in the N region and the rate of heat flowing to or away
from the interface is given by

TSsF ,LLS(OO)
2 R+ R.+ RN

F;"‘ =T, = (87)

Finally, we look at the Silsbee-Johnson spin-charge-
coupling setup, but instead of keeping the junction at a constant
temperature, we impose the condition j, (x) = 0 while keeping
one end at a fixed temperature and calculate the temperature
drop across the junction [see Fig. 13(b)]. By applying
the additional boundary conditions lim,_, _ ps(x) =0 and
requiring the currents to be continuous at the interface, we
can use Egs. (82)—(84) with j =0. Thus, AT, =0 and
the temperature drop across the junction is entirely due to
the spin current and spin accumulation A7 = AT,. We find
that the spin current at the interface is given by Eq. (86)
for Syp/Nje K VL and thus the temperature drop across the
junction is given by

_ p2
0= P oy = -2

AT =
2L [,O'N

ps(00),  (88)
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where « is the thermal spin injection efficiency of the F/N
junction defined in Eq. (59). Equation (88) is the thermal
analog of the Silsbee-Johnson spin-charge coupling. The sign
of the temperature drop changes when changing the spin
accumulation p (oco) from parallel to antiparallel to «.

V. F/N/F JUNCTIONS
A. F/N/F junctions placed in thermal gradients

The procedure that we used in the previous section to
describe spin injection in a F/N junction can also be applied to
more complex structures. Here, we will discuss spin injection
in a F/N/F junction consisting of two ferromagnets F; and
F, (denoted by the additional subscripts 1 and 2) of lengths
L, and L, and a nonmagnetic conductor N (denoted by the
additional subscript N) of length Ly between the ferromagnets.
By adjusting the orientations of the magnetization in each
ferromagnet independently, the junction can be either in a
parallel (11) or antiparallel (1)) configuration, that is, we
restrict ourselves to collinear configurations. The interfaces
C; and C, between the ferromagnets and the nonmagnetic
material are located at x =0 and x = Ly. In Ref. 43, the
influence of electric currents on the temperature profile in such
structures has been investigated if both ends of the device were
held at the same temperature. Here, we consider a different
situation: We investigate an open-circuit geometry (j = 0)
in which both ends of the device are coupled to different
temperature reservoirs. Holding the opposite ends of the device
at different temperatures 7, and 7 gives rise to temperature
gradients across the junction. Figure 14 gives a schematic
overview of this geometry.

The chemical potential, the spin accumulation, and the spin
current are calculated as in the previous section: Assuming
uniform temperature gradients V7;, VT, and VTy, we
use the simplified spin-diffusion equation (34) and fix the
integration constants by the boundary conditions 7T(—L) =
T], T(LN + Lz) = T2, and js(_Ll) = js(LN + L2) = 0. Each
of the contact regions C; and C; is characterized by Eqs. (43)-
(45) and we require that the currents are continuous at each
interface. This allows us to obtain the profiles of the chemical
potential, the spin accumulation, and the spin current.

As in the case of the F/N junction, spin is either injected
or extracted at the interfaces between the ferromagnets and
the nonmagnetic material. We investigate the spin injection

AT

Ci G,
'LI1 0 LIN L;\|+:L2

FIG. 14. (Color online) A schematic illustration of a F/N/F
junction placed in a thermal gradient.
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efficiencies «; = j;(0)/VTy and «; = ji(Ln)/VTIn at the
contacts C; and C,. In general, the expressions for «; and
ko are quite unwieldy, but can be simplified somewhat if we
assume the case of L > A and Ly > Ag:
Ry coth (Ln/AN) + Rej + R;
Dy
; R

0pJ N

'Ry ————————,
RN D Sinh (L)
with i,j = 1,2 and i # j, the thermal spin-injection efficien-
cies of the individual F/N junctions

Kio — _G_N SSCiRCi(l B P%Ci) + S”Rl(l B Pogl')’ (90)
2 R; + R:i + Rn

as defined in Eq. (59), their effective resistances

0 pi
Ki = Kk; Rpy

(89)

Riy = R + R.i + Ry, o1
and
Dy = R + (Rt + R)(Re2 + R)
+ coth(Ln/AN) (R1 + Rep + Ro + Ry) Ry (92)

