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From the earliest writings about agriculture, climate and 

weather have been a major focus. In 29 B.C., Virgil 

wrote a lengthy poem about farming, “Th e Georgics,” which 

included considerable discussions of soils and what we now 

call agronomy and agroclimatology (Virgil, 29 B.C.E.).

“…An unknown surface, heed we to forelearn

Th e winds and varying temper of the sky,

Th e lineal tilth and habits of the spot,

What every region yields, and what denies…” 

Virgil, Th e Georgics, 29 B.C.E.

Certainly, “the winds and varying temper of the sky,…the 

habits of the spot, what every region yields, and what 

denies…” captures the essence of agroclimatological charac-

terization. Virgil also clearly highlighted the vulnerability of 

agricultural to seasonal weather patterns.

“…And he, who having plowed the fallow plain

And heaved its furrowy ridges, turns once more

Cross-wise his shattering share, with stroke on stroke

Th e earth assails, and makes the fi eld his thrall.

Pray for wet summers and for winters fi ne…”

Virgil, Th e Georgics, 29 B.C.E.

From ancient times to the foreseeable future, the farmer is 

always vulnerable to vagaries of the weather, be it wet sum-

mers and fi ne winters providing for a bounteous harvest, or 

dry summers and harsh winters leading to hard times.

Since the development of agricultural and natural resources 

research, climate and weather have been of primary concern 

because of their impact on food, feed, and fi ber production. 

Interactions between weather or climate and agriculture 

are complex because of the spatial and temporal variation 

in the physical environment and the biological response. 

Agroclimatology spans a wide range of spatial and temporal 

scales. Figure 1 presents the general spatial and temporal 

scales of agroclimatology and related fi elds of study; the 

arrows (Fig. 1) indicate that the boundaries between the scales 

are fuzzy and each level extends into larger or smaller scales. 

Weather is experienced on a relatively local to regional scale 

for periods up to 1 or 2 wk. While weather is absolutely criti-

cal to agriculture and there are many important advances in 

the development and application of knowledge about weather 

to management of agricultural systems, that is not the pri-
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mary focus of this article. Climate is realized at seasonal to 

decadal scales and generally is discussed at county to regional 

scales. Agricultural meteorology and micrometeorology focus 

on short time scales and small spatial scales up to fi eld scale. 

Th e term environmental physics is sometimes applied to stud-

ies of soil–plant–animal–atmosphere continuum that include 

but extend beyond meteorological processes. Agroclimatology 

addresses issues from fi eld to roughly county scale and gener-

ally at weekly to seasonal scales. Th e purpose of this article is 

to review the progress in and status of the science of agricul-

tural meteorology and agroclimatology. However, these will be 

discussed in the context of the broader regional climate, and 

particularly in terms of the implications of climate change. 

Climate change is generally focused on subcontinental to 

global spatial scales and decadal to millennial time scales. 

However, adaptation to and mitigation of climate change 

often must be addressed at local and regional scales that are 

relevant to agroclimatology.

During the fi rst half of the 20th century, climatology and 

agronomy evolved primarily as separate disciplines. In the 

middle of the 20th century, the integrated discipline of agro-

climatology developed rapidly, along with the related area 

of agricultural meteorology. Many key scientifi c advances in 

micrometeorology were made by agricultural meteorology 

researchers because of the simplifying assumptions that could 

be made within more uniform agricultural plant canopies and 

generally fl atter topography, compared with more heteroge-

neous and complex canopies and topographies found in most 

natural ecosystems. Concurrent with the development of sci-

entifi c and educational programs in agroclimatology and agri-

cultural meteorology was the establishment of the American 

Society of Agronomy (ASA) “Meteorology and Climatology 

Division” in 1964. Th e current name, adopted in 1979, 

“Agroclimatology and Agronomic Modeling” represents the 

development of quantitative modeling to quantify, synthesize, 

and extend the research results.

Th is paper was developed to highlight the history, contribu-

tions, and future directions of the fi eld of agroclimatology. 

Key themes are presented in this article as follows:

· U.S. weather and climate infrastructure for agriculture

· Agroclimatological characterization

· Energy balance

· Soil–plant–atmosphere interactions

· Flux measurement and mass balance

· Incorporating climate information into decision making

For each of these thematic areas, a historical overview of 

scientifi c advances, highlights of seminal work, discussion 

of changes in research focus and application over time, and 

research focus for the coming decade are presented.

Table 1 summarizes progress in the agroclimatology fi eld 

through four major periods over the past century, along with 

key issues facing science during each period, the scientifi c 

focus in agroclimatology, and advances in methods and con-

cepts. As the discipline of agroclimatology and agricultural 

meteorology developed, numerous papers extending the 

knowledge base (Table 2) were named as Citation Classics 
(http://garfi eld.library.upenn.edu/classics.html; verifi ed 11 

Dec. 2007). Each of these citation classic papers contrib-

uted to conceptual advances made during the given time 

period and a large portion of them were written by early 

career scientists. Another contribution to the agroclimatol-

ogy fi eld was publication of several books authored by ASA 

members. Books such as Principles of Environmental Physics 
(Monteith, 1973, later revised as Monteith and Unsworth, 

1990), Microclimate: Th e Biological Environment (Rosenberg, 

1974, later revised as Rosenberg et al., 1983), Hillel, (1971); 

and Brutsaert (1982) served as textbooks or key references for 

multiple generations of students.

It is not possible to review of all of the literature over the 

past 100 yr. Livingston (1908) summarized the published 

literature on evaporation at the beginning the 20th century. 

Readers are referred to American Society of Agronomy pub-

lications by Taylor et al. (1983), Limitations to Effi  cient Water 
Use in Crop Production, and Hatfi eld and Baker (2005), 

Micrometeorology in Agricultural Systems, two major publica-

tions of ASA that reviewed and synthesized current knowl-

edge at the time and fostered advances in the application of 

science to critical problems.

HISTORICAL OVERVIEW AND DISCUSSION

U.S. Weather and Climate Infrastructure 
for Agriculture

Federal Infrastructure
Th e fi rst weather measurements supported by the U.S. 

government were under the direction of the Surgeon General 

in the early 19th century. In the mid-19th century, the 

Smithsonian Institution established a volunteer weather 

observer network. In 1890, the Cooperative Weather 

Observer Network was established and in 1891, the weather 

service was transferred to the Department of Agriculture 

where it remained until 1940. Th e National Oceanic and 

Atmospheric Administration and National Weather Service 

now reside within the Department of Commerce, but there 

continues to be a multi-agency, Joint Agricultural Weather 

Facility housed at the USDA, World Agricultural Outlook 

Board. Th e evolution of the U.S. weather monitoring infra-

Fig. 1. Generalized temporal and spatial scaling of agricultural 
meteorology, agroclimatology, climatology, and climate change.
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structure is comparable with similar developments in other 

nations and was paralleled by development of meteorological 

and agronomic societies and organizations (Table 3).

Th e fi rst U.S. weather satellite was launched by NASA in 

1960. Today, satellite technologies are essential to providing 

data for weather and climate monitoring and forecasting as 

well as meteorology and climatology research. Understanding 

of the global atmospheric system is rapidly expanding, pre-

senting promise of increasing “forecast-ability” of weather 

and climate that could have tremendous benefi t to agriculture 

through early warning and improved decision-making and 

risk management.

Public–Private Partnerships
Research progress and effi  ciency have been greatly advanced 

in agroclimatology, as well as other disciplines, by partner-

ships between the private and public sectors. Th rough the 

middle of 20th century, relatively simple equipment was used 

for agroclimatology research. In the era following World War 

II, many seminal studies were undertaken, often with spe-

cialized equipment designed and constructed by researchers 

and technical support staff . As the science and technology 

matured, key advances in measurement technology were led 

from the private sector, frequently in partnership with a pub-

lic sector scientist. An early example was the establishment of 

Soilmoisture Equipment to commercially produce pressure 

membrane and ceramic plate extractors developed by P.E. 

Skaling at the USDA Salinity Laboratory in Riverside, CA 

(www.soilmoisture.com/about.html; verifi ed 11 Dec. 2007). 

Availability of these standardized extractor plates greatly 

advanced the study of soil physics and soil–plant–water rela-

tions. In the early 1970s, LiCor Bioscience was established by 

W. Biggs, who had developed a silicon sensor for photosyn-

thetically active radiation while on the faculty at University of 

Nebraska (www.licor.com/corp/history.jsp; verifi ed 11 Dec. 

2007). Since that time, LiCor has developed or commercial-

ized a wide range of scientifi c instruments for agroclimatol-

ogy and soil–plant–water relations research. Th e Heinz Walz 

GmbH company (http://walz.com; verifi ed 18 Dec. 2007) 

was established in 1972 and have developed a range of sci-

entifi c instrumentation in close collaboration with Dr. A.E. 

Hall, Dr. O.L. Lange, Dr. E.D. Schulze, and other prominent 

scientists. Campbell Scientifi c, established in 1974, provided 

some of the earliest rugged, battery powered data loggers 

that greatly expanded the capacity to conduct environmental 

research in remote locations. G. Campbell, formerly with 

Washington State University, has provided scientifi c input to 

the product development throughout the history of the com-

pany (www.campbellsci.com/history; verifi ed 11 Dec. 2007). 

Dr. M.A. Dixon, University of Guelph, and Dr. I. Grierson, 

University of Adelaide, have served as research partners to 

ICT International (www.ictinternational.com.au; verifi ed 11 

Dec. 2007), which has provided monitoring solutions for soil, 

plant, and environmental research since 1982. Additional 

examples are commercialization of sapfl ow measurement 

devices by M. and C.H.M. van Bavel (Dynamax) and J. 

Kucera (EMS Brno); of net radiometers and other instrumen-

tation by L. and C. Fritschen, of close system canopy cham-

bers for gas-exchange measurements (Steduto et al. (2002), 

www.tecno-el.it; verifi ed 11 Dec. 2007), and many others. 

Table 1. Summary of key issues, scientific focus and advances in agroclimatology.

Period Key issues 
Agroclimatology 
scientifi c focus Methodological advances Conceptual advances

Early 20th
century
Pre-1950

Crop adaptation
Nutrient management
Water stress

Agronomy and climatology were 
primarily separate fi elds. 

