
In Good Company: Efficient Retrieval of the
Top-k Most Relevant Event-Partner Pairs

Dingming Wu1, Yi Zhu1, and Christian S. Jensen2

1College of Computer Science & Software Engineering, Shenzhen University, China
dingming@szu.edu.cn, zhuyi2016@email.szu.edu.cn

2Department of Computer Science, Aalborg University, Denmark
csj@cs.aau.dk

Abstract. The proliferation of event-based social networking (ESBN)
motivates a range of studies on topics such as event, venue, and friend
recommendation and event creation and organization. In this setting,
the notion of event-partner recommendation has recently attracted at-
tention. When recommending an event to a user, this functionality allows
recommendation of partner with whom to attend the event. However, ex-
isting proposals are push-based: recommendations are pushed to users at
the system’s initiative. In contrast, EBSNs provide users with keyword-
based search functionality. This way, users may retrieve information in
pull mode. We propose a new way of accessing information in EBSNs that
combines push and pull, thus allowing users to not only conduct ad-hoc
searches for events, but also to receive partner recommendations for re-
trieved events. Specifically, we define and study the top-k event-partner
(kEP) pair retrieval query that integrates event-partner recommendation
and keyword-based search for events. The query retrieves event-partner
pairs, taking into account the relevance of events to user-supplied key-
words and so-called together preferences that indicate the extent of a
user’s preference to attend an event with a given partner. In order to
compute kEP queries efficiently, we propose a rank-join based frame-
work with three optimizations. Results of empirical studies with imple-
mentations of the proposed techniques demonstrate that the proposed
techniques are capable of excellent performance.

1 Introduction

The recent proliferation of the event-based social networking (EBSN), as ex-
emplified by Meetup1 and Eventbrite2, has not gone unnoticed in the research
community, where substantial efforts have been devoted to the recommendation
of events [5, 12, 23, 24, 33], venues [2, 14–16, 20], and friends [17, 28, 31]. Unlike
previous recommendation techniques that each focus on recommending only one
type of items (either events or friends), event-partner recommendation [27] aims

1 http://www.meetup.com
2 http://www.eventbrite.com

2 D. Wu et al.

to recommend events together with partners to users. The rationale is that at-
tending an event with a partner may be more attractive to a user than attending
the event alone. Our put differently, a user may not attend an event if the user
has to do so alone. However, no matter which recommendation technique is used,
users receive information in a push mode, and the provided information is only
related to the users’ historical data. Yes, EBSNs also provide search services
that allow users to retrieve event information in response to query keywords.
This way users retrieve information in pull mode according to specified query
keywords.

We propose a new way of accessing information in the EBSNs that combines
push and pull modes, thus allowing users not only to conduct ad-hoc event
search, but also to receive recommended partners for retrieved events. To achieve
this goal, one may consider extending existing methods by first recommending
events to a user and then filter out irrelevant events according to given keywords.
However, this approach may produce empty results, since recommended events
are usually based on a user’s historical information while given keywords are ad
hoc and may not align with the historical data. We adopt a different tack: we
first retrieve relevant events w.r.t. given keywords, and then, for each relevant
event, we find an appropriate partner.

Hence, we propose a new kind of EBSN query that takes advantage of both
recommendation and search techniques. Taking into account user-specified key-
words and a user’s historical data, it retrieves event-partner pairs, such that the
events are relevant to the keywords and such that the query user is willing to
attend the events with the suggested partners. For instance, user “Mary” wants
to attend a “rock concert”. The query we propose retrieves k events relevant to
“rock concert” and suggests a partner for each event. This of query is called the
top-k event-partner (kEP) pair retrieval query. It differs from keyword queries
that retrieve relevant events without partners, and is also differs from event-
partner recommendation based on only the historical data, where ad-hoc query
keywords are not taken into consideration.

The kEP query can be modeled as a top-k join query that returns the k join
results (pairs of events and users) with the highest scores. A straightforward
method to process the kEP query is to first join events and the users and then, for
each event e, choose the pair (e, ui) with the highest so-called together preference
as a result candidate. Next, all the candidates are ranked according to a scoring
function, and the k candidates that score the highest are returned as the results.
However, this method is inefficient, since all possible combinations of events
and users are considered in the join process. One may consider to extend the
rank-join algorithm [10] to answer the kEP queries, yielding a method that is
more efficient than the straightforward method just described. The idea is to
scan input events and users ordered according to their scoring predicates. While
a scoring function might use textual relevance of descriptions of events to the
query keywords, there is no obvious scoring predicate for the partners with which
to attend events.

Title Suppressed Due to Excessive Length 3

We propose a rank-join based framework for computing kEP queries where
the scoring predicate for the partners (users) is the number of events that they
attended. Intuitively, users who have attended many events tend to have high
so-called together preferences, to be detailed in the next section. Two repre-
sentative join strategies, nested loop join and ripple join [7], are studied within
the framework. An empirical study offers evidence that the ripple join is better
than the nested loop join. To further improve the performance of the framework,
three optimizations are proposed: (1) an unpromising-event pruning technique
that removes encountered events that cannot enter the result, (2) a key partner
technique that quickly identifies results by exploiting a property of the scoring
function, and (3) an efficient partner computation technique that reduces the
computational cost of finding the partner with the highest together preference
for an event. To evaluate the proposed framework and optimizations, we con-
duct experiments with prototype implementations of the proposed techniques
using real data. The results offer insight into the properties of the techniques
and indicate that the paper’s proposal is useful in practice.

