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Abstract 

High-grade glioma (HGG) is a lethal cancer with poor outcome. Accurate preoperative overall 

survival (OS) time prediction for HGG patients is crucial for treatment planning. Traditional 

presurgical and noninvasive OS prediction studies have used radiomics features at the local lesion 

area based on the magnetic resonance images (MRI). However, the highly complex lesion MRI 

appearance may have large individual variability, which could impede accurate individualized OS 

prediction. In this paper, we propose a novel concept, namely brain connectomics-based OS 

prediction. It is based on presurgical resting-state functional MRI (rs-fMRI) and the non-local, 

large-scale brain functional networks where the global and systemic prognostic features rather than 

the local lesion appearance are used to predict OS. We propose that the connectomics features 

could capture tumor-induced network-level alterations that are associated with prognosis. We 

construct both low-order (by means of sparse representation with regional rs-fMRI signals) and 

high-order functional connectivity (FC) networks (characterizing more complex multi-regional 

relationship by synchronized dynamics FC time courses). Then, we conduct a graph-theoretic 

analysis on both networks for a jointly, machine-learning-based individualized OS prediction. 

Based on a preliminary dataset (N = 34 with bad OS, mean OS, ~400 days; N = 34 with good OS, 

mean OS, ~1030 days), we achieve a promising OS prediction accuracy (86.8%) on separating the 

individuals with bad OS from those with good OS. However, if using only conventionally derived 

descriptive features (e.g., age and tumor characteristics), the accuracy is low (63.2%). Our study 

highlights the importance of the rs-fMRI and brain functional connectomics for treatment planning.  

Keywords: Survival, prognosis, glioma, functional connectivity, brain network, connectomics, 

machine learning.   
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Introduction 

Gliomas account for ~70% of adult primary brain tumors (Ricard et al. 2012). The prognosis of 

gliomas is generally poor, compared with other types of brain tumors, and is traditionally 

considered dependent on patients’ age and physical status, tumor histopathology and location 

(Ostrom et al. 2013), surgical treatment (e.g., extent of resection) (Smith et al. 2008; Jain et al. 

2014), post-surgical adjuvant therapy (Grossman et al. 2010), as well as several molecular and 

genetic indicators (Macyszyn et al. 2016). World Health Organization (WHO) grade is a 

commonly used grading system for gliomas (Louis et al. 2007), where high-grade gliomas (HGGs), 

including grade-III (e.g., anaplastic astrocytoma) and IV (glioblastoma multiforme) gliomas, are 

believed to have a faster growth rate and worse outcome compared with WHO grade-II gliomas 

(Stylli et al. 2005). The median survival time of anaplastic astrocytoma and glioblastoma is 2–3 

years and 1 year, respectively. Accurate preoperative overall survival (OS) time prediction for 

patients with HGGs is crucial for individualized treatment planning. However, in clinical practice, 

the OS of HGG patients may differ significantly from case to case even though the patients have 

the same tumor grade and receive similar treatments (Sawaya et al. 1998; Legler et al. 1999). While 

challenging, progress has been made toward accurate pre-surgical OS prediction for HGG patients 

based on various non-invasive brain imaging techniques. 

Previously, researchers have utilized non-invasive structural and functional preoperative 

neuroimaging techniques to 1) search for molecular biomarkers of gliomas (Kickingereder et al. 

2016a; Itakura et al. 2015; Grabner et al. 2016), 2) model tumor growth dynamics (Stensjøen et al. 

2015), and 3) differentiate glioma subtypes (Collet et al. 2015). These studies have directly or 

indirectly contributed to survival time prediction. Moreover, recent efforts have been made to 

directly characterize the association between elaborately engineered imaging phenotypic features 
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and the glioma patients’ OS (Cui et al. 2015; Kickingereder et al. 2016b), as radio-diagnosticians 

and neuro-oncologists have leveraged such information for surgical planning for decades (Wang 

et al. 2015b; Pope et al. 2005). Compared to the prognostic genomic or molecular pathology 

information (Phillips et al. 2006), preoperative brain images are easier to acquire, as they introduce 

no or minimal (with contrast agency injection only) invasiveness. On the other hand, imaging 

phenotypic profiles extracted from the glioma images are more objective and comprehensive 

compared to the conventional descriptive features (e.g., patient’s age, daily life performance score 

and physical status). In previous imaging-based OS prediction studies, radiomics features have 

been widely used, where numerous quantitative image descriptors are extracted from the lesion 

areas based on brain structural magnetic resonance images (MRI, including T1-weighted, T2-

weighted, and T2-fluid attenuated inversion recovery (T2-FLAIR) imaging with/without contrast 

enhancement). This type of methods takes advantage of the high spatial resolution and abundant 

tissue contrast from the structure MRI (Gillies et al. 2015; Macyszyn et al. 2016; Mazurowski et 

al. 2014; Kickingereder et al. 2016b; Cui et al. 2015). Additionally, there are also survival 

prediction studies using diffusion-weighted imaging (DWI) (Zacharaki et al. 2012; Saksena et al. 

2010), perfusion weighted imaging (PWI) (Bisdas et al. 2009; Law et al. 2008; Jain et al. 2014), 

and positron emission tomography (PET) (Chen et al. 2007), which have shown complementary 

prognostic values besides the structural MRI.  

A common analysis strategy in the aforementioned studies is making prognosis prediction 

based on image attributes of the tumors (e.g., tumor size, shape, contrast, and location) and/or 

manually (or automatically) engineered complex image features (e.g., texture, inhomogeneity and 

intensity distributions) inside or nearby the tumors. Although it is straightforward, a potential issue 

is that all these local features highly depend on the tumor appearance, which could largely vary 
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across different individuals. With such wider distributions of the predictive features, detecting true 

OS-associated radiomics indicators could be difficult. Moreover, these local features are difficult 

to be directly compared among different patients with distinct tumor sizes, shapes and/or locations. 

To tackle these issues, most of the previous studies have adopted a group-level statistical analysis 

to stratify the survival curves at the population level, i.e., constructing a group-level OS prediction 

model (Jain et al. 2014; Kickingereder et al. 2016b; Cui et al. 2015; Zacharaki et al. 2012; Saksena 

et al. 2010; Lacroix et al. 2001). With the statistically significant level only, findings from these 

studies cannot be easily utilized for modeling individual prognosis. In addition, many radiomics-

based studies have adopted only a limited number of manually-engineered features according to 

the researchers’ best prior knowledge, but inevitably neglecting other potentially useful features. 

This could lead to inconsistent findings across different studies. In other words, different studies 

have used different imaging features and their findings could not be comparable. For example, the 

extent of necrosis inside the gliomas was found negatively related to survival time (Pope et al. 

2005), while a positive relationship between them was also reported (Maldaun et al. 2004). In 

another example, the mass effect of the tumor was found to be not significantly associated with 

survival time (Lacroix et al. 2001), but it was also suggested as one of the two most important 

prognostic indicators (Zacharaki et al. 2012). Besides, human interference in focal lesion 

delineation, e.g., manual tumor segmentation or para-tumor edema area delineation, may further 

introduce biases.    