Lysimetry
Rain shelters

WUE concepts
Thermal units

Mid 20th century
1950–1975

Production focus
Development of industrial 
model of agriculture
Development of hybrids

Evolution of agroclimatology 
Energy and water balance
Evapotranspiration
Soil plant water continuum
Irrigation scheduling

Pressure plates
Pressure bomb
Porometry
Leaf water potential
Radiometers
Water balance models

Combination equation
Environmental physics
Soil plant water relations
Spectral properties of plants

Late 20th century
1975–2000

Environmental legislation
Sustainability
Globalization
Global change

Field scale fl uxes and budgets of 
N, C, trace gases
Environmental mitigation

Field data acquisition
Commercialization of research 
instrumentation
Crop models
Remote sensing
Infrared thermometry
Personal computers
GIS technology
Internet
Plant temperature as a 
germplasm screening tool

Crop water stress index
Land-atmosphere interface 
(mesoscale)
Sustainability concepts
Multi-objective decision making

Early 21st century
2001–present

Global change
(Population, CO2, 
temperature, and 
precipitation patterns)
Global markets
Limited natural resources 
and competition for land and 
water
Bioenergy

Mesoscale focus
Quantitative budgets and fl uxes
Verifi cation
Decision support

Climate forecasts
Water supply forecast
Environmental markets
Cyberinformatics

4-D analyses
Uncertainty and risk analyses
Tradeoff analysis (energy, water, 
production, environment)
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Such public–private partnerships have greatly contributed 

to the advancement of science through standardization of 

measurement technologies, reduced cost, improved reliability, 

and expanded functionality of instrumentation. Additional 

information about widely used measurement technologies and 

methodologies is provided by Pearcy et al. (1989).

Agroclimatological Characterization
As climate monitoring networks were established, research 

during the early part of the 20th century focused on describ-

ing basic climate characteristics such as mean and extreme 

values of temperature and precipitation on a monthly and 

annual basis, delineating frost-free periods, quantifying solar 

radiation, or sunshine hours. Th e fi rst worldwide climate clas-

sifi cation system (Köppen and Geiger, 1928) remains in use 

today. Th e important role of water to agriculture and human 

activities has led to development of several indices related to 

precipitation patterns. Th e aridity index, defi ned as the ratio 

of annual precipitation to annual potential evaporation, was 

defi ned in UNESCO (1977). Dregne (1982) described four 

key precipitation patterns, winter, summer, continental, and 

bimodal, which are critical determinants of ecological and 

Table 2. Citation classics that advanced the field of agroclimatolgy and soil–plant–water relations. Essays by each the authors of 
these papers are available at http://garfield.library.upenn.edu/classics.html (verified 10 Dec. 2007).

Year Author Title Citation Early career†

1950 P.E. Weatherley Studies in the water relation of the cotton plant: I. The fi eld 
measurement of water defi cits in leaves.

New Phytol. 49:81–97

1960 W.R. Gardner Dynamic aspects of water availability to plants. Soil Sci. 89:63–73. 

1962 H. Brix The effect of water stress on the rates of photosynthesis and 
respiration in tomato plants and loblolly pine seedlings.

Physiol. Plant. 15:10–20. Y

1962 O.T. Denmead, R.H. Shaw Availability of soil water to plants as affected by soil moisture 
content and meteorological conditions.

Agron. J. 54:385–390. Y

1965 M. El-Sharkawy, J. Hesketh Photosynthesis among species in relation to characteristics of 
leaf anatomy and CO2 diffusion resistances.

Crop Sci. 5:517–521. Y

1965 D.M. Gates, H.J. Keegan, J.C. 
Schleter, V.R. Weidner

Spectral properties of plants. Appl. Optics 4:11–20.

1965 C. Itai, Y. Vaadia Kinetin-like activity in root exudate of water-stressed 
sunfl ower plants.

Physiol. Plant. 18:941–944. Y

1965 J.L. Monteith Light distribution and photosynthesis in fi eld crops. Ann. Bot. NS 29:17–37.

1965 C.H.M. van Bavel, F.S. 
Nakayama, W.L. Ehrler

Measuring transpiration resistance of leaves. Plant Physiol. 40:535–540. 

1967 W.G. Duncan, R.S. Loomis, 
W.A. Williams, R. Hanau 

A model for simulating photosynthesis in plant communities. Hilgardia 38:181–205.

1967 S. Manabe, R.T. Wetherald Thermal equilibrium of the atmosphere with a given 
distribution of relative humidity. 

J. Atmos. Sci. 24:241–259. Y

1967 P.J. Radford Growth analysis formulae—their use and abuse. Crop Sci. 7:171–175. Y

1968 R.A. Fischer, T.C. Hsiao Stomatal opening in isolated epidermal strips of Vicia faba: II 
Responses of KCl concentration and the role of potassium 
absorption.

Plant Physiol. 43:1953–1958 Y

1969 E.T. Kanemasu, G.W. Thurtell, 
C.B. Tanner

Design, calibration, and fi eld use of a stomatal diffusion 
porometer.

Plant Physiol. 44:881–885. Y

1969 D. Shimshi A rapid fi eld method for measuring photosynthesis with 
labelled CO2.

J. Exp. Bot. 20:3821–401.

1975 G.A. Ritchie, T.M. Hinckley The pressure chamber as an Instrument for ecological 
research.

Adv. Ecol. Res. 9:165–253. Y

1976 J.E. Begg, N.C. Turner Crop water defi cits. Adv. Agron. 28:161–217. 

† Work conducted as graduate student, post-doctoral researcher, or in early career.
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agricultural potential. Mediterranean, monsoonal, and conti-

nental precipitation and evaporation patterns are illustrated in 

Steiner et al. (1988). Precipitation indices have been particu-

larly important for agroclimatic analyses of dryland regions of 

the world (Hatfi eld, 1990; Stewart and Steiner, 1990).

Extensions in the later portion of the 20th century 

include development of ecoregion maps that blend climato-

logical characteristics with other biophysical characteristics 

(Omernik, 1987, 2004). Th e development of geographic 

information systems (GIS) as a discipline has dramatically 

transformed agroclimatic and many other types of natural 

resource analyses. Wratt et al. (2006) provide an excellent 

description of GIS-based climatic mapping techniques to 

develop locally applicable information to help farmers and 

others identify opportunities and risks associated with new 

land uses.

Many methods have been developed to characterize agro-

climatic potential in a systematic way for the earth’s lands. 

One example of such a system is the Agro-ecological Zones 

of the United Nations Food and Agriculture Organization 

(FAO). Such delineations are useful to determine general 

cropping or agricultural systems that will likely be successful 

for a particular location, but there is a great deal of variability 

of climate, soils, and topography within an agro-ecological 

region that is of signifi cance to particular organisms. In agri-

culture, it is also essential to work at a fi ner scale of microcli-

mate to understand the environment as it aff ects a particular 

organism or community of organisms.

Changing water supply because of climate variation will 

continue to challenge agriculture in both rainfed and irriga-

tion regions. Variation in rainfall patterns and drought cycles, 

as well as decreased fresh water supply for irrigation, will 

increase the demand for a better understanding of soil–plant–

water relationships and how this information can be incorpo-

rated into crop selection and management decisions. In an era 

of global climate change, climatologists and agroclimatologists 

need to develop a system to periodically re-evaluate climate 

means, extremes, and probability distributions and revise 

maps of agroecological zones.

Energy Balance
Quantifying energy exchanges in the soil–plant–atmosphere 

continuum has been the subject of research throughout the 

past century. Net radiation is the total energy input into the 

system that is partitioned at the earth’s surface into sensible, 

latent, and soil heat fl uxes. Study of this partitioning is 

termed the energy balance, and it has been the subject of many 

investigations. Geiger (1973) in the fourth printing of his 

original 1927 work described the “heat budget’ of the earth’s 

surface as the basis for micrometeorology.

A basic description of the energy balance that underpins a 

large body of research and practice is:

Table 3. Advances in organizations and infrastructure through key periods of the development of agroclimatology.

Time period Seminal advances

Before 1907 1850 Establishment of British (later Royal) Meteorology Society

1873 Establishment of International Meteorological Organization (IMO), predecessor of WMO

1890 Cooperative Weather Observer network established in United States

1891 Weather Service transferred to U.S. Department of Agriculture

1907–1950 1907 Establishment of American Society of Agronomy

1908 First issue of Agronomy Journal published

1908 Establishment of Bureau of Meteorology, Australia

1913 Establishment of IMO Commission for Agricultural Meteorology

1937 Simpson Report established research within Australian Bureau of Meteorology

1940 National Weather Service transferred from U.S. Department of Agriculture to U.S. Department of Commerce

1950–1975 1950 Establishment of World Meteorological Organization

1953 First meeting of the WMO Commission for Agricultural Meteorology (CAgM)

1956 Dedication of Mauna Loa Summit Observatory

1958 Establishment of National Aeronautics and Space Administration

1960 First NASA weather satellite launched

1975–2000 1987 Canadian Society for Agricultural Meteorology established. (now Canadian Society for Agricultural and Forest 
Meteorology)

1988 Establishment of International Panel on Climate Change

1990 European Society for Agronomy established, including a Division for Agroclimatology and Agronomic Modeling

2000–2007 2001 International Society for Agricultural Meteorology established (a web-based communication network)

2001 First international chair of Agroclimatology and Agronomic Modeling Division, American Society of Agronomy

2006 First agroclimatologist elected president of American Society of Agronomy
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n 0R G LE H+ + + =  [1]

where Rn is net radiation, G is soil heat fl ux, LE is latent heat 

fl ux, and H is sensible heat fl ux, all in the same units (e.g., 

W m–2) and with fl uxes toward the soil–atmosphere surface 

being positive and fl uxes away from the surface being nega-

tive. Th e energy balance varies with time, space, and type of 

surface. Additional terms can be included in the energy bal-

ance (Eq. [1]) to account for advected energy, physical storage 

of energy within the canopy, and biochemical energy storage 

in the photosynthetic process of vegetation. However, these 

terms are generally minor and are usually considered in special 

circumstances where understanding these component frac-

tions is required to understand the dynamics of the vegetative 

layer. In the remainder of this section the components of the 

energy balance will be discussed to show the advances and 

challenges in quantifying these components.