The rest of this paper is organized as follows. Section 2 formally defines
the top-k event-partner retrieval problem. Section 3 presents the framework.
The three optimizations are detailed in Section 4. We report on a performance
evaluation in Section 5. Finally, we cover related work in Section 6 and offer
conclusions and research directions in Section 7.

2 Problem Definition

An event-based social network (EBSN) can be modeled as a bipartite graph
G = (U,E,R), where U represents a set of users, E models a set of events
posted by the users, and R ⊆ U ×E is set of participation-relationships between
users and events, i.e., r = (u, e) ∈ R, u ∈ U, e ∈ E. Each event e ∈ E is associated
with a text document e.ψ that describes the content and features of the event.
Specifically, we will assume that a document is represented by a term vector [25].
The members of an event e are the users u who have joined e : {u|(u, e) ∈ R}.

The together preference [27] p(u∗, e, u) measures the probability that user
u∗ is willing to attend event e with user u, u∗ 6= u, i.e., user u is willing to be a
partner of u∗ at event e. Its definition is given in Equation 1, and it is motivated
by two observations. First, a user may wish to attend an event that is similar
to events that the user has previously participated in. Second, people tend to
join an event with a partner with whom they share common interests. In our
scenario, the common interests are captured by the common events that two
people have participated in.

p(u∗, e, u) =

∑
ei∈N(u∗,e) s(e, ei) · b(u∗, ei, u)∑

ei∈N(u∗,e) s(e, ei)
(1)

Function p(u∗, e, u) takes three arguments, i.e., a target user u∗, an event e,
and a partner user u. The range of p(u∗, e, u) is [0, 1]. Large values of p(u∗, e, u)
indicate that target user u∗ is very likely to attend event e with partner user u.

4 D. Wu et al.

In the definition, N(u∗, e) is the neighborhood of a pair of a user and an event
(u∗, e), which is the set of events ei that satisfy the following two conditions:
(1) user u∗ has attended event ei, and (2) the similarity s(e, ei) between the
documents of events e and ei is no less than a threshold τ . We define the similarity
s(e, ei) as the cosine similarity. However, the proposed method is independent
of the choice of the similarity measure. Any reasonable similarity function can
be adopted easily. Given a partner user u, a target user u∗, and an event ei,
b(u∗, ei, u) = 1 if u∗ and u have participated in event ei, i.e., (u∗, ei) ∈ R
and (u, ei) ∈ R; otherwise, b(u∗, ei, u) = 0. The denominator is the sum of the
similarities between event e and each event ei in the neighborhood N(u∗, e).
The numerator sums up the similarities between event e and the event ei in
neighborhood N(u∗, e) that u has participated in. The together preference is not
symmetric, i.e., p(u∗, e, u) 6= p(u, e, u∗). If N(u∗, e) = ∅, the together preference
p(u∗, e, u) is undefined, which means that no partner can be recommended for
u∗ for participating in event e. The together preference can be interpreted in
two phases. First, an event e is taken as a candidate event for user u∗ if some
of u∗’s previously attended events are similar to e, i.e, N(u∗, e) 6= ∅. Second, a
user u is considered a candidate partner w.r.t. u∗ and e if u has participated in
events in neighborhood N(u∗, e).

Example 1. Consider the EBSN in Figure 1, where there are five users U =
{u1, u2, · · · , u5} and five events E = {e1, e2, · · · , e5}. The participation rela-
tionship R between users and events is given by the edges. Table 1 shows
the term vectors of the documents of the events, and Table 2 shows the sim-
ilarities between the documents of the events. Given τ = 0.3, the neighbor-
hood of user-event pair (u4, e3), N(u4, e3) is {e2, e4, e5} because (i) user u4
has attended events e1, e2, e3, e4, and e5, and (ii) the similar (having similar-
ity no less than 0.3) events of e3 are e2, e4, and e5. The together preference
p(u4, e3, u3) = (0.5 + 0.6)/(0.5 + 0.3 + 0.6) = 0.79, since u3 has attended events
e2 and e5 in neighborhood N(u4, e3).

u1 u2 u3 u4 u5

e1 e2 e3 e4 e5

Fig. 1: Example EBSN

Event Term Vector

e1 t2 t3 t4 t9
e2 t1 t3 t7 t8
e3 t1 t3 t5
e4 t2 t3 t6 t9
e5 t1 t3 t4 t5 t6

Table 1: Term Vectors

e1 e2 e3 e4 e5
e1 1 0.2 0.2 0.7 0.3

e2 0.2 1 0.5 0.2 0.3

e3 0.2 0.5 1 0.3 0.6

e4 0.7 0.2 0.3 1 0.3

e5 0.3 0.3 0.6 0.3 1

Table 2: Similarities

A top-k most relevant Event-Partner pair retrieval (kEP) query Q =
(k, uq, ψq) takes three arguments: (i) a number k of requested event-partner
pairs, (ii) a query user uq, and (iii) a set of query keywords ψq. Let t(ψq, e.ψ)
be the textual relevance (e.g., defined using language models [22]) of event e
w.r.t. the query keywords ψq. For each e ∈ E, let ue be the user who maximizes
p(uq, e, u), i.e., ue = arg maxu∈U p(uq, e, u). The result of a kEP query contains
k event-partner pairs (e, u) with the highest score f(uq, ψq, e, u

e) (Equation 2).
The events in the result are distinct, but the same partner user may be paired

Title Suppressed Due to Excessive Length 5

with multiple events. The scoring function considers both textual relevance and
the together preference. Ties are broken arbitrarily.