In addition to extract local radiomics features from the lesion areas, the whole-brain 

connectomics features extracted beyond the lesion areas have been recently proposed to be useful 

for clinical neuroscience studies, where the functional connectomics can be extracted from the 

“normal appearing” brain regions based on resting-state functional MRI (rs-fMRI) (Glasser et al. 
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2016; Sporns et al. 2004; S. M. Smith et al. 2011). With rs-fMRI, brain spontaneous activity can 

be measured by blood oxygen level-dependent (BOLD) signal and, according to their temporal 

synchronization between two spatially remoted brain regions, functional connectivity (FC) can be 

further calculated, measuring functional relationships between the two regions (Biswal et al. 1995; 

Horwitz et al. 1987; Horwitz 2003). By calculating FCs for all pairs of the brain regions, a large-

scale whole-brain functional network (functional connectomics) can be constructed, and the 

network properties can be quantified using graph-theoretic analysis (Van Den Heuvel and Pol 2010; 

Rubinov and Sporns 2010; Bullmore and Sporns 2009; Wee et al., 2012). Brain functional 

connectomics features have been extensively used to reveal abnormalities caused by various 

neurological and psychiatric diseases (Rosazza and Minati 2011; Fox and Greicius 2010), 

including brain tumors (Hart et al. 2016a, 2016b; Aerts et al. 2016; van Dellen et al. 2013; Xu et 

al. 2013; Huang et al. 2014). These studies have demonstrated that local lesion(s) could potentially 

have a much wider influence on the large-scale brain networks, causing network topographical 

changes and other system-level consequences (Wang et al. 2009b; Wang et al. 2010; Zhang et al. 

2009; Tijms et al. 2013).  

Similarly, gliomas may also lead to topographical alterations to the whole-brain FC 

connectomics (Hart et al. 2016b, 2016a; Aerts et al. 2016; Ghumman et al. 2016; Bartolomei et al. 

2006; Bosma et al. 2009; Cochereau et al. 2016). It is probable that different gliomas could cause 

distinct influences to the brain functional connectomics, resulting in different aftermaths from 

multi-dimensional behavioral abnormalities to varied survival time. Glioma entity can be regarded 

as a focal pathological attack on the whole brain connectomics. If it is more invasive (i.e., 

penetrating/involving more brain regions and/or growing faster), it may not only affect local 

contrast-enhanced area but also cause more catastrophic consequences involving wider networks 
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(i.e., the tumor effect may extend to normal appearing brain areas or even counter-lateral 

hemisphere). In addition, it may further lead to more impaired cognitive abilities or behavioral 

performance, eventually causing a shorter OS. On the contrary, if the tumor is less invasive, such 

effects could be relatively local; the whole network could be less affected, and the patient could 

have better daily life performance, largely reserved cognitive ability, and a longer OS.  

In a short conference paper, we have demonstrated that the traditional Pearson’s 

correlation-based FC network and another traditional structural network (from DWI) could be 

jointly used for OS stratification and found that the FC network contributed more in this task (Liu 

et al. 2016). However, only 75% accuracy was achieved, which is not satisfactory for a clinical 

study. The reason could be the heavy noise in the rs-fMRI data from the diseased brains and the 

insensitivity of traditional FC-based networks on the OS stratification. In this paper, we propose a 

novel method, namely brain connectomics-based OS prediction. It is based on non-invasive, 

increasingly adopted presurgical rs-fMRI and non-local, large-scale brain networks where global 

and systemic prognostic features rather than local lesion appearance features are utilized as 

prognostic features. Instead of relying on the structural MRI, we leverage functional MRI during 

resting state to characterize intrinsic brain functional organizations and build functional 

connectomics that could capture tumor-induced network-level alterations associated with 

prognosis. We use a single-site-based HGG dataset with long follow-up time (until the OS 

information were collected from most of the patients) and research-dedicated rs-fMRI data to 

investigate whether it is feasible to conduct presurgical OS prediction in an individualized manner 

based on the global topology of the large-scale brain networks. Different from our previous study 

(Liu et al. 2016), we construct both robust low-order (by means of sparse representation with 

regional BOLD rs-fMRI time series for better noise suppression) and high-order FC networks (an 
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advanced brain network construction method that characterizes more complex and sensitive multi-

regional interactions by synchronization of the FC dynamics) to better capture the tumor-induced 

alterations. Then, we extract features from both networks with graph-theoretic analysis for a joint 

machine-learning-based individualized OS prediction.  

Materials and Methods 

Participants 

In this study, 148 patients with primary HGGs were initially included retrospectively from our 

glioma patients multimodal brain imaging dataset built since 2010. They were all untreated when 

neuroimaging data were collected. All clinical and imaging datasets were collected from a single 

site (to rule out the multi-center effect) based on the Huashan Glioma Tissue Bank (GTB) Registry 

(Aibaidula et al. 2015), which was approved by the Huashan Institutional Review Board. All the 

patients provided written informed consent prior to the recruitment. From the diagnostic contrast-

enhanced T1-weighted images, all patients showed enhanced tumors that indicated HGGs, as 

confirmed by a histopathological technique. To maximally reduce the confounding effect of 

surgery and post-surgery treatment, we treated all patients equally and consistently according to 

the clinical guideline for HGG. Specifically, we included the subjects with maximal safe resection 

(confirmed by postoperative follow-up MRI) via craniotomy by the same neurosurgeon (JW) to 

ensure the consistency of surgical treatment for fair outcome prediction. All the patients received 

concurrent high conformal radiation and chemotherapy with Temozolomide followed by six cycles 

of Temozolomide in accordance with the Stupp’s regimen (Stupp et al. 2002). Each patient 

received fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks 

(equals a total dose of 60 Gy).   
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All patients received regular follow-ups every three months following discharge. None of 

them developed permanent motor or language deficits. Patients’ family members reported any vital 

event, such as death, based on which we calculated the OS time. Patients with any of the following 

situations were excluded: 1) excessive head motion (> 2 mm in translation or > 2 degrees in 

rotation along any direction) during the rs-fMRI scan or other imaging artifacts in T1 images, 2) 

inadequate follow-up time to determine long or short OS, 3) obvious irrelevant death causes (e.g., 

suicide), and 4) excessive tumor-induced brain deformation which caused misalignment during rs-

fMRI registration as determined by a consensus of three raters (HZ, JL, and LL). OS time was 

defined by the duration between the date of operation and the date of death. We counted the death 

caused by gliomas and the death caused by other unclear reasons. Due to the limited sample size, 

we treated the OS prediction task as a much easier two-class classification problem (i.e., short vs. 

long OS), rather than a more realistic regression problem. This is because the regression task 

generally requires more sample size to fit the regression model. The current study can be regarded 

as a pilot study or a testbed to investigate the feasibility of FC-based OS prediction. In addition, 

the patients who were still alive according to the last follow-up but had already lived longer than 

the cutoff were labeled as long OS. The threshold between long OS and short OS was chosen to 

be 650 days, which is a median OS for adult HGG patients (Wu et al. 2007). That is, the patients 

who died within 650 days after surgery are labeled as short (or bad) OS, and those who died after 

650 days or lived longer than 650 days are defined as long (or good) OS.  

We removed 14 (9.46%) patients due to excessive head motion and 7 (4.7%) patients due 

to imaging artifacts. There were 4 patients with both excessive head motion and imaging artifacts, 

so the total number of the removed subjects based on preprocessing quality is 17 (11.5%). Of note, 

other 6 subjects were also excluded because that the reason of death was not caused by HGGs, and 
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there are 57 patients excluded because there was no information about the date of their death or 

they only had short follow-ups, making us difficult to determine their OS. Finally, 68 patients were 

remained, with 34 having short OS and the other 34 having long OS. Between the two groups, 

there is no significant difference in pre-operatively assessed tumor volume (p = 0.55), extension 

of tumor resection (p = 0.22), or the ways of post-surgical treatments received (p = 0.82). Detailed 

subject information is summarized in Table 1. In addition, tumor locations are similar for the two 

groups (p = 0.27, see also Supplementary Figure 1 for the tumor probability maps of both groups). 