Net Radiation
Th e driving force for energy input is the solar and longwave 

radiation from the atmosphere. Net radiation can be directly 

measured or estimated through physical relationships gov-

erned by sun angle, atmospheric depletion of sunlight, and 

emission of thermal radiation from the atmosphere and the 

surface. Many early researchers (e.g., Szeicz et al., 1964; Gates 

et al., 1965; Stanhill et al., 1966; Linacre, 1968; McKree, 

1972, 1973; Idso, 1981; and many others) contributed to a 

quantitative understanding of radiation in agricultural envi-

ronments. Net radiometers were developed in the 1960s and 

1970s (Fritschen, 1962; Idso, 1970; and others) and remain a 

widely used type of instrument. However, with the beginning 

of large multi-institutional fi eld energy and C balance cam-

paigns in the mid 1980s, problems with design, calibration, 

and operational procedures became obvious when substantial 

diff erences were observed in net radiation measurements by 

diff erent researchers (Fritschen, 1992; Kustas et al., 1998). 

Research continues to address calibration (e.g., Fritschen 

and Fritschen, 2007), design (e.g., Cobos and Baker, 2003), 

and cross comparison of net radiometers (e.g., Kohsiek et al., 

2007).

Soil Heat Flux
Th e partitioning of energy into the soil, G, is a relatively 

small fraction of the energy balance but it is critical in terms 

of quantifying changes in soil temperature throughout the 

year (e.g., relative to modifi cations in the soil surface through 

mulches and tillage). Th e soil heat fl ux can be calculated using 

the temperature gradient method (Kimball et al., 1976a) or 

measured directly using soil heat fl ux plates, but they have the 

potential for large errors (Kimball et al., 1976b). To obtain 

good measurements, depth of measurement and accounting 

for heat storage above the plate must be considered (Ochsner 

et al., 2006, 2007). Soil heat fl ux is sometimes estimated as 

a fraction of net radiation, but this may introduce excessive 

error into the energy balance during periods of soil drying 

(Idso et al., 1975), when weather fronts cause major air tem-

perature changes, or for daily or shorter time periods.

Sensible Heat Flux

Th e sensible heat component (H) is the energy that is avail-

able to heat the air surrounding the earth’s surface. Sensible 

heat fl ux can be measured using aerodynamic methods 

(discussed below) or may be determined as a residual of the 

energy balance equations when all other terms are measured 

(e.g., when using weighing lysimeters to directly measure 

latent heat fl ux). Begg et al. (1964) reported some of the early 

diurnal energy budgets for high radiation environments that 

showed the sensible heat fl ux term can be quite large in the 

absence of adequate water to meet the evaporative demand. 

Raschke (1960) reviewed the literature on heat transfer 

between the plant and the environment. Tolk et al. (2006) 

reported sensible heat fl ux into the canopy accounted for 

45% of LE for irrigated alfalfa (Medicago sativa L.) grown in 

a semiarid climate for selected days with high ET, high vapor 

pressure defi cit, and high windspeed.

Latent Heat Flux
Latent heat fl ux is more generally known as evaporation 

or evapotranspiration (ET). Water loss via the soil and crop 

surfaces to the atmosphere has been one of the most studied 

areas in agroclimatology. Th e amplifi cation of the original 

model of Penman (1948) by Monteith (1964) led to one of 

the most widely used ET equations which describes fl uxes 

from a number of vegetative surfaces. Th e Penman–Monteith 

equation is currently used as a worldwide standard for refer-

ence ET by the Food and Agricultural Organization (FAO) as 

described by Allen et al. (1998). Several forms of the energy 

balance equation that range in complexity are used for ET 

estimation. Some early ET models that focused on limited 

requirements for input data (Th ornthwaite, 1948; Blaney and 

Criddle, 1950; Priestley and Taylor, 1972) are still used today. 

Estimating ET under water-limiting conditions is more diffi  -

cult than under well-watered conditions, and limitations that 

must be considered when using ET models are discussed by 

Hatfi eld and Allen (1996). Th e ET models are currently used 

at scales ranging from fi elds to large regions. As data avail-

ability and computational capacity become less limiting, there 

is increasing interest and progress in integration of remote 

sensing observations into surface energy balance models to 

produce regional (e.g., Anderson et al., 2007) and global esti-

mates of water use and to provide feedback to global circula-

tion models.

Partitioning of energy at the earth’s surface and separation 

of ET into soil (E) and plant (T) components were the focus 

of studies by Ritchie (1971) and Ritchie and Burnett (1971) 

that improved understanding of linkages between crop devel-

opment, precipitation patterns, and soil on the components 

of ET. Th ese concepts are used today and are critical to under-

standing of impacts of soil management on E and the devel-

opment of cropping systems with increased WUE.

Signifi cant advances and application of evapotranspi-

ration theory has been made in engineering disciplines, 

particularly to improve irrigation scheduling (Jensen et 

al., 1970). Signifi cant publications in the engineering lit-

erature include Advances in Evapotranspiration (American 

Society of Agricultural Engineers, 1985), Lysimeters 
for Evapotranspiration and Environmental Measurement 



S-138 Ce lebrate the Centenn ia l  [A Supp lement to Agronomy Journa l ]  •  2008

(Allen et al., 1991) and Th e ASCE Standardized Reference 
Evapotranspiration Equation (Allen et al., 2005).

In moist systems, latent energy dominates the energy bal-

ance, while in drier systems, sensible heat accounts for a large 

portion of available energy. Figure 2 illustrates some of the 

interactive eff ects between the plant and atmosphere by con-

trasting the daily energy balance components for irrigated and 

rainfed wheat (Triticum aestivum L.) under high and moder-

ate evaporative conditions. First, the lower net radiation in the 

stressed wheat compared to the well-watered wheat illustrates 

the impact of the surface conditions on outgoing radiation. 

Both the refl ected shortwave and outgoing longwave radia-

tion can be aff ected by the crop canopy condition in which a 

water stressed canopy may be brighter, rougher, and warmer 

than the well watered canopy. On the day with extremely 

high evaporative conditions (very low dewpoint temperature 

and high windspeed compared to the more moderate day), 

the LE in the well-watered crop exceeded the net radiation 

by 40% with the additional energy coming into the canopy 

in the form of sensible heat. Th e impact of soil water avail-

ability on LE of the water stressed crop is illustrated by the LE 

component, which was 44% of Rn at 6 d after precipitation, 

compared with 21% of Rn at 11 d after precipitation.

Derivations of the Energy Balance Equation
Exchange processes, governed by properties of the surface, 

have been expressed in many forms by agricultural meteo-

rologists. It is instructive to examine diff erent forms because 

they represent changes over time in our understanding about 

dynamics of the energy balance. One of the most well-

known techniques and often cited method is the Bowen ratio 

(Bowen, 1926). Th is method is built on the ratio of sensible 

and latent heat fl uxes from the surface (β) and is given as:

nLE = (  + )/(1 + )R G β  [2]

where Rn and G are positive toward the surface and

h v 0 0 = ( / )[( )/( )]z zh h T T e eβ γ − −  [3]

where γ is the psychrometric constant, hh and hv are transfer 

coeffi  cients for heat and vapor, respectively (hh/hv is assumed 

to be equal to 1), Tz and T0 are temperature at height z and 

at the surface, respectively, and ez and e0 are vapor pressure 

at height z and at the surface, respectively. Bowen’s (1926) 

method continues to underpin fl ux measurements in a wide 

range of research.

A seminal paper by Penman (1948) described the equation 

given below:

LE = [Δ/(Δ + γ)] {(Rn + G) + [(ρCp/Δ)h(e*z − ez)]} [4]

where Δ is the slope of the saturation vapor curve, ρCp is 

the volumetric heat capacity, h is a transfer coeffi  cient, e*z is 

the saturation vapor pressure at height z and ez is the vapor 

pressure at height z. Th is equation combined energy and 

atmospheric terms and is often called the combination equa-

tion. Penman derived an empirical term for the aerodynamic 

portion of the equation that included the vapor pressure 

defi cit and a linear windspeed function. Th is equation and 

later extensions have been used widely to calculate “potential 

evaporation” or “potential evapotranspiration” and sometimes 

is referred to a “big leaf” model because it treats the evapora-

tion process of a grass surface as similar to transpiration from 

a single leaf.

Th e Penman combination equation was developed for 

daily evaporation estimates for a short grass surface that was 

not limited by water supply. Tanner (1960) presented a more 

detailed energy balance approach to describing ET from a 

cropped surface and proposed micrometeorological methods 

that would permit measurement of fl uxes at intervals of less 

than 1 h, important in advancing understanding of the pro-

cesses. In this study, Tanner began to describe the problems 

of obtaining energy fl uxes over small areas and the need for 

larger areas (later termed fetch) to account for the dynamics of 

the vertical energy exchanges.

Monteith (1964) advanced our understanding of coupling 

of the plant with the atmosphere, expressed in the expanded 

form of the energy balance below:

Fig. 2. Energy balance of well-watered and water-stressed winter 
wheat under (A) high and (B) moderate evaporative demand 
at Bushland Texas. Evaporation (LE) was measured by weighing 
lysimeters, Rn by net radiometer, G by heat flux plates corrected 
for heat storage above the plates, and sensible heat (H) by solu-
tion of Eq. [1]. Last rainfall of 12.2 mm (29.9 MJ m–2 equivalent) 
was May 2. Data source: Collaborative research of J.L. Steiner, 
T.A. Howell, A.D. Schneider, S.R. Evett, and J.A. Tolk, USDA-ARS, 
Bushland, TX.
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Rn – G = ρCp[(Ts – Ta)/r]+
 ρCp/ γ {[es(Ts) – ea]/(ra + rc)} [5]

where Ts and Ta are the surface and air temperatures (°C), 

respectively, ra is the aerodynamic resistance (s m–1) and rc is 

the canopy resistance (s m–1), es(Ts) is the saturation vapor 

pressure at the Ts (kPa), ea the actual vapor pressure, and γ 

the psychometric constant (kPa °C–1). Th is expression of the 

energy balance has permitted a more rigorous description 

of the coupling of surface characteristics (surface or canopy 

resistance) with surface temperature as part of the energy bal-

ance and it has been explored by numerous research groups in 

attempts to quantify the changing response of plants to avail-

able soil water.