The scoring function used in the paper takes the form of a weighted sum of
the textual relevance and the together preference. The techniques we propose
are, however, applicable to any scoring function that is monotone in terms of
both the textual relevance and the together preference. The kEP query tries
to find event-partner pairs (e, u) such that the events are relevant to the query
keywords and the query user is likely to participate in the events with partners.

f(uq, ψq, e, u
e) = α · t(ψq, e.ψ) + (1− α) · p(uq, e, ue)

s.t. t(ψq, e) ∈ [0, 1] ∧ p(uq, e, u
e) ∈ [0, 1] (2)

In the EBSN, some events may occur periodically, e.g., weekly or monthly. A
user may attend same such event multiple times. Hence, in the result of a kEP
query, events may exist that have been attended previously by the query user.
We do not exclude those events, since the query user is probably interested in
them and may attend them again.

Example 2. Continuing Example 1, given a kEP query Q with k = 2, uq = u4,
and ψq = {t1, t3}, the textual relevance of each event w.r.t. the query keywords
is shown in Table 3, and the neighborhoods of user-event pairs are shown in
Table 4 (given τ = 0.3). Given the query user u4, for each event e, we choose
user ue as the partner, given that the together preference p(u4, e, u

e) exceeds the
together preference of choosing any other user. Table 4 shows the partner user
for each event and the corresponding together preference. Given α = 0.5, the
top-2 event-user pairs of query Q are (e2, u3) and (e3, u3) with score 0.85 and
0.8, respectively.

Event t(ψq, e.ψ)

e1 0.4

e2 0.7

e3 0.8

e4 0.3

e5 0.6

Table 3: Textual Relevance

Event N(u4, e) ue p(u4, e, u
e)

e1 e4, e5 u5 0.7

e2 e3, e5 u3 1

e3 e2, e4, e5 u3 0.79

e4 e1, e3, e5 u3 1

e5 e1, e2, e3, e4 u3 0.8

Table 4: Neighborhood

3 Rank-Join based Framework

We proceed to present the rank-join based framework for the processing of kEP
queries. Section 3.1 presents the main data structures used in the framework.
Section 3.2 explains the query processing algorithm, and Section 3.3 covers two
join strategies in the framework.

3.1 Data Structures

The rank-join based framework includes two main data structures. One is a
representation of the event-user graph G that is stored in the main memory.

6 D. Wu et al.

The other one is a disk-resident inverted index II d that indexes the documents
of all events in the EBSN. The inverted index consists of two main components:
(1) a vocabulary of all distinct terms in the collection of documents and (2) a
posting list for each term t in the vocabulary. Each posting list is a sequence of
pairs (id , w), where id identifies an event e whose document e.ψ contains term
t and w is the weight of term t in document e.ψ.

3.2 Algorithm

Following the idea of the rank-join algorithm [10], the framework conducts a join
operation on the ranked input events and users. The ranked input events are ob-
tained by issuing a keyword query using the inverted index II d. The relevant
events are retrieved in descending order of their textual relevance. In contrast,
there is no straightforward way to obtain the ranked input users. Following the
definition of the together preference (Equation 1), the framework uses a heuris-
tic scoring predicate of the users, namely the number of events the users have
attended. The motivation is that the users who have attended many events can
be expected to have high together preferences w.r.t. query user uq and event e.
However, this heuristic falls short when a user has attended many events out-
side neighborhood N(uq, e). To avoid this situation, the framework retrieves the
users based on two constraints, i.e., (1) the retrieved users should have attended
at least one event in neighborhood N(uq, e), and (2) the users are retrieved in
descending order of the number of events they have attended. Specifically, the
set of users U(uq, e) that is fed into the join process is constructed as follows.
For each retrieved event e, its neighborhood N(uq, e) is computed. Then, for
each event in the neighborhood, its participants are obtained from the event-
user graph. The user set U(uq, e) is the union of the members of all the events
in neighborhood N(uq, e). Next, the users in U(uq, e) are sorted descendingly on
the number of events they have attended.

The query processing algorithm in the framework borrows the idea of the TA
(Threshold Algorithm) [3] and consumes the input events and users to generate
candidate event-user pairs. A threshold T is maintained that is calculated by
setting the textual relevance to that of the upcoming event and the together
preference to 1 in the scoring function (Equation 2). When the score of the kth

largest candidate pair is no less than T , the algorithm reports the obtained top-k
pairs. It is not difficult to prove that threshold T serves as an upper bound on
the scores of the event-partner pairs that have not yet been considered, since the
events are retrieved in descending order of the textual relevance and because the
maximum value of the together preference is set to 1. Different join strategies
can be adopted for the join in the algorithm.

3.3 Join Strategies

We consider two state-of-the-art join strategies in the framework, namely nested
loop join and ripple join [7]. The nested loop join consists of two nested loops,

Title Suppressed Due to Excessive Length 7

where the outer loop consumes events in descending order of the textual rele-
vance and the inner loop, executed for each (outer) event, consumes the users
in U(uq, e). When the inner loop for an event finishes, the partner for the event
with the highest together preference has been identified and this event-partner
pair is output as a candidate.

In the ripple join, e.g., the “square” version, one previously unseen tuple (user
or event) is retrieved from each of the two input lists in each step; these new
tuples are joined with the previously seen tuples and with each other. As in the
nested loop join, the events are retrieved in the descending order of the textual
relevance. Unlike in the nested loop join, the users to be retrieved are organized in
a priority queue sorted descendingly on the number of events they have attended.
For each upcoming event e, the priority queue is updated dynamically by adding
its user set U(uq, e). The square version consumes one event and one user at a
time. In the empirical study, we also evaluate the performance of the rectangular
version that consumes different numbers of events and users at a time.