There are no significant group differences in gender, hemisphere involved, and mass effect caused 

by tumors. However, ages of the short OS group are significantly older than that of the long OS 

group (p = 0.04). Tumor WHO grade and histopathological subtypes have significant group 

differences (p = 0.01), with the short OS group having more glioblastoma patients; however, this 

factor alone was not able to make individual prognosis (see the result from OS prediction using 

traditional features). 

 

*** Please insert Table 1 here *** 

 

MRI acquisitions  

For each patient, a whole-brain, high-resolution, contrast-enhanced 3D-MPRAGE (magnetization-

prepared rapid-gradient echo) T1 MRI and an 8-min EPI (echo-planar imaging) rs-fMRI data were 

acquired pre-operatively with a 3.0-Tesla scanner (MAGNETOM Verio, Siemens Healthcare, 

Siemens AG, Germany) at Huashan Hospital. The imaging parameters of the T1-MRI are: TR 

(repetition time) = 1900 ms; TE (echo time) = 2.3 ms; FA (flip angle) = 9°; FOV (field of view) = 

240 × 240 mm2; matrix size = 256 × 215; and slice thickness = 1 mm. The imaging parameters of 
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the rs-fMRI are: TR = 2000 ms; TE = 35ms; FA = 90°; number of slices = 33; slice thickness = 4 

mm; inter-slice gap = 0; FOV = 210 × 210 mm2; matrix size = 64 × 64; voxel size = 3.4 × 3.4 × 4 

mm3; and number of acquisitions = 240. The contrast-enhanced T1 MRI was used to preoperatively 

assess tumor grade and to guide rs-fMRI registration. Of note, our single-center-based data might 

unavoidably narrow the applicable scenarios; however, we believe that the consistent settings 

could improve technical validity and control the confounding effects. In the future, data from 

different sites with different imaging protocols can help to learn a predictive model with better 

generalizability.  

Data preprocessing 

Data preprocessing was carried out using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), which 

includes the following steps: 1) discard the first 5 volumes for scanner calibration, 2) correct for 

slice acquisition timing and head motion, 3) spatial registration to the standard Montreal 

Neurological Institute (MNI) space by using the deformation field obtained from “New Segment” 

(an extension of SPM’s default “Unified Segmentation”, which obtains more robust brain tissue 

segmentation results via a group-wise registration algorithm (Ashburner and Friston 2005)) and 

DARTEL (a fast diffeomorphic registration algorithm which achieves better performance on lesion 

brain registration (Ashburner 2007) using group-wise, iteration-based algorithm) to the co-

registered T1-MRI, 4) spatial smoothing using a Gaussian kernel with FWHM (full-width-at-half-

maximum) of 6  × 6 × 6 mm3, 5) temporal linear trend removal, temporal band-pass filtering 

(0.01–0.08 Hz), and 6) regress out nuisance signals including the head motion profiles (Friston-

24 model) and other physiological noises (averaged white-matter signals and averaged 

cerebrospinal-fluid signals). Of note, the tumor effect on the registration was minimized by the 

above strategy using “New Segment”. The registered T1 images were visually checked to ensure 
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no excessive distortion in the registered T1 images of all subjects. It should also be noted that 

spatial smoothing might not be necessary for the region-wise FC study (Alakörkkö et al. 2017). 

We did not exclude this step because it is a common practice in the well-known rs-fMRI analysis 

toolboxes and it can increase the signal-to-noise ratio of the rs-fMRI data (Mikl et al. 2008). 

The preprocessed rs-fMRI data were used to extract functional connectomics. A key point 

is an accurate construction and comprehensive presentations of the brain functional networks. 

Therefore, we used different node/edge definitions to construct the brain networks from two 

different perspectives. Most of the brain functional network studies have treated brain regions as 

nodes, and the FC between each pair of the nodes as an edge (Smith et al. 2011). This network is 

called by us low-order FC network. Recently, we proposed a high-order brain network 

construction method based on “correlation of correlations”, which further calculates the temporal 

synchronization among the dynamic FC (Hutchison et al. 2013; Damaraju et al. 2014; Wee et al. 

2016) time series (i.e., time-varying FC, rather than traditional static FC). We have shown that the 

high-order brain network provided complementary information to the traditional low-order 

functional network in early Alzheimer’s disease detection (Chen et al. 2016a, b). In such a high-

order network, a “hyper-node” consists of two brain regions, and a “hyper-edge” characterizes a 

quadruple high-order relationship among a set of four (two brain region pairs) brain regions (Chen 

et al. 2016a, b; Zhang et al. 2017a). In this paper, we adopt the Automated Anatomical Labeling 

(AAL) template (Tzourio-Mazoyer et al. 2002) to define 116 brain regions; each region’s mean 

rs-fMRI time course was extracted for the subsequent network construction. Of note, the AAL 

atlas was generated based on the anatomical landmarks from a single subject, which may not 

correspond to the real “functional border” of the brain regions. An alternative way is to use a brain 

parcellation directly derived from rs-fMRI based on FC boundary, as described in Gordon et al. 
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(2016), where the FC boundary-based atlas was proposed to be better than other popular brain 

atlases. The reasons for choosing the AAL in this study rather than other atlases are provided below. 

First, a recent study on the influence of different templates on the properties of the complex brain 

network indicated that different parcellation scales might not affect major network properties such 

as small-worldness (Zalesky et al. 2010). Specifically, the estimates of various network 

organization properties (e.g., clustering, shortest path length, and efficiency) are consistent across 

different atlases with comparable resolution (Zalesky et al. 2010). However, it is noted that other 

studies hold a different opinion (Wang et al. 2009a; Fornito et al. 2010; Rubinov and Sporns 2010), 

indicating that different atlases could affect the result of network-based OS prediction. Second, the 

AAL parcellation is based on the borders constrained by the major sulcus and gyrus, which can be 

largely well aligned across subjects. Third, the AAL contains an optimal number of brain regions 

that could make each region large enough to compensate possible tumor-induced lesion effect or 

distortion. The appropriate total brain region number (~100) also reduces the computational load 

of the high-order FC networks used in this paper, as the high-order nodes increase dramatically 

(Chen et al. 2016a, b; Zhang et al. 2017a). Finally, compared to other atlases, AAL contains both 

cortical, subcortical and cerebellar regions, which could be equally important for OS prediction. 

Future work is desired to further investigate the influence of different brain parcellation atlases on 

the OS prediction. 

Robust sparse representation-based low-order brain connectomics 

Sparse representation was used to construct low-order brain networks, which is a commonly used 

method for capturing interactions between one brain region and all other brain regions while 

ensuring the sparsity of whole-brain connectivity pattern. However, when applying the commonly 

used sparse representation algorithms to the data with brain tumors, lesions could make the 
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representation problematic (i.e., the result can be largely affected by the lesion-induced noise). We 

proposed a robust method by using a non-squared data-fitting term in the loss function to suppress 

the noise induced by the tumors. In addition, we further penalized noisy/weak connections while 

preserving strong/putative connections by explicitly using Pearson’s correlation-based FC strength 

as a weight in the sparse regularization term. Please refer to Yu et al. (2016) and the 

Supplementary materials for details. Of note, this network construction strategy is particularly 

suitable for lesion brain studies.  