It is not possible to mention all of the researchers who 

have worked in this area over the past century; however, 

their contributions have advanced our understanding of 

the complexity and dynamics of the microclimate in which 

we manage agricultural ecosystems. A recent product from 

the American Society of Agronomy, Micrometeorology in 
Agricultural Systems (Hatfi eld and Baker, 2005), reviews 

in detail the current state of knowledge on the exchange 

processes in the soil–plant–atmosphere continuum and 

measurement of the components required to understand the 

dynamics of this region of the earth’s surface.

Soil–Plant–Atmosphere Interactions

Radiation
Radiation has many eff ects beyond the energy balance. Light 

interception by plants, as well as the spectral characteristics of 

the light impinging on plants, must be known to understand 

plant physiological responses. Th e utilization of Beer’s law to 

describe the absorption of solar radiation as it penetrated into 

a plant canopy was fi rst described by Monsi and Saeki (1953). 

Th is simple relationship opened the path for many studies 

that described how the extinction coeffi  cient is aff ected by leaf 

angle, leaf area distribution, and plant spacing. A review by 

Lemeur and Blad (1975) assembled the current information 

on light models according to whether they treated the foliage 

as a geometrical or statistical problem. A summary of processes 

involved with understanding radiative transfer in plant commu-

nities was provided by Ross (1975).

Monteith (1965) related light distribution within crop cano-

pies to photosynthesis rates. In that same time period, a linear 

relationship between accumulated biomass and the accumu-

lated amount of intercepted solar radiation was demonstrated 

for maize (Zea mays L.) (Williams et al., 1965) and soybean 

[Glycine max (L.) Merr.] (Shibles and Weber, 1966). Radiative 

transfer in plant communities is routinely used in crop growth 

simulation models to estimate the photosynthetic rate and over-

all plant growth, and agricultural meteorologists have contrib-

uted signifi cantly to the refi nement of these models. Research 

on plant responses to light has been conducted at the interface 

of plant physiology and agricultural meteorology, with much of 

the work reported in the plant physiology literature.

Leaves, as objects, refl ect, absorb, or transmit light. Th e 

refl ectance properties of leaves have been used throughout 

the past century to evaluate plant responses to stress and for 

a variety of predictive purposes. Gates et al. (1965) were the 

fi rst to describe the spectral properties of plants, setting the 

basis for later development of remote sensing technologies 

that are widely used today. Th eir work provided a founda-

tion for a number of research studies that began to defi ne the 

spectral diff erences among species and changes in the spectral 

components in response to age, nutrient stress, or disease 

(Gausman and Hart, 1974; Gausman et al., 1975, 1976; 

Pinter et al., 1979). Asrar et al. (1984) developed a method 

to estimate absorbed photosynthetically active radiation and 

leaf area index from spectral refl ectance. Goel and Norman 

(1990) provided information about optical and thermal infra-

red approaches to study vegetation canopies that summarizes 

the utility of diff erent waveband combinations for agronomic 

assessment. Details about the advances in the use of remote 

sensing for agronomic applications are described in Hatfi eld 

et al. (2008).

Temperature
Temperature responses of biological systems can be char-

acterized by the minimum and maximum temperatures at 

which biological activity stops. Th is range and the optimum 

temperature are species specifi c and characterize the role of 

temperature in many biological processes, for example, vernal-

ization, breaking dormancy of seeds, changing from vegetative 

to reproductive growth. For many responses, the temperature 

of a particular plant part (root, tuber, bud) is critical to obtain 

the desired response. In some cases, there is a thermoperiod 

response in which alternating day and night temperatures are 

required to trigger a process, for example, breaking dormancy 

in potatoes (Solanum tuberosum L.) requires cool night tem-

perature.

Temperature is one of the most easily observed parameters 

in the lower atmosphere. Th e development of observational 

networks for air temperature created a database that has been 

extensively used for agriculture. Th e simple observation that 

air temperature was related to phenological development of 

plants provided one of the early tools for managing crops 

(Madariaga and Knott, 1951; Katz, 1952; Lana and Haber, 

1952). Th ese initial observations prompted a series of studies 

that continue today to use temperature-phenological relation-

ships in crop development models. Many diff erent thermal 

models have been developed and several were compared by 

Aspiazu and Shaw (1972). Th ere have been amplifi cations of 

thermal models to include daylength to account for photo-

period in photoperiod sensitive plants (Coligado and Brown, 

1975) and vernalization requirements for winter wheat 

(Streck et al., 2003). Insect and disease models have used 

either air or soil temperature as driving variables for insect 

or disease development. An example of this type of model to 

predict insect emergence is given by Rummel and Hatfi eld 

(1989). Th ermal models are routinely used in integrated pest 

management models for a variety of crops and reported in the 

entomological literature. Nocturnal temperature and the rela-

tionship to relative humidity and dew formation are impor-

tant aspects of the temperature complex, particularly for pest 

management and for many horticultural crops.
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Water Stress

A key concept developed from energy balance studies 

was that of potential evaporation as described by van Bavel 

(1966). Th is spurred a range of studies to evaluate ET in con-

text of what a full-canopy could potentially transpire under 

given weather conditions; these concepts remain at the core 

of much research and are embedded in many current plant 

growth models. Th e energy balance model shown in Eq. [5] 

has been used for evaluation of water use by plant canopies 

and has quantifi ed reductions of LE associated with inad-

equate soil water.

Understanding water stress onset, intensity, and impact has 

probably been the largest area of agroclimatic research. Th e 

development of the porometer for fi eld measurement of sto-

matal resistance by Kanemasu et al. (1969) launched a series 

of studies that began to develop an improved understanding 

of crop water relations. Another advance at this time was the 

“pressure bomb” or Scholander chamber by Scholander et 

al. (1965). Both of these instruments provided a method for 

quantifying plant water relations under fi eld conditions and 

required measurements on individual leaves. Application on 

individual leaves was considered a limitation for some pur-

poses. For example, a comparison of eight diff erent methods 

on rice (Oryza sativa L.) showed that more rapid measure-

ment methods, e.g., canopy temperature methods, were most 

useful in screening large number of plants (O’Toole et al., 

1984). However, the insights provided through application 

of the pressure bomb and porometry have been invaluable 

in advancing understanding of plant physiology and soil–

plant–water relations. For example, Evenson and Rose (1976) 

quantifi ed the seasonal variation in stomatal resistance in cot-

ton (Gossypium hirsutum L.) and identifi ed changes associated 

with factors in addition to water stress.

Development of sap fl ow measurement devices (Cěrmaìk 

et al., 1973; Cěrmaìk and Kucìera, 1981; Dixon and Tyree, 

1984; Granier, 1985; Baker and van Bavel, 1987; Baker and 

Nieber, 1989) provided greater insight into root water uptake, 

translocation of water to the leaves, and photosynthesis. Th e 

role of roots in soil has long been an area where quantitative 

understanding is sparse and ability to predict growth and 

function is limited. As we gain understanding in limitations 

posed by the soil environment to roots, it may be possible 

to identify plants with root systems that better sustain plant 

growth and productivity. An example of this that has shown 

promise is selection of plants with aerenchymous root systems 

for use in soils that have limited aeration due to compacted 

layers or high soil water content during some seasons (Huang 

et al., 1997a, 1997b).

Canopy resistance and aerodynamic resistance are critical 

terms in Eq. [5]. Canopy resistance is an extension of sto-

matal resistance and is related to crop water stress. A study 

on alfalfa (Medicago sativa L.) showed that ET proceeded at 

the potential rate and canopy resistance remained below 20 s 

m–1 when soil water was adequate, but that canopy resistance 

began to rapidly increase and ET to decrease when soil water 

became limited (van Bavel, 1967). Hatfi eld (1985) showed 

that canopy resistance could be calculated from application of 

the energy balance (Eq. [5]) for wheat crops and quantifi ed a 

linear relationship of canopy resistance and soil water content. 

Th is method was extended to potatoes by Amer and Hatfi eld 

(2004) to evaluate irrigation management.

Water stress is a common occurrence in agronomic crops, 

and at some time during the growing season, water defi cits 

impact crop growth or yield in almost all climates. Crop stress 

has been quantifi ed using the thermal portion of the radiative 

spectrum. One of the fi rst defi nitive reports describing the 

relationship among plant water stress, solar radiation, air tem-

perature, and leaf temperature was by Wiegand and Namken 

(1966). Th eir research built on the fi nding by Tanner (1963) 

that plant temperature varied from air temperature and could 

be measured with thermocouples attached to the leaves. 

Wiegand and Namken (1966) and Ehler et al. (1978) found 

that leaf temperature was related to plant moisture status. 

Later, leaf thermocouples were replaced by infrared thermom-

eters and the quantifi cation of crop stress and estimates of 

water use have been based on observations of canopy tem-

perature. Stress degree day, crop water stress index, non-water 
stressed baselines, thermal kinetic windows, crop specifi c tempera-
tures, and water defi cit index are terms that have been used to 

describe plant stress and that have been developed for a num-

ber of diff erent agronomic crops to evaluate crop water stress.

Th e canopy resistance approach provided the founda-

tion for development of the crop water stress index (CWSI) 

by Jackson et al. (1981), who used infrared measurements 

of canopy temperature as a measure of crop water status in 

wheat. A linear relationship was developed for red kidney 

bean (Phaseolus vulgaris L.) between crop water use and the 

accumulation of stress degree days (SDDs, defi ned as canopy–

air temperature) during the growing season (Walker and 

Hatfi eld, 1979). Patel et al. (2001) expanded these original 

studies to demonstrate that water use in pigeonpea [Cajanus 
cajan (L.) Millsp.] decreased with increasing SDD and seed 

yield decreased exponentially with increasing SDD. As addi-

tional crop and climate factors were shown to aff ect the can-

opy–air temperature diff erence (Tc – Ta), Idso et al. (1981) 

derived an empirical model for canopy stress that was based 

on observations of Tc – Ta for the crop of interest combined 

with Tc – Ta for well-watered and completely stressed plots of 

the same crop and same atmospheric conditions.