4 Optimizations

Although the rank-join based framework take advantage of both the rank-join
and the TA algorithm, it is still inefficient in some cases. For instances, it may
take a long time to find the partner for an event if the number of users consid-
ered in the join process is large. In addition, before returning the top-k pairs,
unnecessarily many candidate pairs may have been produced, which incurs high
computational cost. We develop three optimizations with the goal of improving
the performance of the framework.

4.1 Unpromising-Event Pruning

This optimization reduces the computational cost by pruning events that will
definitely not contribute to top-k pairs. We derive a worst allowed together
preference pw(e) (Definition 1) for a newly retrieved event, which is a necessary
condition of the event being able to contribute to the top-k result. This value
is a lower bound on the together preference of the events in the final result. We
also derive a best possible together preference pub(e) (Definition 2) for a newly
retrieved event, which estimates the highest possible together preference of the
event with its partner.

Definition 1. Worst Allowed Together Preference pw(e): Given a query
user uq and query keywords ψq, let fk be the score of the current kth candidate
event-partner pair. The worst allowed together preference pw(e) of e is defined
as pw(e) = (fk − α · t(ψq, e))/(1− α).

Lemma 1. If ∀u ∈ (U \ {uq})(p(uq, e, u) ≤ pw(e)), event e cannot belong to the
result.

8 D. Wu et al.

Definition 2. Best Possible Together Preference pub(e): Let N(uq, e) be
the neighborhood of uq and e, and define m = maxu∈(U\{uq}){|Ec| | Ec =
N(uq, e) ∩ Eu}, where Eu is the set of events that user u have attended. The
best possible together preference pub(e) of e is given as follows.

pub(e) =

∑
ei∈TopM (uq,e)

s(e, ei)∑
ei∈N(uq,e)

s(e, ei)
, (3)

where |TopM (uq, e)| = m, TopM (uq, e) ⊆ N(uq, e), and ∀ei ∈ TopM (uq, e) ∀ej ∈
(N(uq, e) \ TopM (uq, e)) (s(e, ei) ≥ s(e, ej)).

Lemma 2. The best possible together preference pub(e) of e is an upper bound
on the together preference of e with its partner.

Proof. According to Equation 1, the numerator of the together preference sums
up the similarities between the events ei that user u has attended in neigh-
borhood N(uq, e). This can be rewritten as follows:

∑
ei∈N(uq,e)∩Eu

s(e, ei). Set

TopM (uq, e) contains the top-m similar events in neighborhood N(uq, e). Since
m = maxu∈(U\{uq}){|Ec| | Ec = N(uq, e) ∩ Eu} is the maximum number of
events attended by a user in N(uq, e), we have ∀u ∈ (U \ {uq})(|TopM (uq, e)| ≥
|N(uq, e)∩Eu|). It is easy to derive that ∀u ∈ (U\{uq})(

∑
ei∈N(uq,e)∩Eu

s(e, ei) ≤∑
ei∈TopM (uq,e)

s(e, ei)) The denominators of pub(e) and the together preference

are the same. Hence, we have proven that ∀u ∈ (U \ {uq})(pub(e) ≥ p(uq, e, u)).

Example 3. Given query user u4, we illustrate how to compute the best possible
together preference of event e3. Neighborhood N(u4, e3) = {e2, e4, e5} and m =
2. Then we have TopM (u4, e3) = {e2, e5}. The best possible together preference
is calculated as pub(e3) = (0.5 + 0.6)/(0.5 + 0.3 + 0.6) = 0.79.

Lemmas 1 and 2 present the properties of pw(e) and pub(e), respectively.
Pruning Rule 1 below is based on Lemmas 1 and 2 and is able to prune un-
promising events (that cannot contribute to pairs in the top-k result). Thus it
enables reducing the computational cost.

Pruning Rule 1 Given query user uq and query keywords ψq, for event e, if
pw(e) > pub(e), event e cannot contribute to a result pair and can be pruned.

4.2 Key Partner

It follows from the definition of the together preference (Equation 1) that if a
user u exists who has attended all events in neighborhood N(uq, e), the together
preference p(uq, e, u) equals 1, the maximum value. Thus, user u is the partner for
event e. Based on this observation, we introduce the key partner set (Definition 3)
of a user u. If a query user uq has a key partner, any candidate event for uq will
be paired with the key partner, and the together preference is 1 (Lemma 3).
In other words, computing the top-k event-partner pairs for a query user who
has a key partner is efficient: the k events with the highest textual relevance are
retrieved and paired with the key partner.

Title Suppressed Due to Excessive Length 9

Definition 3. Key Partner Set KP(u): Let Eu and Eu′ be the sets of events
attended by users u and u′, respectively. If Eu ⊆ Eu′ , user u′ is a key partner of
user u. The key partner set is defined as KP(u) = {ui|∀ui ∈ U \{u}(Eu ⊆ Eui)}.

Lemma 3. Given a query user uq, ∀e ∈ E ∀u ∈ KP(uq) ∀u′ ∈ U \ (KP(uq) ∪
{uq}) (p(uq, e, u) = 1 ≥ p(uq, e, u′)).

Proof. Since ∀u ∈ KP(uq)(Eu ⊇ Euq
) and ∀e ∈ E(Euq

⊇ N(uq, e)), we have
∀u ∈ KP(uq)∀e ∈ E(Eu ⊇ N(uq, e)) and derive that p(uq, e, u) = 1. Straightfor-
wardly, ∀u′ ∈ U \ (KP(uq) ∪ {uq})(p(uq, e, u) = 1 ≥ p(uq, e, u′)).

