94 research outputs found
Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields
Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D+ and Cl+ fragments were recorded via velocity-map imaging. A waveformdependent anti-correlated directional emission of D+ and Cl+ fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl+ and in turn the directional emission of charged fragments upon the breakup of the molecular ion
Attosecond electron spectroscopy using a novel interferometric pump-probe technique
We present an interferometric pump-probe technique for the characterization
of attosecond electron wave packets (WPs) that uses a free WP as a reference to
measure a bound WP. We demonstrate our method by exciting helium atoms using an
attosecond pulse with a bandwidth centered near the ionization threshold, thus
creating both a bound and a free WP simultaneously. After a variable delay, the
bound WP is ionized by a few-cycle infrared laser precisely synchronized to the
original attosecond pulse. By measuring the delay-dependent photoelectron
spectrum we obtain an interferogram that contains both quantum beats as well as
multi-path interference. Analysis of the interferogram allows us to determine
the bound WP components with a spectral resolution much better than the inverse
of the attosecond pulse duration.Comment: 5 pages, 4 figure
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡΠ° ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ Π² ΡΠ΅Π°Π»ΡΠ½ΠΎΠΉ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠ°
Aim. Single-center analysis of everolimus treatment after liver transplantation. Materials and methods. 23 patients having received Certican after OLT in RSCRST were observed in period from 6 months to 5 years; comparison group consisted of 50 patients who received immunosuppressive scheme with tacrolimus. Conversion to everolimus was performed in the period from 1 month after OLT after discharge and at later time according to the indications: hepatocellular cancer, cumulative CNI nephrotoxicity, the development of malignancies, and intolerance to CNI. The concentrations of CNI and everolimus in the blood (target concentration of tacrolimus 1.5β2 ng/ml, everolimus 3β8 ng/ml) were monitored. Glomerular filtration rate (GFR) was determined using the CKD-EPI equation. Adverse events of everolimus were evaluated. Results. The immunosuppressive scheme with everolimus is presented; adverse events with dose-dependent hypercholesterolemia (34.7%) as the main; the average level of blood cholesterol was not significantly different from that in the control group, 5.6 Β± 0.9 vs 5.1 Β± 1.4 mmol/l (Z = 1.3, p = 0.17). Renal function was stable throughout the observation period (35 Β± 16 months). GFR (CKD-EPI) before conversion was 75.8 Β± 17.5 ml/min. 6 patients treated with Certican for 5 years had final GFR 96.6 Β± 5.1 ml/min. GFR in the group of Certican at 12 months post conversion was 87.5 Β± 16.3 ml/min vs 94.2 Β± 16.8 ml/min (p = 0.08) in the control group. We revealed metastases to the liver and lungs in 5 patients from 13 patients with HCC, survival rate in this group depended on the compliance with the Milan criteria (Z = 2.4, p = 0.02). Conclusion. Everolimus allows maintaining of a stable renal function to prevent progression of renal failure; conversion should be initiated as early as possible. Combination of everolimus with reduced dose of CNI is optimal. Despite the fact that side effects are developing in most patients, adequate monitoring of immunosuppressive drug concentration and timely dose adjustments are able to reduce their severity, discontinuation of Certican is not required.Π¦Π΅Π»Ρ. ΠΠ½Π°Π»ΠΈΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡΠ° ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ ΡΠ΅Π½ΡΡΠ΅. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΎΠ»ΡΠ½ΡΡ