Th e theoretical approach developed by Jackson et al. (1981) 

shows the utility of the energy balance model (Eq. [5]) to 

derive other relationship as follows:
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and E is actual evaporation, Ep potential evaporation, rcp 

the canopy resistance of a well-watered canopy, rc the actual 

canopy resistance, ra the aerodynamic resistance to sensible 

heat transfer, e*a the saturation vapor pressure, and ea the 

actual vapor pressure of the air. Jackson et al. (1981) derived 

the theoretical shape of Eq. [6] from the assumptions about 

a well-watered and a completely stressed or nontranspiring 

canopy. Th e CWSI has become one of the more widely used 

methods for quantifying crop stress. Gardner et al. (1992a,  

1992b) summarized the theory underlying the CWSI and 

the potential measurement problems in obtaining accurate 

values for parameters needed to estimate CWSI. Wanjura and 

Upchurch (2000) compared the empirical (Idso et al., 1981) 

and theoretical (Jackson et al., 1981) forms of CWSI for corn 

and cotton on the High Plains of Texas and found the empiri-

cal approach was more accurate than the theoretical approach 

because of the bounds of 0 to 1.0 placed by the empirical 

method on stress levels.

One problem in the application of infrared temperature 

measurements in crops has been incomplete ground cover 

where the infrared temperature refl ects a mixture of crop 

and soil temperature. Heilman et al. (1981) demonstrated 

that incomplete groundcover caused a signifi cant bias in esti-

mating the plant canopy temperature. Moran et al. (1994) 

developed a relationship to extend the CWSI theory to partial 

vegetative cover using a spectral approach. Th ey developed 

the water defi cit index (WDI) that covers the range of well-

watered to completely stressed vegetation for a range of 

canopy sizes based on the ratio of actual to potential evapora-

tion, the same foundation as the CWSI in Eq. [6]. Th e WDI 

approach off ers potential as a method for quantifying water 

stress under conditions of partial cover.

Canopy temperatures have been incorporated directly into 

the forms of the energy balance to estimate evaporation as:

c a
n p

a

( )LE T T
R G c

r
−

= − −ρ  [8]

Hatfi eld et al. (1984) showed this model provided a sound 

approach for measuring crop water requirements by compar-

ing direct measurements of LE from lysimeters to LE from 

Eq. [8] for number of locations and crops.

Evapotranspiration is a critical energy balance component 

in crop growth models and being able to estimate LE over 

large areas would help in regional plant growth or crop yield 

estimation. Bausch and Neale (1989) showed that crop coef-

fi cients, required for many ET models, could be obtained 

from remotely sensed data. Th is is an indirect approach that 

uses a vegetative index to derive a crop coeffi  cient that would 

allow the use of standard meteorological data with less fre-

quent remotely sensed observations of the canopy to provide 

regional estimates of evaporation. Zhang et al. (1995) devel-

oped regional estimates of LE using Eq. [8] and found the 

model produced acceptable agreement to area averages deter-

mined by ground-based measurement.

Th e extension of point measurements collected over fi elds 

into regional scale estimates is one of the current challenges 

facing agroclimatologists. Regional scale models require inte-

gration of remote sensing and ground-based observations. 

One problem facing regional scale studies is that vegeta-

tion is not distributed uniformly. Th e nonrandom eff ects 

of vegetative cover on the regional scale energy exchanges 

have been studied using a scaling method called DisALEXI 

(Disaggregation Atmosphere–Land Exchange Inverse) that 

disaggregates 5-km regional output to the Landsat TM resolu-

tion (Anderson et al., 2005). Anderson et al. (2007) further 

developed a multiscale approach that uses thermal, visible, 

and near-infrared imagery from multiple satellites to partition 

the fl uxes between the soil and canopy. Th eir approach pro-

duced fl uxes at a range of scales from 1 m to 10 km with the 

potential of being able to assess the representativeness of sen-

sor placement across complex landscapes. Further refi nement 

in the use remote sensing as an assessment tool coupled with 

ground-based observations will advance our understanding of 

the linkages among the scales shown in Fig. 1.

Canopy temperatures have proven useful to quantify crop 

stress in agronomic crops and there is expanding interest in 

the coupling of thermal measurements with spectral refl ec-

tance to provide a robust method of quantifying crop stress 

and development. Th e approaches developed by Hatfi eld 

(1983) and Moran et al. (1994) are examples of integrating 

measures of radiative emission and refl ection from canopies to 

estimate crop growth and yield. Th e development of simple 

two-source models by Norman et al. (1995) and the Dual 

Temperature Diff erence method developed by Norman et al. 

(2000) to consider explicit contributions of the soil and veg-

etation to the radiometric temperature and energy exchanges 

have great potential to improve evapotranspiration predictions 

from crop canopies.

Water Use Effi ciency
Water availability for agricultural systems is critical for 

optimum production. Th roughout the past century there 

have been a wide range of studies conducted on water stress, 

water use rates by crops, water balance in diff erent cropping 

systems, and methods to assess each of these using a variety 

of techniques. In the early 20th century Briggs and Shantz 

(1912, 1914), introduced the concept of water use effi  ciency 

(WUE), defi ned as the ratio of plant biomass produced rela-

tive to the quantity of water consumed. Th ey derived WUE 

values for numerous crop species using pot lysimetry, where 

water use was determined by measuring the water added 

through the growing season. Denmead and Shaw (1960, 

1962) advanced our understanding of interactive eff ects of 

soil water content and meteorological factors in availability 

of water to plants and impacts of water stress on productivity. 

Th e concept of WUE remains central to evaluation of agricul-

tural systems.

Th e impact of atmospheric humidity on WUE was elu-

cidated by Tanner and Sinclair (1983), who suggested that 

agroclimatologists and agronomists reconsider the role that 

WUE has in crop production effi  ciency. Th ey proposed that 

for full cover crops, atmospheric vapor pressure defi cit was a 

key determinant of dry matter (yield) produced per unit of 

transpiration (water use). Monteith (1994) suggested that 

WUE should be linked to broader resource capture effi  ciency 

and argued that capture and effi  cient use of CO2, water, light, 

and nutrients be linked as part of the analyses of crop growth. 

He summarized the development of these concepts from their 
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basis in two key assumptions about plant growth proposed 

by Blackman (1919). First, the rate at which leaves capture 

light energy is proportional to the total biomass and second, 

the rate of biomass accumulation is proportional to the rate 

of capture. Although WUE receives the most attention as a 

measure of crop response to water, linkage with other limit-

ing resources is critical to understand the dynamics of plant 

response to the environment.

Soil Microclimate
Soil provides the environment for plant roots and a diverse 

array of organisms and important nutrient cycling processes. 

Soil microclimate is predominately determined by the radia-

tion and water balances, soil properties (texture, structure), 

and the physical site (slope, aspect), but management prac-

tices can infl uence soil microclimate to produce conditions 

more favorable for processes of interest. In cold areas, it might 

be benefi cial to apply practices to increase soil temperature to 

extend the growing seasons for crops. In dry areas, it would 

be benefi cial to apply practices to conserve soil water content. 

In windy areas, it is benefi cial to modify the wind regime near 

the soil surface to reduce soil erosion and plant damage from 

moving soil particles. Early soil microclimate research focused 

on seedling establishment and nutrient cycling from a pro-

duction perspective. Today, such studies are equally focused 

on environmental and ecological aspects of agricultural 

systems. Th e root environment and soil–root interactions 

remains one of the least understood aspects of plant physiol-

ogy and remains a focus of active research. Soil and climate 

are discussed in detail in Steiner (2002).

Over the past few decades, conservation tillage systems have 

been developed and implemented worldwide to provide soil 

and water conservation in cropping systems. Th e impacts of 

retaining more residues on the soil surface through reduced 

tillage are complex and interactive (Steiner, 1994). Improved 

measurement systems such as time domain refl ectometry 

(TDR) and heat pulse methods allow precise measurements 

in space and time that can provide for better understand-

ing of heat and water fl ow processes and of the environment 

encountered by organisms in diff erent parts of the soil. Evett 

(1999) summarized key processes that can be manipulated to 

improve agronomic management outcomes.

In many models, eff ects of microclimate on nutrient 

cycling, seed germination, root elongation, and other pro-

cesses are calculated. However, few models address impacts 

that organisms may have in shaping their own environment, 

e.g., modifi cation of total soil porosity, pore size distribution, 

and pore continuity. Improved understanding of interactions 

of soil organisms with their microclimate will be essential 

to understand contributions of agriculture and natural eco-

systems to net emissions of greenhouse gases such as nitrous 

oxides and methane.

Flux Measurement and Mass Balance
Movement of oxygen, CO2, and water vapor to and from 

the soil and plants is essential to sustain biological and eco-

logical functioning. Water vapor concentration would accu-

mulate and suppress ongoing evaporation if the vapor were 

not moved from near the evaporating surfaces to other parts 

of the atmosphere. Similarly, as plants photosynthesize and 

deplete the air around them of CO2, photosynthesis would 

decrease if the supply of CO2 were not replenished from other 

parts of the atmosphere. Continual movement in the atmo-

sphere is driven by energy from the sun that causes heating, 

changes in air density, and movement from regions of higher 

to lower pressure. A number of methods developed over the 

past 50 yr to quantify atmospheric fl uxes remain viable for 

research today.

Aerodynamic Fluxes
Fluxes of energy, momentum, or gases in the lower atmo-

sphere have been described by the fl ux gradient adaptation of 

Fick’s Law of Diff usion (Fick, 1855). Flux gradient equations 

for momentum, heat, and water vapor are:
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where τ is the surface shear stress (kg m–1 s–2), H is the sen-

sible heat fl ux (W m–2), E is the water vapor fl ux (W m–2), ρa 

is air density (kg m–3), Cp is specifi c heat of air (J kg–1 K–1), 

and km, kh, and kq are eddy diff usivities for momentum, heat, 

and water vapor, respectively. Th e assumption that km = kh 

= kq has been the foundation for the development various 

forms of the energy exchanges. Monin and Obukhov (1954) 

described some of the basic relationships of turbulent mix-

ing in the lower atmosphere that are still being used today. 