The key partner set of a query user may contain multiple users. According
to the definition of the kEP query, the events in the result are distinct. Thus,
we arbitrarily select one user from the key partner set for each event.

4.3 Efficient Partner Computation

In the framework, the operation of finding a partner for an event is expensive. In
particular, the cost is high when user set U(uq, e) considered in the join is large.
The following optimization provides a way of finding the partner for an event
without examining each user in set U(uq, e). The optimization uses an event-
member list for each event that consists of pairs (u,num) sorted descendingly
on num, which is the number of events attended by user u.

Table 5 shows the event-member lists of the five events in Figure 1. For
instance, event e4 has members u4 and u5. User u4 has attended five events, and
user u5 has attended three events.

Event Member List

e1 (u4, 5), (u3, 4), (u5, 3)

e2 (u4, 5), (u3, 4), (u5, 3)

e3 (u4, 5), (u3, 4), (u2, 1)

e4 (u4, 5), (u5, 3)

e5 (u4, 5), (u3, 4), (u1, 1)

Table 5: Event-Member Lists

Algorithm 1 shows the pseudo code of the efficient partner computation. It
takes a query user uq, an event e, and a neighborhood N(uq, e) as arguments, and
it returns the partner user u who maximizes the together preference p(uq, e, u).
Given neighborhood N(uq, e), the member lists of the events in the neighborhood
are fetched (line 4). Function GetNextPair() chooses the pair (u,num), u 6= uq
with the largest num from the first elements of all fetched member lists. If
multiple pairs have the same largest num, the pair from the member list of event
ei with the largest similarity s(e, ei) is selected (line 6). The together preference
p(uq, e, u) is computed, and pair (u,num) is removed from each member list that
contains it. If p(uq, e, u) is larger than the together preference p1 of the current
candidate partner up, user u is taken as the candidate partner (lines 7–10). Then
function GetNextPair() is called again to obtain the next pair (u,num) that
is used to compute an upper bound pr (Lemma 4) on the together preference

10 D. Wu et al.

of the rest of the users in the fetched member lists (lines 12–14). If the together
preference p1 of the current candidate partner up is no less than pr, user up is the
partner who maximizes p(uq, e, u) and is returned (Pruning Rule 2). Otherwise,
the algorithm repeats the above process.

Algorithm 1 ComputePartner(N(uq, e), uq, e)

1: p1 ← −1
2: pr ← +∞
3: up ← null
4: Fetch the member list ml(ei) of each event in N(uq, e)
5: while p1 < pr do . Pruning Rule 2
6: (u,num)← GetNextPair()
7: if p1 < p(uq, e, u) then
8: p1 ← p(uq, e, u)
9: up ← u

10: end if
11: Remove (u,num) from the member list
12: (u,num)← GetNextPair()
13: x← min{num, |N(uq, e)|}
14: pr ← (

∑
ei∈TopX (uq,e)

s(e, ei))/(
∑

ei∈N(uq,e)
s(e, ei))

15: end while
16: return up

Lemma 4. Given a query user uq and an event e, let (u,num) be the pair re-
turned by function GetNextPair() and define x = min{num, |N(uq, e)|}. Then
set TopX (uq, e) contains the top-x events {ei} in neighborhood N(uq, e) with the
largest similarity s(e, ei). An upper bound on the together preference of the users
in the member lists of the events in N(uq, e) is

pr =

∑
ei∈TopX (uq,e)

s(e, ei)∑
ei∈N(uq,e)

s(e, ei)
(4)

Proof. Recall that (i) the pairs (u,num) in the member list are sorted descend-
ingly on num and that (ii) function GetNextPair() returns the pair with the
largest num from the first elements in all member lists of the events in N(uq, e).
This means that no user in the member lists of the events in N(uq, e) can have
attended more events than the returned num. Since x = min{num, |N(uq, e)|},
no user in the member lists of the events in N(uq, e) has attended more than x
events in N(uq, e). Given that set TopX (uq, e) contains the top-x events {ei} in
neighborhood N(uq, e) with the largest similarity s(e, ei), then, for any user ui
in the member lists of the events in N(uq, e), we have pr ≥ p(uq, e, ui).

Pruning Rule 2 In the context of Algorithm 1, let p1 be the together preference
of the current candidate partner up. If p1 ≥ pr, user up is returned as the partner
of event e, and no other user in the fetched member lists can be the partner and
are pruned.

Example 4. Given query user u4 and event e2, according to Table 4, neighbor-
hood N(u4, e2) = {e3, e5}. According to Table 5, the pair returned by function

Title Suppressed Due to Excessive Length 11

GetNextPair() is (u3, 4). The together preference p(u4, e2, u3) = 1. Pair (u3, 4)
is removed from the member list of each event in N(u4, e2). User u3 is taken as
the candidate partner. Next, GetNextPair() returns (u2, 1). We have x = 1
and pr = 0.5/(0.5 + 0.3) = 0.63. Since p(u4, e2, u3) ≥ pr, no other user can have
higher together preference than does user u3. Finally, user u3 is returned as the
partner for u4 at e2.

5 Empirical Study

We proceed to cover a study of the performance of the proposed framework and
its three optimizations. In the experiments, F-NLJ and F-NLJ* denote the frame-
work adopting the nested loop join without and with optimizations, respectively.
F-RJ* denotes the framework adopting the ripple join with optimizations.

5.1 Data and Queries

We have crawled a data set from Meetup3 that contains 224,238 events and
7,822,965 users. The average number of members per event is 116. We have
also downloaded the text descriptions (documents) of the events. The number
of unique terms in the document collection is 519,885, and the average number
of tokens per document is 72.