(n = 23), ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΡ
ΡΠ΅ΡΡΠΈΠΊΠ°Π½ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ, Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΉ Π² Π ΠΠ¦Π Π₯Π’, Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ Π² ΡΡΠΎΠΊΠΈ ΠΎΡ ΠΏΠΎΠ»ΡΠ³ΠΎΠ΄Π° Π΄ΠΎ 5 Π»Π΅Ρ, Π²ΡΠ±ΠΎΡΠΊΠ° Π±ΡΠ»Π° ΡΠΎΠΏΠΎΡΡΠ°Π²ΠΈΠΌΠ° Ρ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΠΎΠΉ ΠΈΠ· 50 Π±ΠΎΠ»ΡΠ½ΡΡ
, ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΡ
ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅ ΡΡ
Π΅ΠΌΡ ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΏΡΠ΅ΡΡΠΈΠΈ, ΠΏΠΎ ΠΏΠΎΠ»Ρ, Π²ΠΎΠ·ΡΠ°ΡΡΡ, ΡΡΠΎΠΊΠ°ΠΌ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ. ΠΠΎΠ½Π²Π΅ΡΡΠΈΡ Π½Π° ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ Π² ΡΡΠΎΠΊΠΈ ΠΎΡ 1 ΠΌΠ΅Ρ. ΠΏΠΎΡΠ»Π΅ ΠΠ’Π, ΠΏΠΎΡΠ»Π΅ Π²ΡΠΏΠΈΡΠΊΠΈ ΠΈΠ· ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ°, ΠΈ Π² Π±ΠΎΠ»Π΅Π΅ ΠΎΡΠ΄Π°Π»Π΅Π½Π½ΡΠ΅ ΡΡΠΎΠΊΠΈ ΠΏΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌ: ΠΏΡΠΈ Π³Π΅ΠΏΠ°ΡΠΎΡΠ΅Π»Π»ΡΠ»ΡΡΠ½ΠΎΠΌ ΡΠ°ΠΊΠ΅ Π² ΡΠ΄Π°Π»Π΅Π½Π½ΠΎΠΌ ΠΎΡΠ³Π°Π½Π΅, ΠΏΡΠΈ Π½Π΅ΡΡΠΎΡΠΎΠΊΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΠΠ, ΠΏΡΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΠΈ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π²Π½Π΅ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ, ΠΏΡΠΈ Π½Π΅ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΈΠΌΠΎΡΡΠΈ ΠΠΠ. ΠΠΎΠ½ΠΈΡΠΎΡΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΠΠ ΠΈ ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡΠ° Π² ΠΊΡΠΎΠ²ΠΈ (ΡΠ΅Π»Π΅Π²Π°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΡΠ°ΠΊΡΠΎΠ»ΠΈΠΌΡΡΠ° β 1,5β2 Π½Π³/ΠΌΠ», ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡΠ° 3β8 Π½Π³/ΠΌΠ»). ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Π‘ΠΠ€ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ CKD-EPI. ΠΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡΠ°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΡ
Π΅ΠΌΡ ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΏΡΠ΅ΡΡΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡΠ°, Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ, ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ
Π±ΡΠ»Π° Π΄ΠΎΠ·ΠΎΠ·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ Π³ΠΈΠΏΠ΅ΡΡ
ΠΎΠ»Π΅ΡΡΠ΅ΡΠΈΠ½Π΅ΠΌΠΈΡ (34,7%), ΡΡΠ΅Π΄Π½ΠΈΠΉ ΡΡΠΎΠ²Π΅Π½Ρ Ρ
ΠΎΠ»Π΅ΡΡΠ΅ΡΠΈΠ½Π° Π² ΠΊΡΠΎΠ²ΠΈ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎ Π½Π΅ ΠΎΡΠ»ΠΈΡΠ°Π»ΡΡ ΠΎΡ Π³ΡΡΠΏΠΏΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ 5,6 Β± 0,9 ΠΏΡΠΎΡΠΈΠ² 5,1 Β± 1,4 ΠΌΠΌΠΎΠ»Ρ/Π» (Z = 1,3, p = 0,17). ΠΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡ Π½Π΅ Π±ΡΠ» ΠΎΡΠΌΠ΅Π½Π΅Π½ Π½ΠΈ Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ. Π€ΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΡΠ΅ΠΊ ΡΠΎΡ
ΡΠ°Π½ΡΠ»Π°ΡΡ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ (35 Β± 16 ΠΌΠ΅Ρ.). Π‘ΠΠ€ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅ CKD-EPI ΠΏΠ΅ΡΠ΅Π΄ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° β 75,8 Β± 17,5 ΠΌΠ»/ΠΌΠΈΠ½. Π£ 6 Π±ΠΎΠ»ΡΠ½ΡΡ
, ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π²ΡΠΈΡ
ΡΠ΅ΡΡΠΈΠΊΠ°Π½ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 5 Π»Π΅Ρ, ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ Π‘ΠΠ€ 96,6 Β± 5,1 ΠΌΠ»/ΠΌΠΈΠ½. CΡΠ΅Π΄Π½ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π‘ΠΠ€ Π² Π³ΡΡΠΏΠΏΠ΅ ΡΠ΅ΡΡΠΈΠΊΠ°Π½Π° ΡΠ΅ΡΠ΅Π· 12 ΠΌΠ΅Ρ. ΠΏΠΎΡΠ»Π΅ ΠΊΠΎΠ½Π²Π΅ΡΡΠΈΠΈ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎ Π½Π΅ ΠΎΡΠ»ΠΈΡΠ°Π»ΠΈΡΡ ΠΎΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π² Π³ΡΡΠΏΠΏΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ: 87,5 Β± 16,3 ΠΌΠ»/ΠΌΠΈΠ½ ΠΏΡΠΎΡΠΈΠ² 94,2 Β± 16,8 ΠΌΠ»/ΠΌΠΈΠ½ (p = 0,08). ΠΠ· 13 Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΠΠ¦Π Π² ΡΠ΄Π°Π»Π΅Π½Π½ΠΎΠΌ ΠΎΡΠ³Π°Π½Π΅ Ρ 5 Π²ΡΡΠ²ΠΈΠ»ΠΈ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·Ρ Π² ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈ Π»Π΅Π³ΠΊΠΈΡ
, Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΡ Π² ΡΡΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ Π·Π°Π²ΠΈΡΠ΅Π»Π° ΠΎΡ ΡΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΡ ΠΠΈΠ»Π°Π½ΡΠΊΠΈΡ
ΠΊΡΠΈΡΠ΅ΡΠΈΠ΅Π² (Z = 2,4, p = 0,02). ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΡΠ΅ΠΊ, Π΄Π»Ρ ΠΏΡΠ΅Π΄ΠΎΡΠ²ΡΠ°ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΠ΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΎΠ½ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π½Π°Π·Π½Π°ΡΠ°ΡΡΡΡ ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π½Π΅Π΅. ΠΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΡΡΠΈΡΠ°Π΅ΠΌ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠ΅ ΡΠ²Π΅ΡΠΎΠ»ΠΈΠΌΡΡΠ° ΡΠΎ ΡΠ½ΠΈΠΆΠ΅Π½Π½ΠΎΠΉ Π΄ΠΎΠ·ΠΎΠΉ ΠΠΠ. ΠΠ΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ ΡΡΠΎ Π½Π΅ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ°Π·Π²ΠΈΠ²Π°ΡΡΡΡ Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° Π±ΠΎΠ»ΡΠ½ΡΡ
, ΠΏΡΠΈ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΠΌ ΠΌΠΎΠ½ΠΈΡΠΎΡΠΈΠ½Π³Π΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΈΠΌΠΌΡΠ½ΠΎΡΡΠΏΡΠ΅ΡΡΠ°Π½ΡΠΎΠ², ΡΠ²ΠΎΠ΅Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ Π΄ΠΎΠ·Ρ ΠΎΠ½ΠΈ ΠΊΡΠΏΠΈΡΡΡΡΡΡ, ΠΎΡΠΌΠ΅Π½Ρ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° Π½Π΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ
Attosecond nanoscale near-field sampling
The promise of ultrafast light-field-driven electronic nanocircuits has stimulated the development of the new research field of attosecond nanophysics. An essential prerequisite for advancing this new area is the ability to characterize optical near fields from light interaction with nanostructures, with sub-cycle resolution. Here we experimentally demonstrate attosecond near-field retrieval for a tapered gold nanowire. By comparison of the results to those obtained from noble gas experiments and trajectory simulations, the spectral response of the nanotaper near field arising from laser excitation can be extracted.113023Ysciescopu
Carrier - envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields
Waveform-controlled light fields offer the possibility of manipulating
ultrafast electronic processes on sub-cycle timescales. The optical lightwave
control of the collective electron motion in nanostructured materials is key
to the design of electronic devices operating at up to petahertz frequencies.
