5,943 research outputs found
Sources of Relativistic Jets in the Galaxy
Black holes of stellar mass and neutron stars in binary systems are first
detected as hard X-ray sources using high-energy space telescopes. Relativistic
jets in some of these compact sources are found by means of multiwavelength
observations with ground-based telescopes. The X-ray emission probes the inner
accretion disk and immediate surroundings of the compact object, whereas the
synchrotron emission from the jets is observed in the radio and infrared bands,
and in the future could be detected at even shorter wavelengths. Black-hole
X-ray binaries with relativistic jets mimic, on a much smaller scale, many of
the phenomena seen in quasars and are thus called microquasars. Because of
their proximity, their study opens the way for a better understanding of the
relativistic jets seen elsewhere in the Universe. From the observation of
two-sided moving jets it is inferred that the ejecta in microquasars move with
relativistic speeds similar to those believed to be present in quasars. The
simultaneous multiwavelength approach to microquasars reveals in short
timescales the close connection between instabilities in the accretion disk
seen in the X-rays, and the ejection of relativistic clouds of plasma observed
as synchrotron emission at longer wavelengths. Besides contributing to a deeper
comprehension of accretion disks and jets, microquasars may serve in the future
to determine the distances of jet sources using constraints from special
relativity, and the spin of black holes using general relativity.Comment: 39 pages, Tex, 8 figures, to appear in vol. 37 (1999) of Annual
Reviews of Astronomy and Astrophysic
Procoagulant activities of plasma factor VIIc and factor Xc are positively and independently associated with concentrations of the high-density lipoprotein apolipoprotein, apoA-II
On the role of magnetic reconnection in jet/accretion disk systems
The most accepted model for jet production is based on the
magneto-centrifugal acceleration out off an accretion disk that surrounds the
central source (Blandford & Payne, 1982). This scenario, however, does not
explain, e.g., the quasi-periodic ejection phenomena often observed in
different astrophysical jet classes. de Gouveia Dal Pino & Lazarian (2005)
(hereafter GDPL) have proposed that the large scale superluminal ejections
observed in microquasars during radio flare events could be produced by violent
magnetic reconnection (MR) episodes. Here, we extend this model to other
accretion disk systems, namely: active galactic nuclei (AGNs) and young stellar
objects (YSOs), and also discuss its role on jet heating and particle
acceleration.Comment: To be published in the IAU Highlights of Astronomy, Volume 15, XXVII
IAU General Assembly, August 2009, Ian F. Corbett et al., eds., 201
Performance analysis of cables with attached tuned-inerter-dampers
Cables are structural elements designed to bear tensile forces and experience vibration problems due to their slenderness and low mass. In the field of civil engineering, they are mostly used in bridges where the vibrations are mainly induced by wind, rain, traffic and earthquakes. This paper proposes the use of a tuned-inerter-damper (TID) system, mounted on cables to suppress unwanted vibrations. These are to be attached transversally to the cable, in the vicinity of the support, connected between the deck and the cable. The potential advantage of using a TID system consists in the high apparent mass that can be produced by the inerter. Our analysis showed that the modal damping ratio obtained is much higher than in the case of traditional dampers or tuned mass dampers, leading to an improved overall response. An optimal tuning methodology is also discussed. Numerical results are shown with a cable subjected to both free and forced vibrations and the TID performance is improved when compared with equivalent dampers
Fludarabine as a cost-effective adjuvant to enhance engraftment of human normal and malignant hematopoiesis in immunodeficient mice
There is still an unmet need for xenotransplantation models that efficiently recapitulate normal and malignant human hematopoiesis. Indeed, there are a number of strategies to generate humanized mice and specific protocols, including techniques to optimize the cytokine environment of recipient mice and drug alternatives or complementary to the standard conditioning regimens, that can be significantly modulated. Unfortunately, the high costs related to the use of sophisticated mouse models may limit the application of these models to studies that require an extensive experimental design. Here, using an affordable and convenient method, we demonstrate that the administration of fludarabine (FludaraTM) promotes the extensive and rapid engraftment of human normal hematopoiesis in immunodeficient mice. Quantification of human CD45+ cells in bone marrow revealed approximately a 102-fold increase in mice conditioned with irradiation plus fludarabine. Engrafted cells in the bone marrow included hematopoietic stem cells, as well as myeloid and lymphoid cells. Moreover, this model proved to be sufficient for robust reconstitution of malignant myeloid hematopoiesis, permitting primary acute myeloid leukemia cells to engraft as early as 8 weeks after the transplant. Overall, these results present a novel and affordable model for engraftment of human normal and malignant hematopoiesis in immunodeficient mice
Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases.