We generated 5 query sets, in which the number of keywords is 1, 2, 3, 4, and
5, respectively, taken from the data set. Each query set comprises 100 queries.
Specifically, to generate a query, we randomly pick a user in the data set as the
query user, and we randomly choose words from the document of a randomly
selected event as the query keywords. We ensure that no query has an empty
result.

5.2 Setup

All algorithms were implemented in Java, and a machine with an Intel(R)
Xeon(R) CPU E5-2630 v2@2.60GHz and 128 GB main memory was used for
the experiments. The document inverted index is implemented by Lucene4 and
is disk resident. The key partner sets of all users are kept in main memory. In
the data set, 68% of all users have key partner sets. The user-event graph G is
represented by adjacency lists and is stored in main memory. Since the structure
of the member lists of the events is similar to the adjacency lists of the user-
event graph, we extend the adjacency lists of the event nodes in G to include the
number of events attended by each user, so that the member list of any event
can be obtained from the user-event graph.

We study the effects of different parameters and set parameter default values
as follows: the number k of requested event-partner pairs is 10; the number of

3 http://www.meetup.com
4 https://lucene.apache.org

12 D. Wu et al.

query keywords is 3; parameter α in the scoring function (Equation 2) is 0.5.
Some queries take long time to compute using the framework without optimiza-
tions. We set 20 seconds as a time limit. If the processing of any query exceeds
20 seconds, we stop the processing.

5.3 Performance Evaluation

Tuning the Number of Retrieved Events and Users in the Ripple Join.
When using the ripple join, the numbers of retrieved events and users at a time
affects the performance. We thus evaluate the framework using the ripple join
when varying the numbers of retrieved events and users. It is observed that
varying the number of retrieved events does not affect the performance, while
varying the number of retrieved users does, as shown in Figure 2. The runtime
improves as the number of retrieved users is increased from 10 to 100, and it gets
slightly worse when the number of retrieved users is increased from 100 to 150.
The number of events and users involved in the computation and the number of
pruned events exhibit similar behavior. Thus, in the following experiment, the
number of retrieved users in the ripple join is set to 100.

10 15020 50 100

number of retrieved
users

ru
nt

im
e(

M
ill

is
ec

on
d)

0

500

1000

1500

2000

(a) Runtime

10 15020 50 100

number of retrieved
users

nu
m

be
r

of
 e

ve
nt

s

0

20

40

60

80

(b) Events

10 15020 50 100

number of retrieved
users

nu
m

be
r

of
 p

ru
ne

d
ev

en
ts

0

10

20

30

40

50

60

(c) Pruned Events

10 150 20 50 100

number of retrieved
users

nu
m

be
r

of
 re

tri
ev

ed
 u

se
rs

0

50

100

150

200

250

300

(d) Users Per Event

Fig. 2: Varying the number of retrieved users in ripple join

Varying the Number k of Requested Event-Partner Pairs. Figure 3
shows the average runtime, the average number of retrieved events per query,
the average number of pruned events, and the average number of retrieved users
per event when varying k. The average runtime of the three approaches increases
as k increases, since more and more relevant events are retrieved and more
and more users are involved as k increases. The unpromising event pruning
optimization prunes many events, as shown in Figure 3(c). The efficient partner
computation optimization reduces the number of retrieved users per event, as
shown in Figure 3(d). F-NLJ has almost the same number of retrieved events as
each of F-NLJ* and F-RJ* (Figure 3(b)). This is because F-NLJ has significantly
more retrieved users per event than do F-NLJ* and F-RJ*, so that the processing
time of some of the queries exceeds the 20 second time limit, forcing those queries
to stop. Thus, the framework with optimizations outperforms F-NLJ significantly
in terms of runtime. F-RJ* has slightly fewer pruned events than does F-NLJ*,
but it also has significantly fewer retrieved users per event than does F-NLJ*,
which means that the ripple join is better than the nested loop join. Hence,
F-RJ* outperforms F-NLJ* in terms of runtime.

Title Suppressed Due to Excessive Length 13

1 10 20 30
top−k

ru
nt

im
e(

M
illi

se
co

nd
)

0

500

1000

1500

2000

2500 F−NLJ
F−NLJ*
F−RJ*

(a) Runtime

1 10 20 30
top−k

nu
m

be
r o

f r
et

rie
ve

d
ev

en
ts

0

20

40

60

80
F−NLJ
F−NLJ*
F−RJ*

(b) Events

1 10 20 30
top−k

nu
m

be
r o

f p
ru

ne
d

ev
en

ts

0

5

10

15

20

25
F−NLJ
F−NLJ*
F−RJ*

(c) Pruned Events

1 10 20 30
top−k

nu
m

be
r o

f r
et

rie
ve

d
us

er
s

10-1

101

103

105

107
F−NLJ
F−NLJ*
F−RJ*

(d) Users Per Event

Fig. 3: Varying the number of requested event-partner pairs k

Varying the Number of Query Keywords. Figure 4 shows the average
runtime, the average number of retrieved events per query, the average number
of pruned events, and the average number of retrieved users per event when
varying the number of query keywords. It can also be seen that the unpromising
event pruning and efficient partner computation optimizations are effective, cf.
Figures 4(c) and 4(d). The number of events retrieved by F-NLJ is slightly lower
than those of both F-NLJ* and F-RJ* (Figure 4(b)). This occurs because the
processing of some of the queries using F-NLJ take too long and are forced to
stop. Overall, F-NLJ* and F-RJ* outperform F-NLJ significantly in terms of
runtime.