We have studied the directional control of the electron emission from 95 nm
diameter SiO2 nanoparticles in few-cycle laser fields with a well-defined
waveform. Projections of the three-dimensional (3D) electron momentum
distributions were obtained via single-shot velocity-map imaging (VMI), where
phase tagging allowed retrieving the laser waveform for each laser shot. The
application of this technique allowed us to efficiently suppress background
contributions in the data and to obtain very accurate information on the
amplitude and phase of the waveform-dependent electron emission. The
experimental data that are obtained for 4 fs pulses centered at 720 nm at
different intensities in the range (1β4) Γ 1013 W cmβ2 are compared to quasi-
classical mean-field Monte-Carlo simulations. The model calculations identify
electron backscattering from the nanoparticle surface in highly dynamical
localized fields as the main process responsible for the energetic electron
emission from the nanoparticles. The local field sensitivity of the electron
emission observed in our studies can serve as a foundation for future research
on propagation effects for larger particles and field-induced material changes
at higher intensities
Π ΠΠΠ£ΠΠ¬Π’ΠΠ’Π« ΠΠ‘ΠΠ₯ΠΠΠΠΠΠ§ΠΠ‘ΠΠΠΠ ΠΠ‘Π‘ΠΠΠΠΠΠΠΠΠ― ΠΠΠΠ¬ΠΠ«Π₯ Π¦ΠΠ Π ΠΠΠΠ ΠΠΠ§ΠΠΠ ΠΠΠ Π£Π‘ΠΠΠ ΠΠ’ΠΠΠΠΠΠΠ ΠΠΠ‘ΠΠ Π’Π ΠΠΠ‘ΠΠΠΠΠ’ΠΠ¦ΠΠ ΠΠΠ§ΠΠΠ
In pilot article the psychological status of patients with viral cirrhosis in various terms after liver transplantation is studied. On the basis of the used psychological techniques at 10 patients which middle age 42 Β± 7 years, average term after transplantation 11,0 Β± 6,5 months. Authors revealed the raised level of uneasiness, infringement of social contacts, especially memory decrease. Further it is planned to study interrelations and dependences of various psychological aspects of the person, features of disease and treatment.Β Π ΠΏΠΈΠ»ΠΎΡΠ½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΈΠ·ΡΡΠ΅Π½ ΠΏΡΠΈΡ
ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΠ°ΡΡΡ Π±ΠΎΠ»ΡΠ½ΡΡ
Ρ ΡΠΈΡΡΠΎΠ·ΠΎΠΌ ΠΏΠ΅ΡΠ΅Π½ΠΈ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΡΡΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² ΡΠ°Π·- Π»ΠΈΡΠ½ΡΠ΅ ΡΡΠΎΠΊΠΈ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΡΠΈΡ
ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ Ρ 10 Π±ΠΎΠ»ΡΠ½ΡΡ
, ΡΡΠ΅Π΄Π½ΠΈΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ ΠΊΠΎΡΠΎΡΡΡ
ΡΠΎΡΡΠ°Π²ΠΈΠ» 42 Β± 7 Π»Π΅Ρ, ΡΡΠ΅Π΄Π½ΠΈΠΉ ΡΡΠΎΠΊ ΠΏΠΎΡΠ»Π΅ ΠΠ’Π ΠΎΡ 11,0 Β± 6,5 ΠΌΠ΅Ρ., Π²ΡΡΠ²Π»Π΅Π½Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΡΡΠ΅Π²ΠΎΠΆΠ½ΠΎΡΡΠΈ, Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΎΠ², ΠΌΠ½Π΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°Ρ- ΡΡΡΠΎΠΉΡΡΠ²Π°, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΠΌΡΡΠΈ. Π Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΠΏΠ»Π°Π½ΠΈΡΡΠ΅ΡΡΡ ΠΈΠ·ΡΡΠΈΡΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΡΠΈΡ
ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π°ΡΠΏΠ΅ΠΊΡΠΎΠ² Π»ΠΈΡΠ½ΠΎΡΡΠΈ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ.