FC dynamics-based high-order brain connectomics  

First, a sliding-window approach was adopted to construct dynamic FC between each pair of brain 

regions, with both the window width and step size determined by cross-validation. Second, the 

resultant dynamic FC time series were used to calculate the second round of Pearson’s correlations 

which measure temporal synchronization of the FC dynamics. Theoretically, 116 brain regions 

will form a 116 × 116 low-order FC matrix and a 6670 × 6670 (i.e., 
2 2

116 116C C , where C denotes 

combination operation) high-order FC matrix. In practice, we adopted hierarchical clustering on 

the subject-concatenated dynamic FC time series to group the similarly fluctuated dynamic FCs 

into the same cluster (with the cluster number chosen as 600 according to cross-validation 

performance, as described later) to reduce the data dimensionality from 
2

6670C  to 
2

600C . The cluster 

centers are treated as hyper-nodes, and the pair-wise correlations among them are the hyper-edges.  

Graph-theoretic analysis-based connectomics feature extraction  

From both brain networks, we calculated four types of metrics that characterize various aspects of 

network properties (Rubinov and Sporns 2010) using GRETNA (Wang et al. 2015a). All the 

features are extracted from the weighted networks. They are: 1) degree, defined by summarizing 
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all connectivity strengths to each node; 2) small-worldness, including local clustering coefficient 

(measuring local connectivity of a node’s neighbors) and the shortest path length (characterizing 

overall communication cost between one node to all others); 3) network efficiency, measuring how 

efficient information is exchanged within a network globally (global efficiency) and locally (local 

efficiency); and 4) betweenness centrality, quantifying the importance of each node to the whole 

network, defined by the fraction of the shortest paths passing through this node to all shortest paths 

that do not pass through it.  

Machine-learning-based overall survival prediction 

Features from both types of functional connectomics were used to train two support vector 

machine (SVM) models (Cortes and Vapnik 1995) separately, and their respective classification 

scores were fused by weighted averaging to produce the final OS prediction result (Chen et al. 

2016a; Fan et al., 2008). In the training process, we conducted feature selection using LASSO 

(Least Absolute Shrinkage and Selection Operator) to identify a small number of informative 

features. Besides the connectomics features, we also included 13 traditional clinical features 

(including demographic variables, i.e., age and gender; and tumor-related features, i.e., tumor size, 

main location and distribution, WHO grade and histopathology type; as well as preoperative 

symptom, i.e., epilepsy, see Supplementary Table 1 for details) as they have been previously 

demonstrated to be associated with the prognosis. We did not include preoperative Karnofsky 

Performance Status (KPS) scores since all patients had KPS > 80 (with most of them being > 90), 

causing a ceiling effect with little difference between the two groups (p > 0.99). We included 

neither post-operative imaging nor post-operative clinical features because our study here was 

aimed to investigate the feasibility of preoperative prediction. Nevertheless, we by no means think 

that surgical and post-surgical treatments are irrelevant to OS (Rahman et al. 2017). A total of 709 
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features (6 metrics × 116 regions + 13 traditional features) were extracted for each network per 

subject. The entire OS prediction framework is depicted in Figure 1.  

 

*** Please insert Figure 1 here *** 

 

Prediction model evaluation and comparisons with other methods 

The generalization ability of our OS prediction model was evaluated by a nested cross-validation 

strategy, with leave-one-out cross-validation (LOOCV) used in the outer loop and 10-fold cross-

validation used in the inner loop (Chen et al. 2016a). Specifically, during each LOOCV, one 

subject was selected for testing, and the remaining 67 subjects were used as training samples in 

the inner 10-fold cross validation for parameter optimization. The parameters and their pre-

determined ranges are window width ∈ [20, 30, ⋯ ,100] and stepping size ∈ [1, 2, 4, 8, 10] for 

dynamic FC calculation, the number of clusters ∈ [100, 200, … 700] for high-order connectomics 

calculation, the parameter λ ∈ [0.1, 0.2, ⋯ , 0.9] for feature selection with LASSO, two 

hyperparameters C ∈ [2−9, 2−8, ⋯ , 29] for the two SVMs, and the weight α ∈ [0.1, 0.2, ⋯ , 0.9] 

for result fusion. The final optimized values are: window width = 30, stepping size = 2, cluster 

number = 600, 𝜆 = 0.7, 𝐶 = 2−8, and 𝛼 = 0.3. The testing subject was then fed into the trained 

classification model for generating the prediction result. This procedure was conducted 68 times 

until every subject had been selected once. We then calculated the accuracy (ACC), sensitivity 

(SEN) and specificity (SPE) by treating the short OS samples as positive samples and the long OS 

subjects as negative samples in true positive (TP), false positive (FP), true negative (TN) and false 

negative (FN) calculations.  
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We compared our OS prediction performance with that only using low-order or high-order 

connectomics as features. We also calculated the performance of using a simple clinical model 

with only 13 traditional features. Please note that the prognosis model with only 13 features may 

be over-simplified, which was only used as a baseline. Besides, we also adopted several other 

commonly adopted low-order connectomics construction methods for performance comparison. 

These methods are 1) Pearson’s correlation-based brain FC network construction, 2) partial 

correlation-based brain FC network construction, and 3) connectivity strength-weighted sparse 

representation-based brain FC network construction (Yu et al. 2016). 

Extracting the brain regions and connectivities with prognostic ability 

To further identify imaging biomarkers with potential prognostic value, we identified the 

connectomics features with the most discriminative (prognostic) ability from both low- and high-

order connectomics, if they were selected for more than 60 out of the 68 LOOCV runs. As each 

node in the high-order connectomics corresponds to a cluster consisting of multiple brain region 

pairs, we showed all the involved brain region pairs as the most discriminative high-order FC 

features. 

Results 

Exemplary cases 

Figure 2 shows two patients with WHO-IV gliomas (i.e., glioblastoma), both at young ages, with 

presurgical neurological deficits but relatively high KPS scores, received gross total resection and 

similar post-surgical treatments. However, these two patients have different OS. For example, 

subject #001 only lived less than one year, while subject #147 is still alive according to the last 

follow-up for three and a half years. Compared with subject #001, subject #147 had a larger 

glioblastoma, which could have made his/her prognosis less favorable if OS was simply associated 
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with the presurgical tumor size. If simply evaluating OS based on the extent of resection, subject 

#147 could have similar OS estimation as, if not better than subject #001. As for the tumor imaging 

appearance, both subjects have a ring-shaped enhancement along the rim and a necrosis region in 

the kernel of the tumor, as well as similarly heterogeneous tumor entity and hypo-intensity edema 

area. Based solely on such imaging appearance, it is difficult to make prominently different 

prognosis prediction results for them. Of note, by using the two cases, we intended to indicate that 

it could be quite complicated to engineer tumor-based image appearance (radiomics) features for 

prognosis because of the highly heterogeneous local appearance of the tumor entity. Other features 

such as connectomics could also provide information for OS prediction as valuable as those 

previously used radiomics features, but these two types of the features are quite different from 

each other.  