1 52 3 4
number of keywords

ru
nt

im
e(

M
ill

is
ec

on
d)

0

500

1000

1500

2000

2500
F−NLJ
F−NLJ*
F−RJ*

(a) Runtime

1 5 2 3 4
number of keywords

nu
m

be
r o

f r
et

rie
ve

d
ev

en
ts

0

20

40

60

80

100 F−NLJ
F−NLJ*
F−RJ*

(b) Events

1 52 3 4
number of keywords

nu
m

be
r o

f p
ru

ne
d

ev
en

ts

0

10

20

30

40
F−NLJ
F−NLJ*
F−RJ*

(c) Pruned Events

1 52 3 4
number of keywords

nu
m

be
r o

f r
et

rie
ve

d
us

er
s

100

102

104

106
F−NLJ
F−NLJ*
F−RJ*

(d) Users Per Event

Fig. 4: Varying the number of keywords

Varying α. Figure 5 reports on the finding when varying α that specifies the
weight of the textual relevance in the scoring function. The performance of the
the three approaches get better (shorter runtime, fewer retrieved events and
users) as α increases. The reason is that a large α gives high weight to the
textual relevance, so that the ranking of the event-partner pairs is affected more
by the textual relevance of the events than the together preference. Since events
are retrieved in descending order of the textual relevance in the three approaches,
the top-k event-partner pairs are determined faster when α is large. Consistent
with the previous results, this experiment also shows the effectiveness of the
propose optimizations, i.e, many unpromising events are pruned, and the number
of retrieved users per event is reduced.

Summary. Overall, for a broad range of parameter settings, the proposed opti-
mizations improve the performance of the framework substantially. Unpromising
events are pruned. The numbers of users needed for finding partners for events
are reduced. In most cases, the ripple join is better than the nested loop join.

14 D. Wu et al.

0.1 0.3 0.5 0.7 0.9
α

ru
nt

im
e(

M
ill

is
ec

on
d)

0

500

1000

1500 F−NLJ
F−NLJ*
F−RJ*

(a) Runtime

0.1 0.3 0.5 0.7 0.9
α

nu
m

be
r o

f r
et

rie
ve

d
ev

en
ts

0

10

20

30

40

50

60
F−NLJ
F−NLJ*
F−RJ*

(b) Events

0.1 0.3 0.5 0.7 0.9
α

nu
m

be
r o

f p
ru

ne
d

ev
en

ts

0

5

10

15

20 F−NLJ
F−NLJ*
F−RJ*

(c) Pruned Events

0.1 0.3 0.5 0.7 0.9
α

nu
m

be
r o

f r
et

rie
ve

d
us

er
s

100

102

104

106
F−NLJ
F−NLJ*
F−RJ*

(d) Users Per Event

Fig. 5: Varying α

6 Related Work

Recommender Systems. Friend recommendation systems [8] predict user-
user relationships (i.e., friendships). They estimates the likelihood that two non-
friends will become friends in the future [17,28,31]. Group recommendation [6,
32] explores the preference of a group of users in relation to individual items. In
location-based social networks, new locations are recommended to users [29] by
taking into account previous user check-ins, the distances of proposed locations
to users’ neighborhoods [1], and geographical and social information [16]. In
event-based social networks, event recommendation offers a user a set of events
by giving consideration to both personal interests and local preferences [30],
heterogeneous social relations and implicit feedback [24], social group influences
and individual preferences [5], and several contextual signals [18].

All these recommendation techniques only recommend one type of items. The
problem studied in this paper adopts a recent recommendation technique [27]
that suggests event-partner pairs as a component.

Rank-Join Algorithms. Based on the A* optimization strategy, the J∗ algo-
rithm [21] enables querying of ordered data sets by means of user-defined join
predicates. NRA-RJ [9] is a pipelined query operator that produces a global rank
from ranked input streams based on a scoring function. Ilyas et al. [10] rank join
results progressively during join operations, making use of the individual orders
of the inputs.

Ranking (top-k) queries have also been integrated into relational database
systems [11, 13]. Mamoulis et al. [19] identify two phases that any (no random
access) NRA algorithm should go through: a growing phase and a shrinking
phase. Their LARA algorithm employs a lattice to minimize the computational
cost during the shrinking phase. The FRPA rank join operator [4] allows efficient
computation of score bounds on unseen join results and prioritizes the I/O re-
quests of the rank join operator based on the potential of each input to generate
results with high scores. The Pull/Bound Rank Join (PBRJ) [26] is an algorithm
template that generalizes previous rank join algorithms. The idea is to alternate
between pulling tuples from input relations and upper bounding the score of join
results that use the unread part of the input. The join results collected as tuples
are pulled, and the algorithm stops once the top-k buffered results have a score
at least equal to the upper bound.

Title Suppressed Due to Excessive Length 15

We extend the state-of-the-art rank-join algorithm [10] and propose a frame-
work with optimizations that supports the efficiently processing of kEP queries.

7 Conclusion

This paper introduces the top-k event-partner (kEP) pair retrieval query that
takes the advantages of both event-partner recommendation and keyword-based
search. Given a query user, keywords, and a value k, the query retrieves event-
partner pairs from a bipartite event-user graph where events have text descrip-
tions, taking into account both the text relevance of events and the together
preference that captures how much the query user prefers to attend an event
with a particular partner. For the sake of efficiency, the proposed rank-join based
framework comes with three optimizations. The paper’s empirical study offers
insight into the proposed techniques, indicating that they are effective and that
the framework is practical.