ΠΠΠ ΠΠ«Π ΠΠΠ«Π’ ΠΠ ΠΠΠΠΠΠΠΠ― Π’ΠΠΠΠΠΠ£ΠΠΠΠ Π£ ΠΠΠΠ¬ΠΠ«Π₯ ΠΠΠ‘ΠΠ Π’Π ΠΠΠ‘ΠΠΠΠΠ’ΠΠ¦ΠΠ ΠΠΠ§ΠΠΠ
The first Russian experience of using telbivudine in liver transplant patients discussed in this article. Goal of telbivudine therapy in patients after liver transplantation was a prophylaxis and treatment of chronic hepatitis B recurrence. First data were received after 12 months since start of therapy, viral replication was inhibited, and that was similar with GLOBE trial results published at 2009.Β Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΏΠ΅ΡΠ²ΡΠΉ Π² Π ΠΎΡΡΠΈΠΈ ΠΎΠΏΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅Π»Π±ΠΈΠ²ΡΠ΄ΠΈΠ½Π° Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
ΠΏΠΎΡΠ»Π΅ ΠΎΡΡΠΎΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ. ΠΡΠ΅ΠΏΠ°ΡΠ°Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΡΡ Π΄Π»Ρ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΡΠΈΠ΄ΠΈΠ²Π° Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π³Π΅ΠΏΠ°ΡΠΈΡΠ° Π Π² ΡΠ°Π·Π½ΡΠ΅ ΡΡΠΎΠΊΠΈ ΠΏΠΎΡΠ»Π΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ. ΠΠΎΠ»ΡΡΠ΅Π½Ρ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ΅Π»Π±ΠΈΠ²ΡΠ΄ΠΈΠ½Π° ΠΊΠ°ΠΊ ΡΠΈΠ½ΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΎΠ³Π° ΡΠΈΠΌΠΈΠ΄ΠΈΠ½Π° Π² ΠΏΠΎΠ΄Π°Π²Π»Π΅Π½ΠΈΠΈ ΡΠ΅ΠΏΠ»ΠΈΠΊΠ°ΡΠΈΠΈ Π²ΠΈΡΡΡΠ° ΠΏΡΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 12 ΠΌΠ΅Ρ., ΡΡΠΎ ΡΠΎΠ³Π»Π°ΡΡΠ΅ΡΡΡ Ρ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΌΡΠ»ΡΡΠΈΡΠ΅Π½ΡΡΠΎΠ²ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ GLOBE, ΡΠ΅Π·ΡΠ»ΡΡΠ°- ΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½Ρ Π² 2009 Π³.
ΠΠ½Π΄ΡΠΊΡΠΈΡ ΡΠΈΡΠΊΡΠ»ΠΈΡΡΡΡΠΈΡ CD133+ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ², ΠΊΠΎΠΌΠΌΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΊ ΡΠΊΠ°Π½ΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ, Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΈΠ· Π»ΠΈΡΡΠ° ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΡ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ
Studies on the regenerative capabilities of tissues have shown that damaged liver can recover using hematopoieticΒ stem cells (HSCs), which are able not only to replace cells in the target organ, but can also deliver trophic factorsΒ that support endogenous liver regeneration. There is practically no data on how organ-derived humoral signalsΒ involve such morphogenic/trophic cells in circulation. Objective: to investigate the role of non-invasive vibromechanical percutaneous action on the liver inΒ cirrhosis by quantification of CD133+ lymphoid HSCs with specificΒ hepatic marker alpha-fetoprotein (AFP) in patients awaiting liver transplantation. Materials and methods. InΒ order to increase the number of AFP+ part of CD133+ stem lymphoid cells in the blood, the patientβs cirrhoticΒ liver was mechanically activated by transcutaneous microvibration using electromagnetic vibrophones in contactΒ with the skin. This generated mechanical impulses with a 10 ΞΌm amplitude and a smoothly varying frequency fromΒ 0.03 kHz to 18 kHz and back to within one cycle lasting 1 minute. The amount of AFP+ lymphocyte fraction inΒ the total content of CD133+ HSCs in lymphocytes of potential recipients was monitored by flow cytometry beforeΒ and during daily 15-minute sonication of the skin zone corresponding to the liver projection for three weeks withΒ eight synphased