 

*** Please insert Figure 2 here *** 

 

Overall survival prediction accuracy 

The OS prediction accuracy of our proposed framework (utilizing both low- and high-order 

connectomics as well as the traditional clinical information) is significantly higher than that using 

only 13 clinical features (accuracy = 86.8% vs. 63.2%). Except for comparing our proposed 

method with the method using only clinical features and other state-of-the-art connectomics-based 

methods, we also compared with the methods using radiomics features. Like the previous tumor 

radiomics studies, we extracted higher-level image features from multimodal images (T1-weighted 

MRI, rs-fMRI and DWI) using the well-adopted scale-invariant transform (SIFT) and Haar-like 

features. Specifically, we first manually drew a bounding box that best includes the entire tumor 
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areas according to the T1-weighted MRI. We then registered all other imaging modalities to the 

T1 image for each patient. For rs-fMRI, we computed amplitude of BOLD signal fluctuations at 

each frequency band to represent brain activities (Buzsaki and Draguhn 2004). For DWI, we 

computed various diffusivity metrics, such as fractional anisotropy (FA) (Alexander et al. 2011). 

We extracted both SIFT (Lowe 2004) and Haar-like (Viola and Jones 2004; Zhang et al. 2017b) 

features from all the modalities and all metric maps and used principal component analysis (PCA) 

to reduce the feature dimensionality for training the SVM classification model. As shown in Table 

2, although we used more imaging modalities, the accuracy in OS prediction based on the SIFT 

and Haar-like features was only 69.1 % and 78.4%. The conventional low-order FC features 

calculated using Pearson’s correlation and partial correlation resulted in worst performance, 

compared with that using the 13 clinical features. By using the state-of-the-art FC network 

construction method (i.e., weighted sparse representation), the OS prediction accuracy was 

increased prominently (by ~10% and ~15%, compared with those using only traditional features 

and Pearson’s correlation, respectively). In contrast, even though only either low- or high-order 

connectomics features are used for prediction, the accuracy is increased to a satisfactory level (80.9% 

and 85.3%, respectively). Of note, the accuracy of our new method (86.8%) is significantly higher 

than that reported by our short conference paper with traditional network-based OS prediction 

(75%) (Liu et al. 2016). The ROC (receiver operating characteristic) curves of our proposed 

method and the competing methods are shown in Figure 3. 

 

*** Please insert Table 2 and Figure 3 here *** 
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Low-order connectomics features with high prognostic ability 

The total number of the selected important low- and high-order connectomics features are three 

and 16, respectively. There are no traditional features consistently selected in 60 out of the 68 

LOOCV runs. The three most important low-order connectomics features involve three brain 

regions and two network property metrics. They are the clustering coefficient of the left paracentral 

lobule (PCL.L), and the degrees of both the left supplementary motor area (SMA.L) and the left 

supramarginal gyrus (SMG.L). We further visualize them and compare their respective network 

property metrics between the short and long OS groups, to further reveal their differences between 

the two groups. We also checked the group differences for their right hemisphere counterparts. As 

shown in Figure 4, the degree at the SMG.L is larger for the short OS group than the long OS 

group (p < 0.001), whereas such a difference is not statistically significant for the right SMG (p > 

0.05). The degree at the SMA.L shows a similar result, with a significant group difference on the 

left side but not on the right side. For PCL.L, the short OS group still has significantly higher local 

clustering coefficient than the long OS group (p < 0.001), and its right-side counterpart shows a 

much weaker difference (p < 0.05). 

 

*** Please insert Figure 4 here *** 

 

High-order connectomics features with high prognostic ability 

It is quite important to visualize the high-order connectomics features in an intuitive way for better 

understanding of the biological meaning of the high-order FC. Thus, we showed each high-order 

FC cluster with a spatial distribution of co-varied FC dynamics (a set of brain-region pairs). Figure 

5 shows the high-order “nodes” with higher OS predictability. More details of these high-order FC 
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clusters can be found in Supplementary Figure 2 and Supplementary Table 2. Interestingly, the 

co-varied FC dynamics seem well organized structurally, and such structural patterns can be 

generally divided into two types: stars (Figure 5A–L) and symmetric grids (Figure 5M–P). For 

the star-shaped high-order FC, there is usually one (or two closely located) brain region(s) which 

serves as a “hub(s)” with extensive connections to other regions. While these non-hub regions 

usually do not interconnect with each other. In the corresponding adjacent matrix, this high-order 

FC corresponds to a crossing pattern, indicating a center region with a large degree. Among all the 

12 star-shaped high-order FC clusters, six clusters have a single (or two) cerebellar region(s) as 

hub(s); two have a single (or two) subcortical region(s) as hub(s); and four have an association 

region(s) as hub(s). Except the two spatially symmetric high-order FC clusters centering at the 

vermis, all other ten high-order FC clusters have asymmetric spatial distributions.  

The two high-order FC clusters with symmetric grid-like pattern involve cortico-

subcortical connections (Figure 5O, P), i.e., one involving orbitofronto-temporal connections 

(Figure 5M) and the other involving cerebro-cerebellar motor pathway (Figure 5N).  

 

*** Please insert Figure 5 here *** 

 

Discussions 

General discussion 

In this work, we demonstrate a high accuracy (86.8%) in individualized OS stratification for HGG 

patients using features from whole-brain FC networks based on a single-site preoperative rs-fMRI 

data. The prediction is conducted based purely on the presurgically obtained features. We propose 

that, given typical surgical and post-surgical treatments, the OS time could be roughly predicted 
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by using presurgical rs-fMRI. Although it is still far away from real clinical application due to the 

limited sample size and the rough OS classification rather than regression, our study still indicates 

a promising clinical value of human brain connectomics for HGG prognosis evaluation. Most 

importantly, we show significant improvement in OS prediction with connectomics features 

compared to the traditional pre-surgical prognosis evaluation with 13 general clinical features. Our 

study indicates that normal-appearing brain tissues may carry essential prognostic information, 

which has been largely omitted previously. Such information may reflect the influence of the 

gliomas on the brain, intrinsically associated with patients’ physical statuses, thus with the 

prognostic value given routine treatment. This is a great example showing how a dedicated 

imaging technique and post-processing analysis can contribute to the traditional clinical practices.  

As a proof-of-concept study, we successfully classified the subjects with bad OS from 

those with good OS using a classification framework, a testbed of future regression-based OS (as 

a continuous variable) length prediction. Of note, as a preoperative OS prediction study, we 

deliberately used the subjects with matched status and treatment. We only compared the 

performance of our OS prediction model with a simple “traditional model” with only mostly used 

13 “clinical” features. We fully acknowledge the previous works using other informative 

prognostic features such as molecular biomarkers (e.g., isocitrate dehydrogenase 1, or IDH1) and 

treatment variables (e.g., the extent of resection and the dose of radiotherapy). Our study is to 

provide a presurgical OS prediction with brain images to guide the clinical intervention, rather 

than that based on the exhaustively collected features, which is time-consuming and unrealistic. 

We acknowledge that molecular and genomic biomarkers could also predict OS (Cairncross et al. 

1998), but they can only be obtained in an invasive way. We also believe that clinical intervention 

and recovery nursing care can largely affect OS. Therefore, the main advantage of our model is 
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that we have proved that the prognostic features can be extracted from presurgical non-invasive 

brain functional imaging. 

Traditional or imaging-based prognostic evaluation 

For HGG patients, comprehensive presurgical assessment is essential in clinical practice. In 

addition to the tumor localization and eloquent functional area localization (if the tumor is located 

in the proximity of the functional areas, such as sensorimotor and language areas), prognostic 

evaluation has been usually, if not explicitly, conducted by the doctors to better assist treatment. 