The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.g., aggregated α-synuclein in SNCA gene multiplication or aggregated β-amyloid in APP mutations), their near universality at postmortem in sporadic PD and AD suggests they may alternatively represent common outcomes from upstream mechanisms or compensatory responses to cellular stress in order to delay cell death. These 3 conceptual frameworks of protein aggregation (pathogenic, epiphenomenon, protective) are difficult to resolve because of the inability to probe brain tissue in real time. Whereas animal models, in which neither PD nor AD occur in natural states, consistently support a pathogenic role of protein aggregation, indirect evidence from human studies does not. We hypothesize that (1) current biomarkers of protein aggregates may be relevant to common pathology but not to subgroup pathogenesis and (2) disease-modifying treatments targeting oligomers or fibrils might be futile or deleterious because these proteins are epiphenomena or protective in the human brain under molecular stress. Future precision medicine efforts for molecular targeting of neurodegenerative diseases may require analyses not anchored on current clinicopathologic criteria but instead on biological signals generated from large deeply phenotyped aging populations or from smaller but well-defined genetic-molecular cohorts
Ripple Texturing of Suspended Graphene Atomic Membranes
Graphene is the nature's thinnest elastic membrane, with exceptional
mechanical and electrical properties. We report the direct observation and
creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene
sheets, using spontaneously and thermally induced longitudinal strains on
patterned substrates, with control over their orientations and wavelengths. We
also provide the first measurement of graphene's thermal expansion coefficient,
which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work
enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure
Interfacial layering in a three-component polymer system
We study theoretically the temporal evolution and the spatial structure of
the interface between two polymer melts involving three different species (A,
A* and B). The first melt is composed of two different polymer species A and A*
which are fairly indifferent to one another (Flory parameter chi_AA* ~ 0). The
second melt is made of a pure polymer B which is strongly attracted to species
A (chi_AB 0). We then show
that, due to these contradictory tendencies, interesting properties arise
during the evolution of the interface after the melts are put into contact: as
diffusion proceeds, the interface structures into several adjacent
"compartments", or layers, of differing chemical compositions, and in addition,
the central mixing layer grows in a very asymmetric fashion. Such unusual
behaviour might lead to interesting mechanical properties, and demonstrates on
a specific case the potential richness of multi-component polymer interfaces
(as compared to conventional two-component interfaces) for various
applications.Comment: Revised version, to appear in Macromolecule
Cross infection control measures and the treatment of patients at risk of Creutzfeldt Jakob disease in UK general dental practice
AIMS: To determine the suitability of key infection control measures currently employed in UK dental practice for delivery of dental care to patients at risk of prion diseases. MATERIALS AND METHODS: Subjects: Five hundred dental surgeons currently registered with the General Dental Council of the UK. Data collection: Structured postal questionnaire. Analysis: Frequencies, cross-tabulations and chi-squared analysis. RESULTS: The valid response rate to the questionnaire was 69%. 33% of practices had no policy on general disinfection and sterilisation procedures. Only 10 of the 327 responding practices (3%) possessed a vacuum autoclave. 49% of dentists reported using the BDA medical history form but less than 25% asked the specific questions recommended by the BDA to identify patients at risk of iatrogenic or familial CJD. However, 63% of practitioners would refer such patients, if identified, to a secondary care facility. Of the 107 practitioners who were prepared to provide dental treatment, 75 (70%) would do so using routine infection control procedures. CONCLUSIONS: Most of the dental practices surveyed were not actively seeking to identify patients at risk of prion diseases. In many cases, recommended procedures for providing safe dental care for such patients were not in place
Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene
We study the realization in a model of graphene of the phenomenon whereby the
tendency of gauge-field mediated interactions to break chiral symmetry
spontaneously is greatly enhanced in an external magnetic field. We prove that,
in the weak coupling limit, and where the electron-electron interaction
satisfies certain mild conditions, the ground state of charge neutral graphene
in an external magnetic field is a quantum Hall ferromagnet which spontaneously
breaks the emergent U(4) symmetry to U(2)XU(2).
We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet
order parameter is given exactly by the leading order in perturbation theory.
On the other hand, the chiral condensate which is the order parameter for
chiral symmetry breaking generically obtains contributions at all orders. We
compute the leading correction to the chiral condensate. We argue that the
ensuing fermion spectrum resembles that of massive fermions with a vanishing
U(4)-valued chemical potential. We discuss the realization of parity and charge
conjugation symmetries and argue that, in the context of our model, the charge
neutral quantum Hall state in graphene is a bulk insulator, with vanishing
longitudinal conductivity due to a charge gap and Hall conductivity vanishing
due to a residual discrete particle-hole symmetry.Comment: 35 page
- …