Businger et al. (1971) further refi ned the understanding of 

the impacts of stable and unstable atmospheric conditions on 

the eddy diff usivity terms. Quantifi cation of the roughness 

height and displacement lengths for crop canopies was a criti-

cal theoretical advance to which the worldwide community of 

agricultural meteorologists contributed (Inoue, 1963). Early 

studies often used strip chart recorders to obtain data from 

fi eld studies; use of digital recorders has dramatically increased 

the magnitude of data collection for atmospheric fl ux analy-

ses.

Th e eddy covariance method was proposed by Swinbank 

(1951) as a direct measure of fl ux based on correlation 

between variation in an entity of interest to variation in the 

vertical vector of wind fl ux in fully turbulent systems. Th is 

method requires very rapid response and very precise instru-

mentation, and application of the method expanded rapidly 

in the latter portion of the 20th century. Th e eddy covari-

ance method was adopted as the standard fl ux measurement 

method by FLUXNET, a global network, and the measure-

ments and analyses from this network have contributed 

greatly to understanding of the C cycle and earth–atmosphere 

processes (Baldocchi et al., 2001; Law et al., 2002).

Challenges remain in application of all aerodynamic meth-

ods. Baker (2003) identifi ed surface-fl ux exchange measure-

ment as one of the “recalcitrant problems in environmental 

measurement,” in particular diffi  culties in closing the energy 
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balance and in achieving the assumptions of stationarity 

and surface homogeneity required for the eddy covariance 

method. Flux relationships for diff erent surfaces were recently 

reviewed by Prueger and Kustas (2005), who summarized 

the current use of these approaches in soil–plant–atmosphere 

studies.

Carbon Dioxide Fluxes
One of the fi rst studies combining CO2 measurements 

with aerodynamic fl ux measurement was reported by Lemon 

(1960). Th is study, combining wind velocity gradients with 

CO2 gradients over a corn canopy, was one of several stud-

ies conducted in Ellis Hollow, New York, that quantifi ed 

exchanges above and within the canopy (Wright and Lemon, 

1966). Th ese studies set the pathway for subsequent research 

over the course of the next decades. In a recent overview, 

Welles and McDermitt (2005) traced the history of CO2 

measurements including the development of the fast response 

CO2 sensors that are being used today as part of several 

large-scale C exchange studies. Th e combination of the fast 

response CO2 and H2O vapor sensors have begun to provide 

new insights into the dynamics of crop surfaces that are being 

used to estimate regional scale fl uxes of water and C.

Carbon dioxide fl uxes from agricultural systems have been 

studied intensively as part of the Amerifl ux program and 

the North American Carbon Program. Th ese programs have 

attempted to document C fl uxes in diff erent systems. Verma 

et al. (2005) provide an example of comprehensive fl ux mea-

surement for irrigated and rainfed agricultural systems. Baker 

and Griffi  s (2005) illustrate how eddy covariance and mass 

balance techniques can be linked to provide an analysis of 

the energy and C exchanges for corn and soybean canopies. 

Meyers and Hollinger (2004) showed it was possible to com-

bine energy and C fl ux measurement to document storage 

terms within plant canopies. Such studies show that once elu-

sive parameters in the expanded energy balance can be quanti-

fi ed through the use of the newer techniques.

Evaluation of the potential impact of increasing atmo-

spheric CO2 on plants has been addressed in free air CO2 

enrichment (FACE) experiments. Th e FACE methodol-

ogy was developed to extend understanding of impacts of 

elevated CO2 on plants from controlled environments to 

more natural fi eld environments through complete growing 

seasons (Hendrey et al., 1993; Hendrey and Kimball, 1994). 

Kimball (1983) summarized the information available from 

small chamber studies and suggested that doubling of CO2 

from 330 to 660 μmol mol–1) would increase C-3 plant yield 

by 33% and C-4 plants by 10% without any other limita-

tions to plant growth. In a later summary of responses under 

free-air enrichment, Kimball et al. (2002) concluded that 

plant responses may not be as large as previously predicted. 

Leakey et al. (2006) recently reported a 50% increase in CO2 

levels (from 376 to 542 μmol mol–1) produced no signifi cant 

response in a well-watered maize crop. Allen et al. (2003) 

showed for soybean that doubling of CO2 increased the water 

use effi  ciency. Further application of the FACE technol-

ogy coupled with crop simulation models will continue to 

provide information about how crops and other ecosystems 

may respond to climate change scenarios. Long et al. (2004) 

and Ainsworth and Long (2005) synthesized fi ndings from 

numerous FACE experiments over the last two decades and 

found that crop yields increased less than had been antici-

pated based on earlier controlled environment studies.

Remote Sensing
Remote sensing has provided a method to quantify spatial 

and temporal dynamics of crops and the response of crops 

to various management scenarios. Development of remote 

sensing methods over the last century is detailed by Hatfi eld 

et al. (2008) as part of this series of papers. Th e applications 

of remote sensing technology to agroclimatological problems 

have focused on methods that quantify biomass (living or 

dead) or leaf area present on the soil surface for input into 

energy balance models, direct estimation of ET for regional 

scale water use models, or the quantifi cation of crop stress or 

water requirements. A review of these approaches for dryland 

crops was prepared by Hatfi eld et al. (2004) and a special 

issue of Photogrammetic Engineering and Remote Sensing, 

Volume 69 (Hatfi eld and Hart, 2003) evaluates progress in 

applying remote sensing techniques to various agronomic and 

natural resource problems.

Remote sensing technologies are providing better spatial 

resolution that is allowing researchers to develop relationships 

of spectral signals to specifi c land areas, rather than an average 

signal across multiple land uses. Similarly, technologies are 

being developed and applied within fi elds that allow managers 

to address factors that are spatially distributed within the fi eld 

that aff ect plant growth and yield. Some of the limiting fac-

tors being identifi ed and managed include soil micro-climate, 

including variability of soil texture and the soil water balance 

or spatial patterns of soil compaction and associated problems 

with poor aeration. Integration of multiple platforms to pro-

vide a more comprehensive “view” of the agricultural system 

and linkage of this information into assessment tools off ers 

potential for improved effi  ciency of agricultural production. 

While most agricultural remote sensing research has focused 

on use of broad band or hyperspectral refl ectance data, inclu-

sion of fl uorescence might provide more information about 

vegetation and plant stress (Corp et al., 2003; Campbell et al., 

2007).

Emerging Techniques
Advances continue in the development of techniques to 

quantify the energy and gas exchanges in the soil–plant–

atmosphere continuum. Methods such as relaxed eddy accu-

mulation, scalar fl uxes, inverse Lagrangian fl uxes, or surface 

renewal have begun to appear in the literature. Th ese are sum-

marized in recent reviews by Denmead et al. (2005), McInnes 

and Heilman (2005), Meyers and Baldocchi (2005), and Paw 

U et al. (2005). Zhang et al. (2006) combined continuous 

stable isotope measurements with micrometeorological mea-

sures to partition net CO2 exchange into photosynthesis and 

respiration components.

Development and application of Light Detection and 

Ranging (lidar) systems with expanded spatial and temporal 

resolution have allowed more detailed characterization of the 

vertical and horizontal structure of the atmosphere. Cooper et 

al. (2006) determined the mass exchange in the stable bound-
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ary layer using a high resolution Raman lidar to measure 

water vapor fl uxes in the lower 75 m of the atmosphere. Lidar 

has been combined with eddy covariance and footprint mod-

els to evaluate three-dimensional fi elds of moisture movement 

in the lower atmosphere (Cooper et al., 2003). Eichinger 

and Cooper (2007) utilized lidar measurements to calculate 

spatially resolved LE, H, and virtual potential heat fl ux over 

agricultural fi elds. Th e ability to quantify the fl uxes of water 

and heat in three dimensions above a surface will continue 

to provide new insights into the dynamics of the coupling 

between the surface and the atmosphere. As emerging meth-

ods increase our ability to quantify energy and mass exchanges 

at the earth’s surface, the challenge for agronomists will be 

to link with plant physiologists, agricultural meteorologists, 

and others to eff ectively apply these and other approaches to 

understanding complex interactions of plants with the soil 

and atmosphere.

Incorporating Climate Information 
into Decision Making

Agronomic Models
Th e WUE approaches pioneered by Briggs and Shantz 

(1912, 1914) evolved into regression approaches to crop 

yield forecasting. By the 1960s the knowledge base within 

agricultural meteorology and plant physiology were maturing 

along with the evolution of computer technologies. Th is led 

to development of mathematical descriptions of plant growth 

(Radford, 1967; Duncan et al., 1967; France and Th ornley, 

1984) that were later incorporated into process-oriented crop 

growth models.

A soil water balance model that partitioned energy into 

transpiration and soil evaporation based on leaf area index of 

the crop (Ritchie, 1972) was incorporated into several early 

crop models developed at the USDA and Texas Agricultural 

Experiment Station in Temple, TX, and that approach 

remains a key component of many crop, range, and natural 

resource models used today. Another major center of crop 

model development was at Wageningen University (de Wit 

and Penning de Vries, 1985; Penning de Vries, 1982). A com-

prehensive overview of models developed to support a wide 

range of production, management, and economic analyses 

and decision-support applications is beyond the scope of this 

article and readers are referred to Ahuja et al. (2002) for fur-

ther information.

As the focus of agricultural research and agroclimatology 

broadened from a production focus to incorporate a range of 

environmental concerns, modelers incorporated functions for 

nutrient cycling, soil C dynamics, tillage systems, and other 

management practices. Under the Decision Support System 

for Agrotechnology Transfer framework (www.mic.hawaii.

edu/dev_tech/software/dssat.html; verifi ed 11 Dec. 2007), a 

suite of models along with default data bases were compiled 

allowing new users to effi  ciently begin crop modeling eff orts 

(Jones et al., 2003). Formal and informal networks of model-

ers (e.g., International Consortium for Agricultural Systems 

Applications, www.icasa.net; verifi ed 11 Dec. 2007) result in 

rapid exchange of new modules and exchange of development 

and validation data sets.