However, the multidiscipline barriers among radiodiagnosticians, imaging technicians, 

radio/chemotherapists, pathologists, neuro-oncologists and neurosurgeons pose a great challenge 

to this practice. Insufficient information, a misunderstanding during the information exchange, or 

different criteria used by different physicians could make prognostic evaluation difficult. 

Traditionally, several descriptive features from demographics (e.g., age) or physical status data 

(e.g., KPS) or the tumor histopathology (obtained by either expert evaluation of the clinical images 

or biopsy specimen) have been widely used to evaluate the OS roughly. However, clinically 

accurate and sensitive prognostic indicators are still not apparent, making individualized 

prognostic evaluation infeasible (Davis et al. 1998). This can be indicated by our result using only 

13 traditional features with an accuracy of 63.2%. The reasons for the unsatisfactory accuracy in 

the “traditional feature”-based OS prediction could be the highly heterogeneous tumors 

characteristics across patients, too complex interaction among these factors, and/or ignoring other 

hidden factors. Neuroimaging techniques can non-invasively reveal the brain phenotype 

information, from which one can identify abundant prognostic information. Therefore, imaging 

phenotype-based prognosis has gained increasing interests. In future, phenotype and genotype data 

should be jointly used for OS prediction in routine clinical practice.  
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We think that simple behavioral and physical examine scales (such as KPS) cannot provide 

adequate sensitivity for individualized OS prediction. For example, in our study, preoperative KPS 

for all the tumor patients are larger than 80 (with most of them being larger than 90), leading no 

significant difference between the two OS groups (p > 0.99). Such inadequate sensitivity also 

exists for most of the traditional features (e.g., tumor size and location). Previously, studies 

comparing KPS scores between glioma patients and healthy controls found a significant group 

difference (Jain et al. 2014; Klein et al. 2001); however, when both groups have tumors but with 

different OS, there may be no difference in KPS. We propose that more sensitive features should 

be used for OS prediction in future to comprehensively measure physical, cognitive, affective and 

psychological statuses. This is because that the differences between short and long OS groups 

could be subtle, with probably slightly more complaints of occasional cognitive disturbances, 

fatigue and mood disorders for the patients with short OS (Taphoorn et al. 1994). FC could be 

more sensitive to such subtle changes, which has been supported by many previous studies on the 

brain disease detection at a prodromal stage (Zhang et al. 2016; Chen et al. 2016a).  

As shown by the tumor probability maps (Supplementary Figure 1), the tumors of the 

two groups in our study seem to be similarly located at the left insula and its nearby regions. Please 

note that, while statistical analysis on tumor location did not show significant group difference, we 

still could not claim that tumor location is irrelevant to the OS, as several studies have suggested 

that different tumor locations could indicate different prognosis (Jeremic et al. 1994; Simpson et 

al. 1993). We think that, similar lesion location between the two groups in our study could still 

lead to global differences in the connectomics, and that the latter could be more relevant to survival 

time. This leads to the following discussion and comparison of the prognostic values between 

global connectomics and local radiomics.    
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Prognostic values of brain connectomics and radiomics  

Based on the presurgical images, there are two main strategies to extract features for OS prediction: 

connectomics- and radiomics-based methods. In this paper, we adopted the former, while all the 

previous OS prediction studies have adopted the latter. Aside from the aforementioned advantages 

of the connectomics compared to the radiomics, here we deeply analyze the potential biological 

mechanisms that lead to the success of connectomics-based OS prediction. First, we hypothesized 

that prognosis is not only related to treatment but also closely associated with presurgical healthy 

status as reflected by the connectomics. This is supported by many studies showing the association 

between OS (or recurrence and severity) and patients’ life quality, physical status and 

neurobehavioral/cognitive status (Martin Klein et al. 2001; Taphoorn et al. 1994; Giovagnoli et al. 

2005). However, most studies aimed at investigating how treatment affects the neurological, 

cognitive and psychological abilities in the postsurgical studies (Klein et al. 2002). We think that 

the presurgical assessment of these functions is also equally crucial for OS assessment. FC has 

long been applied for the early detection of various brain diseases, such as Alzheimer’s disease 

(Stam et al. 2007) and schizophrenia (Lynall et al. 2010). In addition, altered connectomics have 

also been linked to abnormal cognitive and behavioral statuses (Sporns et al. 2004). Therefore, the 

connectomics might be used to evaluate healthy statuses and predict OS for the HGG patients 

(Maesawa et al. 2015).  

Second, differences in brain functional connectomics may reflect the stage of the gliomas. 

We originally hypothesized that severer tumor (with shorter OS) could cause larger direct and 

indirect interferences to the brain connectomics. However, we found that the network property 

metrics on the tumor side have much higher values compared to those on the contralateral side 

(Figure 4). This leads to a different interpretation to the tumor-induced connectomics alterations. 
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That is, at the beginning of the glioma growth, the tumor can be regarded as a local pathological 

interference that could make a direct, local disturbance to the brain connectomics. For example, 

Agarwal et al. (2017) found that local FC was reduced in the tumor regions. While a tumor is 

growing, penetrating, and taking places with more surrounding brain tissues, its influence on the 

brain connectomics could widely spread. The brain may evolve and adapt to the neoplasm, leading 

to other indirect, plastic changes at “normal appearing” regions or even on the unaffected side 

(Hart et al. 2016a; Maesawa et al. 2015; Ghumman et al. 2016; Wang et al. 2010). Hart et al. 

(2016b) suggested that different tumor locations might affect different functional networks. They 

further found significant FC network alterations in the glioma patients compared with healthy 

controls (Hart et al. 2016a). In our study, we step further and found differences in the FC network 

properties even within the brain tumor cohort between long- and short-OS groups. In contrast, 

radiomics features mainly focus on local appearance changes, thus may ignore a significant 

amount of systemic prognostic information or include nuisance features that may only reflect 

lesion-related but no OS-associated appearance changes. This has been further proved by our 

additional experiments extracting state-of-the-art radiomics features from the same data for the OS 

prediction, including scale-invariant transformation (SIFT) (Lowe 2004), and Haar-like features 

(Viola and Jones 2004), with the accuracy of 78.4% and 69.1%, respectively (Table 2). 

 Third, compared to the radiomics features that could be more affected by the tumor 

heterogeneity, connectomics features measure systemic and global changes, which might be less 

affected by such a heterogeneity. In addition, the reliability and robustness in feature extraction 

are important to successful OS prediction. These are supported by the inferior performance 

(accuracy = ~50%) using traditional brain network construction methods (Pearson’s/partial 

correlation) compared with the more robust methods (weighted sparse representation and our 
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robust low-order connectomics construction, with ~70–80% in accuracy). Specifically, 

Pearson’s/partial correlation-based methods could be more vulnerable to the tumor interference 

and less robust to noise and artifacts. The sparse representation-based methods, however, are able 

to suppress noise (Yu et al. 2016). Moreover, these methods can characterize more complex 

interactions among multiple brain regions (Meinshausen and Bühlmann 2006) to provide more 

sensitive features for OS prediction. The difference between our low-order FC network 

construction method and weighted sparse representation is that we not only use FC strength as a 

weight to suppress noise and construct biologically meaningful networks but also explicitly use a 

robust representation term in the cost function to further suppress noise.  

 With significantly increased prognosis accuracy, we can further analyze which features 

could contribute to the OS prediction and why. Since low- and high-order FC was separately 

calculated and jointly used for OS prediction, the important prognostic features for these two types 

of connectomics could be fundamentally different, which will be separately discussed below.  

