69 research outputs found

    M2Net: Multi-modal Multi-channel Network for Overall Survival Time Prediction of Brain Tumor Patients

    Get PDF
    Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients. Although many OS time prediction methods have been developed and obtain promising results, there are still several issues. First, conventional prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume, which may not represent the full image or model complex tumor patterns. Second, different types of scanners (i.e., multi-modal data) are sensitive to different brain regions, which makes it challenging to effectively exploit the complementary information across multiple modalities and also preserve the modality-specific properties. Third, existing methods focus on prediction models, ignoring complex data-to-label relationships. To address the above issues, we propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net). Specifically, we first project the 3D MR volume onto 2D images in different directions, which reduces computational costs, while preserving important information and enabling pre-trained models to be transferred from other tasks. Then, we use a modality-specific network to extract implicit and high-level features from different MR scans. A multi-modal shared network is built to fuse these features using a bilinear pooling model, exploiting their correlations to provide complementary information. Finally, we integrate the outputs from each modality-specific network and the multi-modal shared network to generate the final prediction result. Experimental results demonstrate the superiority of our M2Net model over other methods.Comment: Accepted by MICCAI'2

    Spike pattern recognition by supervised classification in low dimensional embedding space

    Get PDF
    © The Author(s) 2016. This article is published with open access at Springerlink.com under the terms of the Creative Commons Attribution License 4.0, (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Epileptiform discharges in interictal electroencephalography (EEG) form the mainstay of epilepsy diagnosis and localization of seizure onset. Visual analysis is rater-dependent and time consuming, especially for long-term recordings, while computerized methods can provide efficiency in reviewing long EEG recordings. This paper presents a machine learning approach for automated detection of epileptiform discharges (spikes). The proposed method first detects spike patterns by calculating similarity to a coarse shape model of a spike waveform and then refines the results by identifying subtle differences between actual spikes and false detections. Pattern classification is performed using support vector machines in a low dimensional space on which the original waveforms are embedded by locality preserving projections. The automatic detection results are compared to experts’ manual annotations (101 spikes) on a whole-night sleep EEG recording. The high sensitivity (97 %) and the low false positive rate (0.1 min−1), calculated by intra-patient cross-validation, highlight the potential of the method for automated interictal EEG assessment.Peer reviewedFinal Published versio

    Neonatal Astrocyte Damage Is Sufficient to Trigger Progressive Striatal Degeneration in a Rat Model of Glutaric Acidemia-I

    Get PDF
    BACKGROUND: We have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss. METHODOLOGY/PRINCIPAL FINDINGS: A single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0) to induce an acute, transient rise of GA levels in the central nervous system (CNS). GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal neuronal death. Pharmacological protection of astrocytes with antioxidants during encephalopatic crisis may prevent astrocyte dysfunction and the ineluctable progression of disease in children with GA-I

    Hippocampal CA3 Transcriptome Signature Correlates with Initial Precipitating Injury in Refractory Mesial Temporal Lobe Epilepsy

    Get PDF
    Background: Prolonged febrile seizures constitute an initial precipitating injury (IPI) commonly associated with refractory mesial temporal lobe epilepsy (RMTLE). in order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS) or without (NFS) febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations.Methodology/Principal Findings: DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs). Co-expression network analysis showed that: i) CA3 transcriptomic profiles differ according to the IPI; ii) FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi.Conclusions/Significance: CA3 transcriptional signatures and dentate gyrus morphology fairly correlate with IPI in RMTLE, indicating that FS-RMTLE represents a distinct phenotype. These findings may shed light on the molecular mechanisms underlying refractory epilepsy phenotypes and contribute to the discovery of novel specific drug targets for therapeutic interventions

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14
    corecore