Comparing the thermal and electrical® spin-injection efficien-
cies of the F/N/F junction, we find that the structure of Eq. (89)
is similar to the structure of the electrical spin-injection
efficiency. Here, the temperature gradient in the N region reads
as

PHYSICAL REVIEW B 85, 085208 (2012)

For a given temperature gradient, Eq. (89) can be used
to determine whether there is spin injection [j;(0) < O or
Js(Ln) > 0] or extraction [j;(0) > 0 or j;(Ln) < 0] at the
interface C;. The profiles of the spin current and the spin
accumulation in the N region (0 < x < Ly) are

Js(x) _ kpsinh(x/AN) — &y sinh[(x — Ln)/Asn]

= - 95)
VTN s1nh(LN/)»sN)
and
ws(x)  Kkycosh(x/AN) — ki cosh[(x — Ln)/AeN] 96)
RNVTN sinh(Ln/AsN) '

If Ly > AN, Eq. (89) reduces to Eq. (59), that is, the spin-
injection efficiency of a simple F/N junction.

In analogy to the procedure employed in Sec. IV, we can
calculate the drop of the chemical potential across the F/N/F
junction

A(n/e+ p) = [n(T2) — n(T)l/e + u(Ln + La)—u(—=Ly),
o7

and relate this drop to the Seebeck coefficient S of the entire
device

AT A(n/e + ) = SAT = (Sy + 8S)AT, (98)
VI = ONRINE 93) which we split into the equilibrium contribution Sy and a
nonequilibrium contribution §S due to spin accumulation.
where By investigating the chemical potential drops in the different
L, 1 Ln 1 L, regions and at the contacts, we obtain the equilibrium and
Rine = o + Sel + on + pIW + oy 4 nonequilibrium Seebeck coefficients
|
S (81 + Ss1Ps1)L1 /01 + (Se1 + Sse1 Ps1)/ Zet + SNIN/OoN + (Se2 + Ssc2 P2)/ Xeo + (82 + 82 Po2) Lo /02 99)
0=
2RenF
and
R« Se1s Ky — k1 cosh(Lyn/Ag Rk S K1 — ko cosh(Ln /A
ss = py, [ Bcr | Soka k2= (Ln/AsN) Ly, | B2 Sk, KR (Ln/Asn)
oN 201 sinh(Ln/AsN) ON 20, sinh(Ln/AsN)
K1R Se1As K2R S s _
_ al(l ! 1>—sz(2 2, o2 2)}RFI\IIF' (100)
ON o] ON p)

Once more, Eq. (100) has been derived in the limitof L > Ay
and L, > Ay, which usually applies to most devices.

Figure 15 shows the profiles for a symmetric F/N/F
junction consisting of Nig;Fej9 as ferromagnets and Cu as
the nonmagnetic material (for the corresponding parameters,
see Secs. [l and IV) for T = (T) + T)/2 = 300 Kand AT =
T, — T; = —100 mK. Here, the lengths of the individual con-
stituents are chosentobe L| = L, = 100nm and Ly = 50 nm.
The contact parameters are R. = Ro =1 x 107! Qm?,
Scl = Sc2 =—-1.0x 1076 V/K, and le = ZEPEZ = 0.5 and
Sse1 = £85¢2 = 0.55, depending on whether the parallel (4)
or antiparallel (—) configuration is investigated. As shown

in Figs. 15(a) and 15(c), spin is injected into the N region
from both F regions in the antiparallel configuration. If the
F/N/F junction is in the parallel configuration, spin is injected
into the N region from one F region, while at the opposite
interface, spin is extracted from the N region. Changing the
sign of AT would lead to spin extraction from the N region
in the antiparallel configuration, whereas spin would still be
injected at one interface and extracted at the other interface.
In Fig. 15(b), one can observe a drop of the total chemical
potential across the F/N/F junction for both the parallel and
antiparallel configurations. If an asymmetric F/N/F junction
(for example, by choosing different lengths L; and L, or
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different materials for F; and F,) is considered, the qualitative
properties of Fig. 15 will remain the same, although the graphs
will be distorted compared to the symmetric case.