The most predictive low-order FC features 

Based on the involved neurological functions and the locations relative to the lesion probability 

map, we attribute the selected predictive low-order FC (Figure 4) as a consequence of the lesions. 

The involved regions are located at either language or sensorimotor-related areas, all in the left 

hemisphere, same as the hemisphere with high tumor probability. This can explain why most of 

the subjects have deficits in language and/or motor functions. Among them, the supramarginal 

gyrus is mainly related to language perception and receptive processing (Gazzaniga 2009). It is 

also believed to be part of the somatosensory association cortex that mediates perception of space 

and limb location, as well as identifying postures and gestures of other people (Carlson 2010). This 

region works closely with the surrounding areas, such as the angular gyrus, to integrate complex 
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signals sent from other primary and secondary regions. The other two regions are both related to 

sensorimotor function, including motor planning, making sequences of movement, and motion 

coordination (He et al. 1995) for the left supplementary motor area, as well as controlling 

motor/sensory innervations of the lower extremity for the left paracentral lobule.  

We further investigated how such influences differed between two OS groups. For the two 

left-side sensorimotor-related regions, interestingly, short OS group has a larger degree/clustering 

coefficient than the long OS group (Figure 4B, C). For the language related region, such a group 

difference still holds for the left-side region, but not the right-side counterpart (Figure 4A). The 

right-side regions were served as internal controls, where no significant group difference was 

found (except a weak group difference on the clustering coefficient at the right paracentral lobule). 

Such findings indicate that, although these three regions could be directly affected by tumors, they 

may not be the direct cause of OS differences. Next, we provide two hypotheses to interpret these 

findings. 

 First, the cost to compensate for tumor influence on the connectomics could be higher in 

the short OS than the long OS group. The increased degree and increased clustering coefficient 

could be associated with abnormally increased network local efficiency due to the adaptive 

mechanism to the local disturbance to the network caused by the nearby neoplasms. Due to the 

effect of tumors, the brain has to increase the FC in the adjacent areas of the lesions to take over 

the dysfunctional regions to maintain the normal functions. Such an abnormally increased 

connection burden can affect a node itself by increasing its degree or influence its neighboring 

connections by increasing its clustering coefficient. Similarly, Carbo et al. (2017) also found with 

magnetoencephalography (MEG) that patients with different brain tumors have over-loaded hubs 

that are negatively correlated with their presurgical cognitive ability (i.e., the higher the nodal 
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degree is, the lower the executive and attentional performance will be). In a longitudinal study on 

the efficiency change of the sensorimotor network during stroke recovery, Wang et al. (2015b) 

found that, the network could shift toward a random and less efficient network with increased 

degrees. Moreover, Yu et al. (2016a) found differences in network hub location between brain 

tumor patients and healthy controls. Our findings may provide additional support to such a 

compensatory hypothesis.  

 The second possible interpretation is that the plastic network reorganization could be more 

significant in the long OS group due to the slower tumor growth than the short OS group. A shorter 

OS may correspond to faster-growing HGG, and vice versa. This could be supported by the 

previous studies comparing low-grade gliomas with HGGs. It is believed that low-grade gliomas 

have a slower growth rate (Duffau 2017; Stensjøen et al. 2015), making the brain functional 

reorganization have enough time to take place (van Dellen et al. 2012; Desmurget et al. 2007), 

thus resulting in more prominent network reorganization. In contrast, HGGs are generally faster 

growing, leaving little time for the brain connectomics to reshape or reorganize (Aerts et al. 2016; 

van Dellen et al. 2012). The difference in the tumor growth rate does not only exist between low-

grade and high-grade gliomas, but also between different subjects with HGGs. Stensjøen et al. 

(2015) found that the tumor growth for the HGGs could vary largely across subjects, even for those 

with the same WHO grade. This could explain our findings in the sensorimotor network (Figure 

4B and 4C), where the degree on the lesion side of the sensorimotor area in the short OS group is 

similar (p = 0.58, paired t-test) to that on the contralateral side of the sensorimotor area, while the 

long OS group shows significantly different degree between the left and right sensorimotor areas 

(p = 0.002). A similar trend can also be found based on the clustering coefficient at the left 

paracentral lobule, another region in the sensorimotor network.  
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Of note, several previous empirical studies on brain tumor patients found inconsistent 

results regarding to the brain network changes (Aerts et al. 2016; Bartolomei et al. 2006; Bosma 

et al. 2009; van Dellen et al. 2014; Huang et al. 2014; H. Wang et al. 2010; Xu et al. 2013). For 

example, Xu et al. (2013) and Yu et al. (2016a) found no group difference in the global clustering 

coefficient of the whole connectomics between low- and high-grade gliomas. This could be due to 

the fact that the global network properties used in these studies are not sensitive to the local tumor 

lesion. In contrast, we investigated nodal properties (i.e., degree and local clustering coefficient) 

and found significant changes that are associated with different OS. Moreover, compared to the 

sample size of the previous studies as reviewed by Aerts et al. (2016), our sample size is larger (N 

= 68) compare to N = 34 in Yu et al. (2016a). Meanwhile, our patients are more homogenous (all 

HGG patients) compare to three meningiomas, seven low-grade gliomas and seven HGGs used in 

(Yu et al. 2016a).  

The most predictive high-order FC 

There are 16 high-order connectomics features selected as robustly predictive features (Figure 5 

and Supplementary Figure 2), which are more than the selected predictive low-order 

connectomics features. Such an increase in predictive features could be due to the fact that high-

order FC measures higher level and more complex brain functional associations and could be more 

sensitive to OS differences compared to low-order FC (Chen et al. 2016a; Chen et al. 2016b; Zhang 

et al. 2017a). In this study, each high-order hyper-node may contain more than two dynamic 

connections due to the clustering analysis we used to reduce network dimension. Due to the 

complexity of these high-order hyper-nodes, we visualized each of them using a brain network 

plot that shows all the involved dynamic connections in each cluster, without further interpreting 

the hyper-edges or high-level network properties.     
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We found two interesting structured patterns for the 16 most informative high-order FC 

features. The first type is star-shaped high-order FC clusters, with one (or two) region(s) at the 

center(s) and all others at the peripheral without direct links to each other. Such a pattern may 

indicate that the central region acts as a driving region while all the peripheral regions are driven 

by it. In such a pattern, the driving central region could dominate the entire high-order FC cluster, 

making itself act as a hub. We note that most of the driving regions are located in the cerebellar 

regions, with most of the peripheral regions are distributed symmetrically in the cortical areas. We 

further focused only on the representative link nearest to the high-order FC cluster center and drew 

them in Supplementary Figure 3 (detailed in Supplementary Table 3). We found a dominant 

pattern from the result that involves dynamic FC connecting the cerebral cortex and the cerebellar 

areas. The findings provide further evidence of the important OS-related functions mediated by 

the cerebro-cerebellar connections. The cerebellum has been considered to mediate motion 

coordination and synchronization. It also connects with many cortical regions and is responsible 

to regulation and modulation of attention, language, memory, emotion, and other high-level 

cognitive functions (Ratey 2001; Squire et al. 2012). By using high-order FC, we found that most 

of the cortical nodes in the most predictive cerebro-cerebellar connections are distributed into 

multiple high-order functional systems, such as the frontal-parietal task control network (Figure 

5A, D), default mode network (Figure 5B, G) and visual network (Figure 5J, L). Therefore, we 

think that the high-order function-related cerebro-cerebellar connections can predict OS. Beside 

the cerebellar regions, other driving hubs mostly involve the high-level association areas, such as 

supramarginal gyrus, inferior occipital gyrus, superior/inferior parietal lobules, inferior frontal 

gyrus, and striatum. This further demonstrates the ability of high-order FC in capturing high-level 

complex brain functions.  
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Similarly, previous studies on the FC dynamics also found a similar star-shaped pattern. 