vibraphones. Results. Sonication of the liver projection zone significantly increased the numberΒ of liver-specific CD133+ AFP+ lymphocytes by 2β3 times compared to the baseline values. Repeated similarΒ sonication of the same site after a three-week break showed a statistically insignificant increase from the initialΒ level. With a similar effect on the spinal projection in the control group of waitlisted patients with cirrhosis, thereΒ was no increase in CD133+ AFP+ lymphocytes. Conclusion. Mechanical stress prompts the organ to secreteΒ specific humoral signals that provoke the bone marrow to produce additional lymphoid stem cells committed toΒ the liver and recruit them into circulation.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΎΡΠ½ΡΡ
Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠ΅ΠΉ ΡΠΊΠ°Π½Π΅ΠΉ Π΄ΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΡΒ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ
Π³Π΅ΠΌΠΎΠΏΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠ»Π΅ΡΠΎΠΊ (Π‘ΠΠ), ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΏΠΎΡΠΎΠ±Π½Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π·Π°ΠΌΠ΅ΡΠ°ΡΡ ΠΊΠ»Π΅ΡΠΊΠΈ Π² ΠΎΡΠ³Π°Π½Π΅-ΠΌΠΈΡΠ΅Π½ΠΈ, Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡΡ Π΄ΠΎΡΡΠ°Π²Π»ΡΡΡΒ ΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ°ΠΊΡΠΎΡΡ, ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠΈΠ΅ ΡΠ½Π΄ΠΎΠ³Π΅Π½Π½ΡΡ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΡ ΠΏΠ΅ΡΠ΅Π½ΠΈ. ΠΠ°Π½Π½ΡΡ
ΠΎΒ ΡΠΎΠΌ, ΠΊΠ°ΠΊ ΠΎΡΠ³Π°Π½ΠΎΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΠ΅ Π³ΡΠΌΠΎΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ Π²ΠΎΠ²Π»Π΅ΠΊΠ°ΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΌΠΎΡΡΠΎΠ³Π΅Π½Π½ΡΠ΅/ΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ Π² ΡΠΈΡΠΊΡΠ»ΡΡΠΈΡ, ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅Ρ. Π¦Π΅Π»Ρ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΠΎΠ»Ρ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΈΠ±ΡΠΎ-ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ΅ΡΠΊΠΎΠΆΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡΒ Π½Π° ΠΏΠ΅ΡΠ΅Π½Ρ ΠΏΡΠΈ ΡΠΈΡΡΠΎΠ·Π΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ° Π² ΠΊΡΠΎΠ²ΠΈΒ ΡΡΠ°ΠΊΡΠΈΠΈ CD133+ Π³Π΅ΠΌΠΎΠΏΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ Π»ΠΈΠΌΡΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ΄Π° ΡΠΎ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ½ΡΠΌΒ ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠΌ Π°Π»ΡΡΠ°-ΡΠ΅ΡΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½ΠΎΠΌ (ΠΠ€Π) Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
, ΠΎΠΆΠΈΠ΄Π°ΡΡΠΈΡ
ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ ΠΏΠ΅ΡΠ΅Π½ΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠ»ΡΒ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ Π² ΠΊΡΠΎΠ²ΠΈ ΡΠΈΡΠ»Π° ΠΠ€Π-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ CD133+ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ
Π»ΠΈΠΌΡΠΎΠΈΠ΄Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΒ Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π»ΠΈ ΡΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΡΡ ΠΏΠ΅ΡΠ΅Π½Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΏΡΡΠ΅ΠΌ ΡΡΠ΅ΡΠΊΠΎΠΆΠ½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΠ²ΠΈΠ±ΡΠ°ΡΠΈΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΠ½ΡΠ°ΠΊΡΠΈΡΡΡΡΠΈΡ
Ρ ΠΊΠΎΠΆΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ
Β Π²ΠΈΠ±ΡΠΎΡΠΎΠ½ΠΎΠ², Π³Π΅Π½Π΅ΡΠΈΡΡΡΡΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠΌΠΏΡΠ»ΡΡΡ Π°ΠΌΠΏΠ»ΠΈΡΡΠ΄ΠΎΠΉΒ 10 ΠΌΠΊΠΌ ΠΈ ΠΏΠ»Π°Π²Π½ΠΎ ΠΌΠ΅Π½ΡΡΡΠ΅ΠΉΡΡ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΎΡ 0,03 ΠΡ Π΄ΠΎ 18 ΠΊΠΡ ΠΈ ΠΎΠ±ΡΠ°ΡΠ½ΠΎ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π°Β ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡΡ 1 ΠΌΠΈΠ½ΡΡΠ°. ΠΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΠ€Π-ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ°ΠΊΡΠΈΠΈ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² Π²Β ΠΎΠ±ΡΠ΅ΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΈΒ CD133+ Π‘ΠΠ Π² Π»ΠΈΠΌΡΠΎΡΠΈΡΠ°Ρ
ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ΅ΡΠΈΠΏΠΈΠ΅Π½ΡΠΎΠ² ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΏΡΠΎΡΠΎΡΠ½ΠΎΠΉ ΡΠΈΡΠΎΠΌΠ΅ΡΡΠΈΠΈΒ Π΄ΠΎ ΠΈ Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π΅ΠΆΠ΅Π΄Π½Π΅Π²Π½ΠΎΠ³ΠΎ 15-ΠΌΠΈΠ½ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΠΆΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ,Β Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Ρ
Π½Π΅Π΄Π΅Π»Ρ, Π²ΠΎΡΠ΅ΠΌΡΡ ΡΠΈΠ½ΡΠ°Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ Π²ΠΈΠ±ΡΠΎΡΠΎΠ½Π°ΠΌΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ²ΡΠΊΠΎΠ²ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π°Β Π·ΠΎΠ½Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π½ΠΈ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΠ»ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠ½ΠΎ-ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΠ€Π-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΡ
Β CD133+ Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² ΠΊΡΠΎΠ²ΠΈ Π² 2β3 ΡΠ°Π·Π° ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π±Π°Π·ΠΎΠ²ΡΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ. ΠΠΎΠ²ΡΠΎΡΠ½ΠΎΠ΅ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎΠ΅ ΡΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΎΠΉΒ ΠΆΠ΅ Π·ΠΎΠ½Ρ ΠΏΠΎΡΠ»Π΅ ΡΡΠ΅Ρ
Π½Π΅Π΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΡΡΠ²Π° ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅Β ΠΏΡΠ΅Π²ΡΡΠ΅Π½ΠΈΠ΅Β ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ. ΠΡΠΈ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎΠΌ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ Π½Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΎΡΠ½ΠΈΠΊΠ° Π² ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ Π±ΠΎΠ»ΡΠ½ΡΡ
ΡΠΈΡΡΠΎΠ·ΠΎΠΌ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΠΈΠ· Π»ΠΈΡΡΠ° ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΡΒ ΡΠ΅Π½ΠΎΠΌΠ΅Π½ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ Π°Π»ΡΡΠ°-ΡΠ΅ΡΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½-ΠΏΠΎΠ·ΠΈΡΠΈΠ²Π½ΡΡ
CD133+Β Π»ΠΈΠΌΡΠΎΡΠΈΡΠΎΠ² Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π». ΠΡΠ²ΠΎΠ΄. ΠΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΡΡ ΠΏΠΎΠ±ΡΠΆΠ΄Π°Π΅Ρ ΠΎΡΠ³Π°Π½ ΡΠ΅ΠΊΡΠ΅ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅Β Π³ΡΠΌΠΎΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠΈΠ³Π½Π°Π»Ρ, ΠΏΡΠΎΠ²ΠΎΡΠΈΡΡΡΡΠΈΠ΅ ΠΊΠΎΡΡΠ½ΡΠΉ ΠΌΠΎΠ·Π³ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΊΠΎΠΌΠΌΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΊΒ ΠΏΠ΅ΡΠ΅Π½ΠΈ ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΠ΅ Π»ΠΈΠΌΡΠΎΠΈΠ΄Π½ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΈ ΡΠ΅ΠΊΡΡΡΠΈΡΠΎΠ²Π°ΡΡ ΠΈΡ
Π² ΡΠΈΡΠΊΡΠ»ΡΡΠΈΡ
- β¦