This work opens to a number of promising directions for future work. First,
it is worth adapting other existing recommendation techniques developed for
events and users to the paper’s setting. Second, it is of interest to consider social
relationships between users when processing kEP queries. Third, it is of interest
to understand how the kEP queries considered can be best processed if the query
user’s current location is taken into account.

References

1. Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.F.: Recommendations in location-based
social networks: a survey. GeoInformatica 19(3), 525–565 (2015)

2. Chen, X., Zeng, Y., Cong, G., Qin, S., Xiang, Y., Dai, Y.: On information coverage
for location category based point-of-interest recommendation. In: AAAI. pp. 37–43
(2015)

3. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

4. Finger, J., Polyzotis, N.: Robust and efficient algorithms for rank join evaluation.
In: SIGMOD. pp. 415–428 (2009)

5. Gao, L., Wu, J., Qiao, Z., Zhou, C., Yang, H., Hu, Y.: Collaborative social group
influence for event recommendation. In: CIKM. pp. 1941–1944 (2016)

6. Gorla, J., Lathia, N., Robertson, S., Wang, J.: Probabilistic group recommendation
via information matching. In: WWW. pp. 495–504 (2013)

7. Haas, P.J., Hellerstein, J.M.: Ripple joins for online aggregation. In: SIGMOD. pp.
287–298 (1999)

8. Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using
content and collaborative filtering approaches. In: RecSys. pp. 199–206 (2010)

9. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Joining ranked inputs in practice. In:
VLDB. pp. 950–961 (2002)

10. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in rela-
tional databases. VLDB J. 13(3), 207–221 (2004)

16 D. Wu et al.

11. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter,
J.S.: Adaptive rank-aware query optimization in relational databases. ACM Trans.
Database Syst. 31(4), 1257–1304 (2006)

12. Ji, X., Qiao, Z., Xu, M., Zhang, P., Zhou, C., Guo, L.: Online event recommendation
for event-based social networks. In: WWW. pp. 45–46 (2015)

13. Li, C., Chang, K.C., Ilyas, I.F., Song, S.: RankSQL: Query algebra and optimiza-
tion for relational top-k queries. In: SIGMOD. pp. 131–142 (2005)

14. Li, H., Ge, Y., Hong, R., Zhu, H.: Point-of-interest recommendations: Learning
potential check-ins from friends. In: KDD. pp. 975–984 (2016)

15. Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., Rui, Y.: GeoMF: Joint geographical
modeling and matrix factorization for point-of-interest recommendation. In: KDD.
pp. 831–840 (2014)

16. Liu, B., Fu, Y., Yao, Z., Xiong, H.: Learning geographical preferences for point-of-
interest recommendation. In: KDD. pp. 1043–1051 (2013)

17. Lu, Y., Qiao, Z., Zhou, C., Hu, Y., Guo, L.: Location-aware friend recommendation
in event-based social networks: A bayesian latent factor approach. In: CIKM. pp.
1957–1960 (2016)

18. Macedo, A.Q., Marinho, L.B., Santos, R.L.: Context-aware event recommendation
in event-based social networks. In: RecSys. pp. 123–130 (2015)

19. Mamoulis, N., Yiu, M.L., Cheng, K.H., Cheung, D.W.: Efficient top-k aggregation
of ranked inputs. ACM Trans. Database Syst. 32(3), 19 (2007)

20. Manotumruksa, J., MacDonald, C., Ounis, I.: Regularising factorised models for
venue recommendation using friends and their comments. In: CIKM. pp. 1981–1984
(2016)

21. Natsev, A., Chang, Y., Smith, J.R., Li, C., Vitter, J.S.: Supporting incremental
join queries on ranked inputs. In: VLDB. pp. 281–290 (2001)

22. Ponte, J.M., Croft, W.B.: A language modeling approach to information retrieval.
In: SIGIR. pp. 275–281 (1998)

23. Qiao, Z., Zhang, P., Cao, Y., Zhou, C., Guo, L., Fang, B.: Combining heterogenous
social and geographical information for event recommendation. In: AAAI. pp. 145–
151 (2014)

24. Qiao, Z., Zhang, P., Zhou, C., Cao, Y., Guo, L., Zhang, Y.: Event recommendation
in event-based social networks. In: AAAI. pp. 3130–3131 (2014)

25. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Commun. ACM 18(11), 613–620 (Nov 1975)

26. Schnaitter, K., Polyzotis, N.: Optimal algorithms for evaluating rank joins in
database systems. ACM Trans. Database Syst. 35(1), 6:1–6:47 (2010)

27. Tu, W., Cheung, D.W., Mamoulis, N., Yang, M., Lu, Z.: Activity-partner recom-
mendation. In: PAKDD. pp. 591–604 (2015)

28. Wan, S., Lan, Y., Guo, J., Fan, C., Cheng, X.: Informational friend recommenda-
tion in social media. In: SIGIR. pp. 1045–1048 (2013)

29. Wang, W., Yin, H., Sadiq, S.W., Chen, L., Xie, M., Zhou, X.: SPORE: A sequential
personalized spatial item recommender system. In: ICDE. pp. 954–965 (2016)

30. Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: LCARS: A location-content-aware
recommender system. In: KDD. pp. 221–229 (2013)

31. Yu, F., Che, N., Li, Z., Li, K., Jiang, S.: Friend recommendation considering pref-
erence coverage in location-based social networks. In: PAKDD. pp. 91–105 (2017)

32. Yuan, Q., Cong, G., Lin, C.: COM: a generative model for group recommendation.
In: KDD. pp. 163–172 (2014)

33. Zhang, W., Wang, J.: A collective Bayesian Poisson factorization model for cold-
start local event recommendation. In: KDD. pp. 1455–1464 (2015)