Using rat model, Grandjean et al. (2017) found that one of the brain dynamic statuses also formed 

a star shape, with the thalamus as a central region and all other cortical regions as peripheral 

regions (see the dynamic functional status #16 in Figure 3 of Grandjean et al. 2017). There is no 

further interpretation of this star-shaped status, but they tentatively linked it with chronic 

psychosocial stress, a negative emotional state). Gu et al. (2017) also reported a star-shaped hyper-

edge during the investigation of different types of FC hypergraphs defined by the correlation 

between any pair of the static low-order FC links across subjects. They further proposed that the 

star-shaped hyper-edges constitute dominant and fundamental motifs in the brain, which may be 

involved in information integration processes from diverse sources to a single brain region or in 

an information broadcasting processes from a single region to distributed nodes. Our findings 

provide another possible interpretation of this type of high-order FC clusters by linking it to the 

OS prediction. We propose that the star-shaped high-order FCs might be related to high-level 

cognitive and emotional statuses that have a prognostic value. We further suggest that those 

statuses are pivotal to physical and mental health that are highly associated with prognosis.   

 A second type of the high-order FC clusters is symmetric inter-hemispheric connectivity 

grid (Figure 5 M–P), where each region is involved in a cross-hemisphere connection linking with 

its mirrored counterpart. Among the four high-order FC clusters, two are the cortico-subcortical 

high-order FCs involving both striatum and thalamic regions, as well as the orbital frontal regions 

and temporal pole; a third cluster has a spatial pattern involving the interactions between the orbital 

frontal regions and temporal pole, and the last cluster covers the sensorimotor system. There is no 

dominant hub nor driving region in them. We hypothesize that such a pattern reflects 

interhemispheric coordination that may be affected by the tumors. The orbitofrontal regions are 
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related to social cognition, reward-related emotional processes and decision making (Fuster 1988). 

The connections between the orbitofrontal regions to temporal pole, thalamus and striatum may 

be responsible for inhibitory and excitatory regulations of the autonomic function (Cavada et al. 

2000), goal-directed and habitual action (Balleine and O'doherty 2010), as well as visual/auditory 

information association and integration (Cavada et al. 2000). The temporal pole is also related to 

social and emotional processes (Olson et al. 2007). Collectively, this type of high-order FC clusters 

could also mediate high-level cognitive and emotional functions, which could be affected by the 

HGGs.  

Limitations 

There are several limitations in this study. First, the limited sample size could lead to a concern 

about model generalizability. In routine clinical practice, not every patient has a rs-fMRI scan for 

calculating the functional connectomics. Moreover, OS calculation requires a long follow-up 

period, which further limits the available sample size. With a larger sample size, one can conduct 

a regression analysis rather than the two-class (short vs. long OS) classification as used in the 

current study, for better and more realistic OS prediction. Second, due to the retrospective type of 

this study, most of the included subjects have tumors near the language and motor areas. It leads 

to a left dominant tumor distribution pattern. In the future, a prospective, well-designed study that 

can balance the tumor distribution between both hemispheres should be conducted. Third, the 

traditional clinical information used in this study was not exhaustively explored. A comprehensive 

feature extraction could further increase OS prediction accuracy. An ongoing study by us is to use 

deep-learning-based features (Nie et al. 2016), connectomics features, and genomic features to 

jointly predict the OS. Finally, we only demonstrated the feasibility of the presurgical OS 

prediction. The OS should be also related to other treatment-related variables, and the OS 
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prediction should be gradually updated based on longitudinal data.    

 

Conclusions 

This is the first successful implementation of individualized overall survival time prediction for 

brain tumor patients based on presurgical non-invasive brain functional imaging and following 

whole-brain large-scale network analysis. We proposed novel techniques to calculate different 

types of functional connectomics to extract robust and comprehensive features for outcome 

prediction. With all connectomics features, we achieved 86.8% accuracy, which is a significant 

improvement compared with prognosis based on traditional clinical and demographic information. 

The results show a good feasibility of preoperatively predicting overall survival time under the 

condition of total resection and clinical routine post-surgery treatment for high-grade gliomas. Our 

study also indicates a promising direction for human brain connectomics applications to 

individualized prognosis in precision medicine.  
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Figure Legends 

Figure 1. Proposed pipeline of OS prediction for high-grade glioma patients. First, valuable 

features are effectively extracted from the low- and the high-order connectomics. Then, a simple 

and efficient LASSO feature selection method is performed to identify good features and reduce 

feature redundancy. After that, two SVMs are built based on the features selected from the low- 

and high-order connectomics, respectively. Finally, a decision-level fusion classification method 

is used to combine the classification results from two SVMs together to make full use of the 

information contained in static and dynamic brain functional networks. K: degree; L: shortest path 

length; C: clustering coefficient; B: betweenness centrality; Eg: global efficiency; and E𝑙: local 

efficiency. 

Figure 2. Exemplar cases. T1-weighted contrast-enhanced images showing gliomas from two 

subjects who had similar imaging characteristics but quite different survival time.  

Figure 3. The ROC (receiver operating characteristic) curves of proposed methods and the 

competing methods. HO: high-order; LO: low-order; WSR: weighted sparse representation; and 

SIFT: scale-invariant transform. 

Figure 4. Discriminative ROIs with consistent predictive ability for low-order functional 

connectomics. The statistical comparison results between two OS groups are provided, together 

with the results at their right-side counterparts. OS: overall survival time; SMG.L: left 

supramarginal gyrus; SMA.L: left supplementary motor area; PCL.L: left paracentral lobule; n.s.: 

non-significant. The figure was drawn by using BrainNet Viewer (Xia et al, 2013). 
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Figure 5. Discriminative high-order FC patterns with consistent predictive ability. A total of 

16 “hyper-nodes” in the high-order networks where the nodal properties could consistently predict 

OS were shown. In each of the subplots (A-P), a spatial pattern corresponding to a set of pairwise 

dynamic FC links was shown, both with an adjacent matrix (with re-organized column and row 

orders, with the first and second halves of the adjacent matrix representing the left and right 

hemispheres, respectively) and a brain volumetric rendering result (based on BrainNet Viewer, 

www.nitrc.org/projects/bnv). Each set of dynamic FC links has similar temporal fluctuation 

patterns; as a result, they were grouped together based on clustering and the center of the cluster 

was further used for high-order FC calculation. Therefore, each of the subplots was treated as a 

hyper-node of the high-order FC networks. Each element of the adjacency matrices represent a 

different pairwise link, and each cluster has multiple such pairwise links. From 12 (subplots A-L) 

out of 16 hyper-nodes, “hub-peripheral” patterns were identified, with the “hub” regions shown in 

green, and other peripheral regions which connected to the hubs shown in red. From the remained 

4 hyper-nodes (subplots M-P), symmetric patterns were found, with symmetric bi-hemispheric 

links involved. For multi-view version of this figure, please see Supplementary Figure 2. For 

abbreviations of names of brain regions, please see Supplementary Table 2. 
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