Next, we look at the difference between the drops of
the chemical potential [given by Eq. (97)] in the parallel
and antiparallel configurations (denoted by the superscripts
i =M1, 1] in the following) as a quantitative measure of
the spin accumulation in the N region (thermal analog of
the giant magnetoresistance). If one analyzes the temperature

PHYSICAL REVIEW B 85, 085208 (2012)

Sy < \/Z). Hence, the difference between the drops of
the chemical potential is just the drop of the quasichemical
potentials, that is,

A/e+ ' — Am/e + ) = Aptt — Apt,  (101)

where Ap’ = u/(Ly + L) — u/(—L;). Moreover, the equi-
librium Seebeck coefficients given by Eq. (99) are the same
for both configurations and consequently

profile T(x) and the local equilibrium chemical potential Aptt — Ap™ = (88T — 8S™) AT, (102)
n [T (x)], one finds that within our model they are the same L. .. .
for the parallel and antiparallel configurations (in the limit which, in the limit of L, 3> Ay and Ly > Ay, yields
|
[(Ss1251/01 + Sse1/ Ze)(Ra Py + Rea Pxn) + (Ss2h52/02 + Ssca/ Bea)(R1 Py + Rt Ps1)1ANV I (103)

A,U,M _ AN«N —

Dy sinh(Ln/AsN)

if Eq. (100) is inserted for each of the nonequilibrium Seebeck
coefficients. In Eq. (103) as well as in the following, we choose
to express the system parameters in terms of the parallel
configuration (for example, P, = PZTT, etc.). As mentioned
before, in our approximation the temperature gradient in the
N region, given by Eq. (93), does not depend on whether the
system is in its parallel or antiparallel configuration.

The charge neutrality condition (17) enables us to relate
A to the voltage drop measured across the junction Ag’ =
¢'(Lx + Ly) — ¢'(—Ly). Using this, the difference between
the voltage drops in both configurations can be written as

8sl ¢ 1 Ay 82 4t N
Ap™t — AT = ;(ML — ) - g(ﬂm + ix)

—(aptt — Apth), (104)

a
J@
27
=
S 0
=5 07 _
2 st / Elr
Zop — =0 - !
3 S
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‘ ‘X[nm]‘ ‘ x‘[nm] ‘
-100 -50 0 50 100 150
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FIG. 15. (Color online) Profiles of the (a) spin potential, (b)
the total chemical potential, and (c) the spin current for a
Nig; Fe,9/Cu/Nig; Fey9 junction at 7 = 300 K with L; = L, = 100
nm, Ly =50 nm, and AT = —100 mK. The solid lines show
the profiles for the parallel configuration, the dashed lines for the
antiparallel configuration.

where the shorthand notations p!, = pui(—L;) and p', =
wi(Ly + Ly) have been introduced. For L; > A¢; and Ly >>
As2, the contributions to Eq. (104) originating from the
spin accumulation at x = —L; and x = Ly + Lo, pLzLT — ujf
and u!l + plt are small compared to Au't — Autt and
consequently

A(pTT _ A(p“ ~ —(A,U,M _ AMN)- (105)

Thus, one can also measure the difference between the
quasichemical potential drops electrostatically, namely, as
the difference between the voltage drops across the F/N/F
junction.

Figure 16 shows the dependence of Au'" — Apt
on the length of the N region Ly for a symmetric
Nig; Fe 9/Cu/Nig;Fe9 junction similar to the one considered
above (apart from Ly, R.;, and R, the parameters are the

7

6 — R_~R~10""Qm’
1 - R =R _=10""Qm’

57 cl c2

FIG. 16. (Color online) Difference between the chemical poten-
tial drops of the parallel and antiparallel configurations Au't —
Au™ as a function of the length of the N region Ly for a
NiglFelg/Cu/NiglFelg junction at T = 300 K with Ll = L2 =100
nm and AT = —100 mK.
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FIG. 17. (Color online) A schematic illustration of a F/N/F
junction in the electrical spin-injection setup, where (a) refers to
an isothermal junction and (b) to the situation where j,(x) = 0. The
fact that in (b) the temperature at one end of the junction is not given
as an external boundary condition, but has to be calculated from the
model, is implied by “?”.

same as in Fig. 15) for the contact resistances R, = Ry =
1 x 1071 Qm? and R,y = R.» = 1 x 107'* Qm?. With in-
creasing length of the N region, the amplitude of the voltage
difference decreases until, for very large N regions with Ly >
AsN, there is no difference between the voltage drops in the
parallel and antiparallel configurations and Au' — Ap™t —
0. If Ly is comparable or even smaller than the spin-diffusion
length (A,n &~ 350 nm in Cu), the voltage drops across the
F/N/F junction are different for the different configurations
with Au™™ — Au'™ given by Eq. (103).

