5 research outputs found

    Proximity-induced screening and its magnetic breakdown in mesoscopic hybrid structures

    Full text link
    We derive a general microscopic expression for the non-linear diamagnetic current in a clean superconductor-insulator-normal metal structure with an arbitrary interface transmission. In the absence of electron-electron interactions in the normal metal the diamagnetic response increases monotonously with decreasing temperature showing no sign of paramagnetic reentrance down to T=0. We also analyze the magnetic breakdown of proximity induced Meissner screening. We demonstrate that the magnetic breakdown field should be strongly suppressed in the limit of small interface transmissions while the linear diamagnetic current does not depend on the transmission of the insulating barrier at low enough temperatures.Comment: 7 pages, 2 figure

    Overscreening Diamagnetism in Cylindrical Superconductor-Normal Metal-Heterostructures

    Full text link
    We study the linear diamagnetic response of a superconducting cylinder coated by a normal-metal layer due to the proximity effect using the clean limit quasiclassical Eilenberger equations. We compare the results for the susceptibility with those for a planar geometry. Interestingly, for R∼dR\sim d the cylinder exhibits a stronger overscreening of the magnetic field, i.e., at the interface to the superconductor it can be less than (-1/2) of the applied field. Even for R≫dR\gg d, the diamagnetism can be increased as compared to the planar case, viz. the magnetic susceptibility 4πχ4\pi\chi becomes smaller than -3/4. This behaviour can be explained by an intriguing spatial oscillation of the magnetic field in the normal layer

    The excitation spectrum of mesoscopic proximity structures

    Full text link
    We investigate one aspect of the proximity effect, viz., the local density of states of a superconductor-normal metal sandwich. In contrast to earlier work, we allow for the presence of an arbitrary concentration of impurities in the structure. The superconductor induces a gap in the normal metal spectrum that is proportional to the inverse of the elastic mean free path l_N for rather clean systems. For a mean free path much shorter than the thickness of the normal metal, we find a gap size proportional to l_N that approaches the behavior predicted by the Usadel equation (diffusive limit). We also discuss the influence of interface and surface roughness, the consequences of a non-ideal transmittivity of the interface, and the dependence of our results on the choice of the model of impurity scattering.Comment: 7 pages, 8 figures (included), submitted to PR

    Ring-shaped Andreev billiards in quantizing magnetic fields.

    Get PDF
    We present a detailed semiclassical study of a clean disk-shaped insulator–normal-metal–superconductor hybrid system in a magnetic field. It is based on an exact secular equation that we derived within the microscopic Bogoliubov–de Gennes (BdG) formalism. Results obtained from a classification of electron and hole orbits are in excellent agreement with those from an exact numerical diagonalization of the BdG equation. Our analysis opens up different possibilities for determining thermodynamic properties of mesoscopic hybrid systems
    corecore