Weather Generators

Development of synthetic weather generators (e.g., Nicks 

and Harp, 1980; Richardson, 1981) in parallel with develop-

ment of diverse crop and natural resource models, was an 

important advance that facilitated scenario analysis (Semenov, 

2006). Garbrecht and Zhang (2003) showed that because of 

inherent characteristics of random number generators, screen-

ing the generated precipitation to ensure representation of 

the climate of interest allows for shorter simulation duration 

and greater ability to simulate subtle changes in precipitation 

such as those associated with seasonal forecasts. Carlini et al. 

(2006) developed a library to generate synthetic precipitation 

data for future crop modeling applications.

Seasonal Climate Forecasts
While knowing the next season’s climate has long been a 

dream of agriculturalists, today there is reason for optimism 

that our ability to predict future seasonal climates is improv-

ing. Th e El Niño phenomenon was observed in the 19th cen-

tury, and the Southern Oscillation Index (SOI) was quantifi ed 

in the late 19th century. Sivakumar (2006) provided an over-

view of early studies of climate anomalies and development of 

climate forecasting, particularly for developing regions of the 

world.

Operational forecasts are being made by various groups 

around the world. Th e International Research Institute for 

Climate and Society produces widely used seasonal climate 

forecasts (http://iri.columbia.edu/climate; verifi ed 11 Dec. 

2007). Th e Queensland Department of Primary Industry 

and the Commonwealth Bureau of Meteorology produces 

seasonal climate forecasts based on ENSO and SOI signals for 

Australia (www.bom.gov.au/climate/ahead; verifi ed 11 Dec. 

2007), or worldwide (www.longpaddock.qld.gov.au/index.

html; verifi ed 11 Dec. 2007). Th e U.S. National Oceanic 

and Atmospheric Administration’s Climate Prediction Center 

(www.noaa.gov/climate.html; verifi ed 11 Dec. 2007) releases 

seasonal climate forecasts covering the coming year for the 

United States and are developing North American forecast 

products.

Because forecasts are a relatively new product, and the 

forecasts are being released to user groups outside the tradi-

tional meteorology community, new methods for evaluation 

are needed. Schneider and Garbrecht (2003a, 2003b) devel-

oped indices to evaluate seasonal forecasts for agricultural 

applications. Th eir recent analyses of forecasts from the U.S. 

National Weather Service (Schneider and Garbrecht, 2006) 

indicate the results depend on forecast variable, direction 

of forecast (wetter/drier, warmer/cooler), season, and fore-

cast lead time. Overall, in the Desert Southwest, southern 

and eastern Texas, the Gulf Coast, Florida, and parts of the 

Pacifi c Northwest, temperature forecasts have relatively high 

eff ectiveness, primarily in November through July and pre-

cipitation forecasts have moderate eff ectiveness in October 

through February, for lead times up to about half a year. For 

the rest of the United States, only temperature forecasts show 

some eff ectiveness at longer lead times. Lack of skill in sea-

sonal climate forecasts was also identifi ed as a limitation for 

DEMETER forecasts for Europe and New Zealand (Semenov 
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and Doblas-Reyes, 2007) and for many developing countries 

(Sivakumar, 2006).

For the regions with high “eff ectiveness,” seasonal climate 

forecasts may have considerable water resource and agricultural 

implications, but questions remains of how to downscale and 

interpret the impact of forecasts for applications at a local level 

(Steiner et al., 2004). Hansen (2002) discussed many chal-

lenges in matching appropriate forecast information to climate 

sensitive responses that are important to particular decision 

makers. Applications involving crop models are impeded by 

divergence in the spatial and temporal scales of the forecasts 

relative to the input requirements of models, as well as the 

nonlinear response of plants to climate (Hansen et al., 2006a).

Applications of Seasonal Climate Forecasts
Research conducted in the 1970s by J.I. Stewart and oth-

ers (Stewart and Hash, 1982; Stewart and Kashasha, 1984; 

Stewart and Faught, 1984; Stewart, 1988) pioneered the 

concept of response farming. Response farming was based 

on identifi cation of correlations between date of onset of 

the rainy season with length of the growing season and total 

seasonal precipitation. Such relationships gave an early indica-

tion of the type of season to be expected. With early onset, 

and in anticipation of a good rainy season, longer growing 

season crops could be planted and higher level of inputs 

could be purchased. With late onset indicating higher prob-

ability of low rainfall, a conservative management system 

could be followed to ensure food security and minimize eco-

nomic risks. Response farming is generally most applicable to 

Mediterranean and monsoonal climates, where virtually all of 

the annual precipitation comes in the rainy season; it is less 

applicable to continental climates.

Stewart’s work provided the basis for later research by 

Sadras et al. (2003), who developed systems for the southeast 

Australia Mallee region to adjust seasonal management based 

on April precipitation. Phillips and McIntyre (2000) identi-

fi ed signifi cant correlations of ENSO to rainfall variability 

in unimodal and bimodal regions of east Africa, particularly 

relating to length of season. Phillips et al. (2002) later ana-

lyzed national records of planted area for grain in Zimbabwe, 

and found that farmers, in aggregate, reduced planted area 

during an El Niño year when a poor season was forecasted, 

compared with increased planted area during a La Niña year 

when a favorable season was forecasted.

Comprehensive summaries of research and applications 

related to seasonal climate forecasts with application to agri-

culture and natural resource management were reported in 

Muchow and Bellamy (1991) and Hammer et al. (2000). 

Hammer et al. (1996) reported that tactical management 

based on fi ve phases of the SOI increased profi t and reduced 

risk compared with fi xed management in Australian wheat 

regions. Another approach uses analog climate years, based on 

a climate indicator. For instance, the Queensland Center for 

Climate Applications contrasted scenarios for the fi ve phases 

of the SOI index (Stone et al., 1996) by selecting all years in 

the historical record that match the current phase of the SOI 

as analogs for the probable climate for the upcoming season.

Operational climate forecasts off er potential to guide pro-

duction decisions, such as crop species or cultivar selection, 

fertility management, area to be planted, pest management, 

intensity and timing of grazing and purchase, sale, or move-

ment of animals. Management decisions related to marketing, 

labor, and diversifi cation, and regional decisions relating to 

input supply, markets, transportation, storage, community 

health (e.g., Bi et al., 1998) or drought preparedness (Dilley, 

2000; Finan and Nelson, 2001) could also be guided by cli-

mate forecasts. To move forward, continued improvement 

and evaluation of forecasts skill are needed. Forecasting tools 

for regions that gain little from current forecasts and forecasts 

of extreme events should be a focus for further work in the 

climatology and agroclimatology communities. Uncertainty 

analysis for scenario simulation will be required as we develop 

tools to assess tradeoff s among multiple objectives and as we 

scale up to whole farm or landscape context. A key limitation 

that must be addressed is methods to communicate proba-

bilistic outcomes and engaging farmers or other end users as 

partners in development of tools to support decision-making.

Because soil water depletion is a major component of crop 

water use and soil water is highly variable at planting time in 

many regions, opportunities to integrate measurement of soil 

water content at planting with use of climate forecasts should 

be investigated. Robinson and Butler (2002) found that pre-

plant soil water content provided the best forecast of dryland 

crop yields in the northern Australian grainbelt, but relatively 

few farmers accurately measured soil water content before 

planting. Before turning to seasonal climate forecast to reduce 

risks, there usually will be greater return to fi rst analyzing risks 

associated with the current management system, adopting good 

agronomic practices, and implementing relatively straightfor-

ward monitoring (such as soil water or soil nutrient contents) 

into decision-making processes. Carberry et al. (2002) have 

worked with Australian farmers who have had some successes in 

using of seasonal climate forecasts in farm level decision-mak-

ing, FARMSCAPE. Th eir system combined soil monitoring 

and crop simulation with the climate forecasts, and involved 

farmers, advisors, and researchers working together closely.

FUTURE DIRECTIONS

Driving Forces
As our understanding increases and societal priorities 

change, our knowledge of agroclimatology is being applied 

to new issues. Th ere is rapidly increasing knowledge of and 

attention to the science of climatology and increasing pres-

sure to redefi ne the science of agronomy to provide a balance 

of production, economic, environmental, and social criteria 

for evaluation at the fi eld and farm scales as well as for the 

agricultural sector as a whole. Although the trend over past 

decades has been toward large-scale production of standard-

ized commodities, many of today’s consumers are demanding 

more information about their food products and expressing 

preferences for particular production practices within the 

marketplace as well as the regulatory environment. With 

vast and growing human populations on the earth, there is 

increased pressure on water resources, food, energy, and envi-

ronmental services. Th e recent rapid development of biofuels 

as a political, economic, and social priority, along with the 

rapid increase in prices of petroleum and other fossil fuels, has 
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intensifi ed the debate about tradeoff s between food, feed, fuel, 

fi ber, and environmental function of agricultural systems.

Increasingly agronomy must be able to address multiple 

objectives and tradeoff s at farm to global scales (Hatfi eld, 

2005). Stigter (2007) set forth a framework that spans from 

basic agrometeorological sciences to agrometeorological ser-

vices to support decision making. He emphasized the need for 

better dispersion of knowledge to the farm level and applica-

tions that use existing information better through improved 

determination of the decision-maker needs, training of agro-

meteorological extensionists, evaluation of the policy environ-

ment needed to foster success, and explicit evaluation of the 

agrometeorological knowledge base for technologies and areas 

of scientifi c knowledge that need to be moved to operational 

status. Reynolds et al. (2007) identifi ed key lessons in devel-

oping a new framework for science for dryland development 

that are equally relevant to advancing the fi eld of agroclima-

tology. Researchers and practitioners must: (i) adopt an inte-

grated approach, (ii) be aware of slowly evolving conditions, 

(iii) recognize nonlinear processes, (iv) anticipate cross-scale 

interactions, and (v) value local knowledge.

One of America’s early environmentalists, George Perkins 

Marsh, wrote Man and Nature (originally in 1864), a sober-

ing account of the multitude of unintended consequences of 

man’s actions on nature, including the impacts of agriculture.

