71 research outputs found

    Structure of a low-population intermediate state in the release of an enzyme product.

    No full text
    Enzymes can increase the rate of biomolecular reactions by several orders of magnitude. Although the steps of substrate capture and product release are essential in the enzymatic process, complete atomic-level descriptions of these steps are difficult to obtain because of the transient nature of the intermediate conformations, which makes them largely inaccessible to standard structure determination methods. We describe here the determination of the structure of a low-population intermediate in the product release process by human lysozyme through a combination of NMR spectroscopy and molecular dynamics simulations. We validate this structure by rationally designing two mutations, the first engineered to destabilise the intermediate and the second to stabilise it, thus slowing down or speeding up, respectively, product release. These results illustrate how product release by an enzyme can be facilitated by the presence of a metastable intermediate with transient weak interactions between the enzyme and product

    Sequence Specificity in the Entropy-Driven Binding of a Small Molecule and a Disordered Peptide

    Get PDF
    Approximately one-third of the human proteome is made up of proteins that are entirely disordered or that contain extended disordered regions. Although these disordered proteins are closely linked with many major diseases, their binding mechanisms with small molecules remain poorly understood, and a major concern is whether their specificity can be sufficient for drug development. Here, by studying the interaction of a small molecule and a disordered peptide from the oncogene protein c-Myc, we describe a "specific-diffuse" binding mechanism that exhibits sequence specificity despite being of entropic nature. By combining NMR spectroscopy, biophysical measurements, statistical inference, and molecular simulations, we provide a quantitative measure of such sequence specificity and compare it to the case of the interaction of urea, which is diffuse but not specific. To investigate whether this type of binding can generally modify intermolecular interactions, we show that it leads to an inhibition of the aggregation of the peptide. These results suggest that the binding mechanism that we report may create novel opportunities to discover drugs that target disordered proteins in their monomeric states in a specific manner.G.T.H. is supported by the Churchill Scholarship and the Gates Cambridge Trust Scholarship

    C. elegans expressing D76N β_{2}-microglobulin: a model for in vivo screening of drug candidates targeting amyloidosis

    Get PDF
    The availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of β2-microglobulin (D76N β_{2} -m) is associated with a fatal familial form of systemic amyloidosis. Hitherto, no animal model has been available for studying in vivo the pathogenicity of this protein. We have established a transgenic C. elegans line, expressing the human D76N β_{2} -m variant. Using the INVertebrate Automated Phenotyping Platform (INVAPP) and the algorithm Paragon, we were able to detect growth and motility impairment in D76N β_{2} -m expressing worms. We also demonstrated the specificity of the β_{2} -m variant in determining the pathological phenotype by rescuing the wild type phenotype when β_{2} -m expression was inhibited by RNA interference (RNAi). Using this model, we have confirmed the efficacy of doxycycline, an inhibitor of the aggregation of amyloidogenic proteins, in rescuing the phenotype. In future, this C. elegans model, in conjunction with the INVAPP/Paragon system, offers the prospect of high-throughput chemical screening in the search for new drug candidates

    Relationship between DNA methylation and mutational patterns induced by a sequence selective minor groove methylating agent.

    Get PDF
    Me-lex, a methyl sulfonate ester appended to a neutral N-methylpyrrolecarboxamide-based dipeptide, was synthesized to preferentially generate N3-methyladenine (3-MeA) adducts which are expected to be cytotoxic rather than mutagenic DNA lesions. In the present study, the sequence specificity for DNA alkylation by Me-lex was determined in the p53 cDNA through the conversion of the adducted sites into single strand breaks and sequencing gel analysis. In order to establish the mutagenic and lethal properties of Me-lex lesions, a yeast expression vector harboring the human wild-type p53 cDNA was treated in vitro with Me-lex, and transfected into a yeast strain containing the ADE2 gene regulated by a p53-responsive promoter. The results showed that: 1) more than 99% of the lesions induced by Me-lex are 3-MeA; 2) the co-addition of distamycin quantitatively inhibited methylation at all minor groove sites; 3) Me-lex selectively methylated A's that are in, or immediately adjacent to, the lex equilibrium binding sites; 4) all but 6 of the 33 independent mutations were base pair substitutions, the majority of which (17/33; 52%) were AT-targeted; 5) AT --TA transversions were the predominant mutations observed (13/33; 39%); 6) 13 out of 33 (39%) independent mutations involved a single lex-binding site encompassing positions A600-602 and 9 occurred at position 602 which is a real Me-lex mutation hotspot (n = 9, p10(-6), Poisson's normal distribution). A hypothetical model for the interpretation of mutational events at this site is proposed. The present work is the first report on mutational properties of Me-lex. Our results suggest that 3-MeA is not only a cytotoxic but also a premutagenic lesion which exerts this unexpected property in a strict sequence-dependent manner

    Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method

    Get PDF
    Antibodies targeting Aβ42 are under intense scrutiny because of their therapeutic potential for Alzheimer’s disease. To enable systematic searches, we present an “antibody scanning” strategy for the generation of a panel of antibodies against Aβ42. Each antibody in the panel is rationally designed to target a specific linear epitope, with the selected epitopes scanning the Aβ42 sequence. By screening in vitro the panel to identify the specific microscopic steps in the Aβ42 aggregation process influenced by each antibody, we identify two antibodies that target specifically the primary and the secondary nucleation steps, which are key for the production of Aβ42 oligomers. These two antibodies act, respectively, to delay the onset of aggregation and to block the proliferation of aggregates, and correspondingly reduce the toxicity in a Caenorhabditis elegans\textit{Caenorhabditis elegans} model overexpressing Aβ42. These results illustrate how the antibody scanning method described here can be used to readily obtain very small antibody libraries with extensive coverage of the sequences of target proteins.This work was supported by the Centre for Misfolding Diseases, University of Cambridge. F.A.A. was supported by a Senior Research Fellowship Award from the Alzheimer’s Society, UK (grant number 317, AS-SF-16-003)

    Galectin-3 shapes toxic alpha-synuclein strains in Parkinson's disease.

    Get PDF
    Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD

    The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes

    Get PDF
    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that exist on a clinico-pathogenetic spectrum, designated ALS/FTD. The most common genetic cause of ALS/FTD is expansion of the intronic hexanucleotide repeat (GGGGCC)n in C9orf72. Here, we investigate the formation of nucleic acid secondary structures in these expansion repeats, and their role in generating condensates characteristic of ALS/FTD. We observe significant aggregation of the hexanucleotide sequence (GGGGCC)n, which we associate to the formation of multimolecular G-quadruplexes (mG4s) by using a range of biophysical techniques. Exposing the condensates to G4-unfolding conditions leads to prompt disassembly, highlighting the key role of mG4-formation in the condensation process. We further validate the biological relevance of our findings by detecting an increased prevalence of G4-structures in C9orf72 mutant human motor neurons when compared to healthy motor neurons by staining with a G4-selective fluorescent probe, revealing signal in putative condensates. Our findings strongly suggest that RNA G-rich repetitive sequences can form protein-free condensates sustained by multimolecular G-quadruplexes, highlighting their potential relevance as therapeutic targets for C9orf72 mutation-related ALS/FTD

    Rational design of a conformation-specific antibody for the quantification of A beta oligomers

    Get PDF
    The accurate quantification of the amounts of small oligomeric assemblies formed by the amyloid β (Aβ) peptide represents a major challenge in the Alzheimer’s field. There is therefore great interest in the development of methods to specifically detect these oligomers by distinguishing them from larger aggregates. The availability of these methods will enable the development of effective diagnostic and therapeutic interventions for this and other diseases related to protein misfolding and aggregation. We describe here a single-domain antibody able to selectively quantify oligomers of the Aβ peptide in isolation and in complex protein mixtures from animal models of disease

    A Water-Bridged Cysteine-Cysteine Redox Regulation Mechanism in Bacterial Protein Tyrosine Phosphatases

    Get PDF
    The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains highlights the need to develop more efficacious and potent drugs. However, this goal is dependent on a comprehensive understanding of Mtb virulence protein effectors at the molecular level. Here, we used a post-expression cysteine (Cys)-to-dehydrolanine (Dha) chemical editing strategy to identify a water-mediated motif that modulates accessibility of the protein tyrosine phosphatase A (PtpA) catalytic pocket. Importantly, this water-mediated Cys-Cys non-covalent motif is also present in the phosphatase SptpA from Staphylococcus aureus, which suggests a potentially preserved structural feature among bacterial tyrosine phosphatases. The identification of this structural water provides insight into the known resistance of Mtb PtpA to the oxidative conditions that prevail within an infected host macrophage. This strategy could be applied to extend the understanding of the dynamics and function(s) of proteins in their native state and ultimately aid in the design of small-molecule modulators.e thank CNPq Brazil (fellowship 200456/2015-6 to J.B.B. and grants 454507/2014-3 and 300606/2010-9 to H.T.), the Fundação para a Ciência e a Tecnologia (FCT Investigator award IF/00624/2015 to G.J.L.B.), the European Union (Marie-Sklodowska Curie Innovative Training Network Protein Conjugates; Marie Skłodowska-Curie Individual Fellowship 743640 to T.R.; Marie-Curie Intra-European Fellowship 626890 to O.B.), the Ministerio de Economía, Industria, y Competitividad (project CTQ2015-67727-R to F.C.), and the Biotechnology and Biological Sciences Research Council (PhD studentship to L.D.) for funding. G.J.L.B. is a Royal Society University Research Fellow and the recipient of a European Research Council Starting Grant (TagIt, 676832 ). We also acknowledge funding by LISBOA-01-0145-FEDER-007391, co-financed by FEDER through the Programa Operacional Regional de Lisboa (Lisboa 2020) of PORTUGAL 2020 and by FCT Portugal

    A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity.

    Get PDF
    The self-assembly of α-synuclein is closely associated with Parkinson's disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson's disease and related conditions.This work was supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), US National Institutes of Health (A.M. and A.B.); by the Boehringer Ingelheim Fonds (P.F.); by a European Research Council starting grant (to M.B.D.M. and E.A.A.N.); and by The Cambridge Centre for Misfolding Diseases. N.C. thanks the Spanish Ministry of Economy and Competitiveness (RYC-2012-12068). S.W.C. thanks the Agency for Science, Technology, and Research, Singapore for support
    corecore