B. Peltier effects in F/N/F junctions

The section on F/N/F junctions is concluded by a brief
discussion of Peltier effects in such structures in the limit of
Sy < A/Land Ly > Ao

Figure 17(a) summarizes the first system considered: A
charge current j is driven across an isothermal F/N/F junction
and there is heating or cooling of the interfaces. Similarly
to Sec. IVC, the electrical spin-injection efficiencies at the
interfaces P;; = j;(0)/j and Pj, = j;(Ln)/j are given by the
standard model of electrical spin injection and, as described in
detail in Ref. 5, read as

Ry coth(Ln/AN) + R + Ry
Dy
RN
Py RN ————
N D Sinh (L o)

where Dy is given by Eq. (92) and k,/ = 1,2 and k # [. The
effective resistances of the individual F/N junctions RlléN are
given by Eq. (91) and their electrical spin-injection efficiencies
by

0 pk
Pji = ijRFN

(106)

PO _ PsiRey + Por Ry
A7 R+ Ra+ Ry

As noted above, the electrical spin-injection efficiencies of
a F/N/F junction [Eq. (106)] are composed of the electrical
spin-injection efficiencies of the individual F/N junctions in
the same way the thermal spin-injection efficiencies [Eq. (89)]
are composed of the thermal spin-injection efficiencies of the
individual F/N junctions.

107)
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FIG. 18. (Color online) Profiles of the heat current for an
isothermal Nig, Fe,9/Cu/Nig; Fe 9 junction at 7 = 300 K with L, =
L, = 100nm, Ly = 50 nm, and j = 10" A/m?. The solid line shows
the profile for the parallel configuration, the dashed line for the
antiparallel configuration.

Consequently, the rates of heat production and dissipation
at contacts C; and C, read as

T = jg(07) = jg(0") =Ty + T, (108)
I = j, (L) — j,(L{) =Ty + T3, (109)

and consist of contributions from the conventional Peltier
effect

T(S1 —Sn)Jj
Iy = % (110)
TSy — $2)j
T, = M’ (111)
2
as well as contributions from the spin Peltier effect
TSs1Pj1j
Ly = — (112)
s TS Pjrj
I = - (113)

Figure 18 illustrates this situation for an isothermal
NigFe 9/Cu/Nig Fej9 junction (in parallel and antiparallel
configurations) at 7 = 300 Kwith L} = L, = 100 nm, Ly =
50 nm, Ry =Ry =1x10"1°Qm?2, S.; =S, =—-1.0x
10-¢ V/K, Pg; = £Ps; = 0.5, Sse1 = £85¢2 = 0.55.1, and
j =107 A/m?. The profiles of the heat current in Fig. 18
show that, for the parameters chosen, there is cooling at C;
(x = 0) as heat flows away from it, while heat flows to C, and
leads to heating in the region around the C, (x = Ly). The
widths of those regions of heating or cooling are given by the
individual spin-diffusion lengths.

The second system considered is a F/N/F junction where
Jq(x) =0 and across which an electric current j is driven
and one end of which is anchored at a fixed temperature [see
Fig. 17(b)]. Requiring the charge, spin, and heat currents given
by Egs. (43)—(45) to be continuous and imposing the additional
boundary conditions lim,_, 1+~ us(x) =0, we find that the
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temperature drop across the junction AT = AT, + ATy is
composed of a drop due to the conventional Peltier effect