Th e felling of the woods has been attended with momen-

tous consequences to the drainage of the soil, to the 

external confi guration of its surface, and probably, also, 

to local climate; …

George Perkins Marsh, 1865, Man and Nature

A signifi cant eff ort for future agroclimatologist will be on 

development of strategies and technologies to restore nature’s 

function impaired by past practices, mitigate unintended 

consequences of current practices, and develop methods to 

better evaluate the range of likely outcomes associated with 

proposed alternative technologies and practices.

Research Challenges

Adapting to and Mitigating Climate Change
Th e Mauna Loa observation of increasing CO2 in the 

atmosphere was fi rst published in 1976 (Keeling et al., 1976). 

Although the possible linkage between atmospheric CO2 con-

centration and the energy balance (now called the greenhouse 
eff ect) was raised by Arrhenius (1903), the Mauna Loa data 

were the fi rst to raise widespread scientifi c and public aware-

ness of increasing concentrations of CO2 in the atmosphere. 

Keeling et al.’s work triggered concerns about the greenhouse 

eff ect and potential global climate change, leading to a tre-

mendous research focus on the earth–ocean–atmosphere 

system from the 1970s to the present. Th e recent reports from 

the International Panel on Climate Change have indicated 

that the evidence for climate change is strong and that anthro-

pogenic sources are a likely causal factor (IPCC, 2007a), that 

likely impacts on temperature and precipitation will have 

signifi cant impacts on agriculture, including the most nega-

tive impacts on the poorest populations (reduced food secu-

rity, inadequate potable water, increased health risks) (IPCC, 

2007b), and that agriculture can play a signifi cant role in 

mitigating climate change, particularly through reduced emis-

sions of methane and nitrous oxide gases (IPCC, 2007c). 

Unlike prior IPCC reports, which focused on C sequestration 

in forestry, increased soil C sequestration was identifi ed as a 

viable mitigation strategy.

Many adaptation strategies proposed for agriculture also 

have potential to contribute to mitigation of greenhouse gas 

emissions (Olesen, 2006). Additionally, many of the promis-

ing mitigation strategies for agriculture would provide impor-

tant cobenefi ts such as increased water and nutrient holding 

capacity and enhanced soil biodiversity with increased soil 

C levels, reduced risk of erosion with increased crop resi-

dues, and improved N use effi  ciency and reduced nutrient 

contamination with improved N management (Rice, 2006). 

Bonan (2002) described in detail the processes at multiple 

scales by which landscapes aff ect and are aff ected by climate. 

Understanding these processes provides the scientifi c basis for 

adaptation and mitigation strategies.

Th e potential for managing agriculture, forestry, and ecosys-

tems to “sequester” C from the atmosphere has greatly infl u-

enced agronomic research and will continue to be a focus of 

scientifi c, policy, and private sector attention. Th e practicality 

of C sequestration in the soil remains controversial because of 

the diffi  culty in compiling quantitative inventories and moni-

toring changes in soil C. Th e role of soil processes in the state 

and fl ux of other greenhouse gases is even less understood. 

Lokupitiya and Paustian (2006) reviewed national inventory 

methods for soil greenhouse gas emissions and discussed chal-

lenges and complexities that must be a high priority research 

area in coming years.

While a great deal of attention has been given through the 

years to eff ects of soil microclimate on N transformations in 

the soil, particularly nitrifi cation and denitrifi cation, far less 

attention has been paid to soil organisms and processes that 

produce methane and nitrous oxide. Because of the impor-

tance of these gases in the global atmospheric processes, they 

will continue to receive increased attention (Duxbury, 1994, 

Kroeze et al., 1999). Comprehensive studies that address the 

spatial and temporal interactions in the C and N cycles for 

major land uses, including cropping systems, range and pas-

tures, and forests will be one of the challenges ahead for agro-

climatologists and their collaborators.

Climate change impacts on agricultural production have 

serious implications for food security on a global basis (Parry 

et al., 1999). Increasing CO2 levels have been shown to 

impact competitiveness of invasive species (Ziska, 2003), 

weed response to glyphosate (Ziska et al., 1999), and many 

other processes. Changing CO2 concentration also impacts 

species composition and forage quality in rangelands (Morgan 

et al., 2004; 2007). Such studies represent some of the many 

challenges that agroclimatologists should address as part of 

future scenarios analyses.

Enhancing Resilience to Extreme Events
Numerous scientists have documented changes in annual 

and seasonal mean precipitation and temperature during 

the 20th century, and also in precipitation and temperature 
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extremes (Easterling et al., 2000; Frei et al., 1999; Groisman 

et al., 2001; Karl and Knight, 1998; Kunkel et al., 1999). 

Th e SWCS (2003, 2007) convened panels who determined 

that the historic record exhibits increased frequency of intense 

precipitation at the end of the 20th century and determined 

that the magnitude was such that changes in agricultural con-

servation planning and practice may be required to protect 

soil and water resources. Th e SWCS (2003) assessment sum-

marized major observed climate changes for the contiguous 

United States to include many factors of great concern to agri-

culture and natural resource management, including higher 

minimum temperature, decreased spring snow cover in the 

West, increased mean precipitation, increased heavy rains, and 

increased high streamfl ow events in the eastern United States. 

Changes in extreme weather are likely related to interdecadal 

oscillations in the oceans (e.g., Greene et al., 2007) as well as 

by longer-term global change (IPCC, 2007a).

Most studies focus on changes of extreme precipitation 

events, but changes in temperature extremes also have seri-

ous implications for ecosystems, agriculture, and human well 

being. Warmer minimum temperatures may cause problems 

with vernalization of some crops. Absence of freezing temper-

atures in some mid-latitude regions may signifi cantly change 

the insect and disease populations for agriculture as well as 

for human populations and natural ecosystems. Increased 

warm temperatures and heat waves will require adaptive prac-

tices to reduce wildfi re risks in grassland and forest systems 

and will increase the need for more drought-tolerant crops. 

Warming temperatures and the related decline of glaciers in 

the many regions of the world that rely on snowmelt to meet 

year-round water requirements will leave these regions more 

vulnerable during persistent drought periods.

Monitoring and Assessing Agriculture in the Environment
Agriculture increasingly faces trade-off s among diff erent 

food–fi ber–fuel and ecosystem enterprises, but lacks the tools 

to comprehensively assess short-term and long-term costs 

and benefi ts of alternative strategies. Agriculturalists at all 

levels need to identify new production, marketing, and policy 

approaches to simultaneously sustain the resource base and 

support economic viability of rural households and communi-

ties. In the policy arena at international, national, state, and 

local levels, market mechanisms are being explored to address 

short- and long-term environmental concerns including water 

quantity and quality, greenhouse gas mitigation, air quality, 

farmland protection and green space preservation, wildlife 

habitat and species protection, and others. In developing and 

implementing such market based instruments, great chal-

lenges exist in inventory of existing condition, monitoring of 

change in condition, and estimating desired benefi ts provided 

by particular management practices.

Remote sensing technologies and a wide range of agricul-

tural, ecological, and hydrologic models have an important 

role to play in development and implementation of envi-

ronmental markets as they evolve over the next decades. 

A special issue of Agricultural Systems (Perez et al., 2007) 

focused on how agroclimatology researchers and crop model-

ers need to interact with social scientists to address challenges 

to help make C sequestration markets work for Africa’s rural 

poor. Schlenker et al. (2007) quantifi ed the impacts of water 

availability and degree days on agricultural land values in 

California. As pressure on water resources increases, analyses 

such as this can play a role in determining the value of water 

rights that might be transferred from agriculture to other sec-

tors through rental, lease, or sale.

Informing Agricultural Decision Making
Since the 1970s and 1980s, support of agricultural decision 

making through the application of crop models has been a 

goal of researchers. McCown et al. (2002) developed a special 

issue of Agricultural Systems that probed the enigma of lack 

of adoption of crop models by farmers and other agricultural 

decision makers. Many of the papers in that issue identifi ed 

the need for more focus on the interactions of social and 

technical issues and for participatory approaches where both 

the researcher and the decision maker are engaged in learning 

and exchange of information. In a special issue on apply-

ing climate prediction to agriculture (Hansen et al., 2006b), 

Sivakumar (2006) identifi ed several areas that need attention 

to advance the use of climate information particularly to 

smallholder farmers. Th ese include improved forecast accu-

racy, quantifying the evidence of forecast benefi t, enhanced 

stakeholder participation, assessing adoption failures for les-

sons learned, exploring regional market and storage applica-

tions, and addressing institutional and policy issues. Vogel 

and O’Brien (2006) emphasized that application of climate 

information must consider the diverse multiple stressors 

that farmers face in addition to climate uncertainty and 

the resources and coping mechanisms available to respond. 

Cabrera et al. (2007) emphasized that the value of climate 

information is impacted by farm policy and the risk aversion 

or tolerance of individuals. In their assessment for peanut–

cotton–corn systems in Florida, current farm policies in the 

United States decreased the value of climate forecasts because 

other policy-related considerations were driving decision mak-

ing. For risk adverse farmers, the highest benefi t of a climate 

forecast was realized because of taking better advantage of 

favorable forecast years.

The Discipline of Agroclimatology
Th ere has never been a greater need for the development 

and application of agroclimatological information to solv-

ing diverse agricultural and environmental problems. Th e 

solutions to today’s problems require that agroclimatologists 

work in collaboration with broad interdisciplinary and multi-

sectoral teams. While the needs are large, the availability 

of training in agroclimatology is diminishing, as fewer and 

fewer universities maintain critical mass required to off er an 

advance degree program in agroclimatology. Programs that 

are off ered may be located in soils, agronomy, geography, 

or other academic departments and are diffi  cult to identify 

through graduate studies websites. Th e loss of critical mass 

in academic agroclimatology programs was raised by Decker 

(1994) and remains a concern. For the universities that main-

tain advanced agroclimatology and agricultural meteorology 

programs, it will be increasingly important to train students 

not only in mathematics and biophysical sciences, but also 

to provide training and practical experiences in conducting 
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integrated systems research, communications, and team skills. 

Given the high level of creativity and productivity indicated 

by the high proportion of “citation classics” (Table 2) that 

were published by early career scientists, it is urgent that a 

continued stream of high caliber students be attracted into 

advanced studies in agroclimatology.
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