27 research outputs found

    Deformation Quantization of Fermi Fields

    Get PDF
    Deformation quantization for any Grassmann scalar free field is described via the Weyl-Wigner-Moyal formalism. The Stratonovich-Weyl quantizer, the Moyal ⋆\star-product and the Wigner functional are obtained by extending the formalism proposed recently in [35] to the fermionic systems of infinite number of degrees of freedom. In particular, this formalism is applied to quantize the Dirac free field. It is observed that the use of suitable oscillator variables facilitates considerably the procedure. The Stratonovich-Weyl quantizer, the Moyal ⋆\star-product, the Wigner functional, the normal ordering operator, and finally, the Dirac propagator have been found with the use of these variables.Comment: 19+1 pages, no figures, revtex4 file styl

    Disruption of thioredoxin reductase 1 protects mice from acute acetaminophen-induced hepatotoxicity through enhanced NRF2 activity.

    No full text
    The critical importance of glutathione in mitigating the deleterious effects of electrophile generating drugs such as acetaminophen (APAP) is well established. However, the role of other antioxidant systems, such as that provided by thioredoxin, has not been extensively studied. Selenoprotein thioredoxin reductase 1 (Txnrd1) is important for attenuating activation of the apoptosis signaling-regulating kinase 1 (ASK1) and the c-Jun N-terminal kinase (JNK) pathway caused by high doses of APAP. Therefore, a detailed investigation of the role of Txnrd1 in APAP-induced hepatotoxicity was conducted. Liver-specific Txnrd1 knockout mice (Txnrd1(ΔLiv)) were generated and treated with a hepatotoxic dose (400 mg/kg) of APAP for 1 or 6 h. Liver toxicity was assessed by measuring the activities of liver enzymes aspartate aminotransferase and alanine aminotransferase in serum, in addition to histopathological analysis of liver sections and analysis of glutathione levels. At 1 h post-APAP treatment, total and mitochondrial glutathione levels in control and Txnrd1(ΔLiv) mice were similarly depleted. However, at 6 h post-APAP treatment, Txnrd1(ΔLiv) mice were resistant to APAP toxicity as liver enzymes and histology were not significantly different from the corresponding untreated mice. Analyses revealed the compensatory up-regulation of many of the nuclear factor erythroid 2-related factor 2 (NRF2) target genes and proteins in Txnrd1(ΔLiv) mice with and without APAP treatment. Yet, JNK was phosphorylated to a similar extent in APAP-treated control mice. The results suggest that Txnrd1(ΔLiv) mice are primed for xenobiotic detoxication primarily through NRF2 activation

    Winds of Change: A Century of Agroclimate Research

    Get PDF
    Climate has been of primary concern from the beginning of agricultural research. Early in the 20th century, climatology and agronomy evolved separately, focusing primarily on production agriculture and crop adaptation. Concepts developed include thermal units and water use efficiency. The integrated discipline of agroclimatology developed in the mid-20th century. As theoretical understanding evolved, numerous papers related to agroclimatology were named Citation Classics. Spectral properties of plants and soils were identified that underpin today’s remote sensing technologies. Commercialization of instrumentation enhanced our ability to efficiently collect data using standardized methods. Private and public-sector partnerships advanced research capacity. Later in the 20th century, research focus shifted toward integrating knowledge into crop growth and agronomic models. Remote sensing provided capacity to gain theoretical and practical understanding of regional scale processes. In the early 21st century, recognition of earth as a system along with inter-related human systems is driving research and political agendas. There is a pressing need to change our data-rich to an information-rich environment. The emerging cyberinformatics field along with natural resource and agricultural system models allow us to apply climate information to assessments and decision support related to water supply, production, environmental management, and other issues. Solutions to today’s problems require interdisciplinary and multi-sectoral teams. While needs have never been greater, fewer universities maintain critical mass required to off er advance degrees in agroclimatology. It will be increasingly important that agrclimatology attract top students and provide training and practical experience in conducting integrated systems research, communications, and team skills
    corecore