ATy — (S1+ Ss1Ps1) Ly | Set + Sse1 Pe1 | SNLN
h = 2[,0’1 2£2cl 2£O'N
Se Sscr P S» 4+ S Psr) Ly | .
2+ Sse2Ps2 (S2+ S Po2) Lo i
25252 2[:0‘2

and a contribution due to the spin accumulation in the region
around the interfaces

S (1 — P2

- Ssz(l - sz) +
o ps(07) = ————us(Ly)

2L

PHYSICAL REVIEW B 85, 085208 (2012)

Sm(l — P>%1)
MY

S‘vc 1 - P2 -
n %[us@;) — (L)L,

Here, we are mainly interested in the difference between
those temperature drops in configurations of parallel and an-
tiparallel magnetizations of the ferromagnets (denoted by the
superscripts i =11, 1] asin Sec. V A). With the temperature
drop due to the conventional Peltier effect being the same for
both configurations, this difference is exclusively due to the
spin accumulation, that is, ATt — AT™ = AT — AT,
which can be calculated as

[1s(07) — s (07)]

(115)

[(Ssl)\.vl/al + S.vcl/zcl)(R2P2 + Rc2P22) + (S.YZ)\'SZ/UZ + SYCZ/ZCZ)(RI Pl + Rcl PE])]RNj

AT — ATH =

where we have expressed the system parameters in terms of
the parallel configuration (see Sec. V A).

For illustration the temperature profiles of a
Nig; Fej9/Cu/Nig; Feg junction at T =300 K
with  j,(x)=0, L =L, =100 nm, Lyx=50 nm,

R =Ry =1x 1071 Qm?, Se1=82=-10x10"°
V/K, P21 = :i:Pzg = 05, Sscl = :i:SSCQ = 0.5S51, and
j =10"" A/m? are shown in Fig. 19(a) for both parallel
and antiparallel magnetizations in the ferromagnets. While
the main (linear) contribution to the temperature drop
originates from the charge Peltier effect and is the same
for both configurations, the spin accumulation near the
interfaces is different for each configuration and accounts for
different temperature profiles. Figure 19(b), which depicts the

300
1(a) F N F
208 H

—_— = 0 N
= g t® \ N
—“O i \\
296 :4_17 . Ja
2 >
D \ NS
,(“F [ \\\
oL b NS
2100-50 0 50 100 \
294 LS :
-100 -50 0 50 100 150
X [nm]
FIG. 19. (Color online) (a) Temperature profile of a

Nig]Felg/CU/NiglFelg junction with with jq(x) =0, T, = 300 K,
Ly =L, =100 nm, Ly =50 nm, and j = 10" A/m?. The solid
line shows the profile for the parallel configuration, the dashed line
for the antiparallel configuration. (b) The profile of the temperature
difference between the parallel and antiparallel configurations is
shown in the inset.

. (116)

£D0 sinh(LN/)»sN)

difference between the temperature profiles of the parallel
and antiparallel configurations, also shows that this difference
in the temperature profiles arises in the F regions near the
interfaces and within the spin-diffusion lengths. Outside these
regions, the temperature difference remains constant.

VI. CONCLUSION

‘We have generalized the standard model of spin injection as
explained in Refs. 1, 2, and 5 to describe the coupling between
charge, spin, and heat transport in metals. The formalism has
then been used to describe the electronic contribution to the
spin Seebeck effect in such materials, where we found that only
at the boundaries of the ferromagnet is there significant elec-
tronic spin accumulation, which, however, decays within the
spin-diffusion length and can therefore not be responsible for
the linear inverse spin Hall voltage measured by Uchida et al.*®
Furthermore, we have analyzed F/N and F/N/F junctions. For
F/N junctions, we have shown that a temperature difference
between both ends of the junction generates pure spin currents,
which can be used to extract or inject spin at the interface
between the F and N regions. We have also derived a formula
to measure the efficiency of the spin injection (extraction).
In the case of a F/N/F junction, a temperature difference
can also be used to extract or inject spin into the N region
if the junction is in a antiparallel configuration. Moreover, a
formula has been derived to calculate the difference between
the voltage drops across the junction in the parallel and
antiparallel configurations. Finally, we have investigated the
Peltier and spin Peltier effects in F/N and F/N/F junctions
and derived analytical formulas to describe their respective
contributions to the heating or cooling in these systems.
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