7,371 research outputs found

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file

    China\u27s Foreign Relations: Selected Studies

    Get PDF

    Classification of Stellar Spectra with LLE

    Full text link
    We investigate the use of dimensionality reduction techniques for the classification of stellar spectra selected from the SDSS. Using local linear embedding (LLE), a technique that preserves the local (and possibly non-linear) structure within high dimensional data sets, we show that the majority of stellar spectra can be represented as a one dimensional sequence within a three dimensional space. The position along this sequence is highly correlated with spectral temperature. Deviations from this "stellar locus" are indicative of spectra with strong emission lines (including misclassified galaxies) or broad absorption lines (e.g. Carbon stars). Based on this analysis, we propose a hierarchical classification scheme using LLE that progressively identifies and classifies stellar spectra in a manner that requires no feature extraction and that can reproduce the classic MK classifications to an accuracy of one type.Comment: 15 pages, 13 figures; accepted for publication in The Astronomical Journa

    Identifying the ejected population from disintegrating multiple systems

    Full text link
    Kinematic studies of the Hipparcos catalogue have revealed associations that are best explained as disintegrating multiple systems, presumably resulting from a dynamical encounter between single/multiple systems in the field (Li et al. 2009). In this work we explore the possibility that known ultra-cool dwarfs may be components of disintegrating multiple systems, and consider the implications for the properties of these objects. We will present here the methods/techniques that can be used to search for and identify disintegrating benchmark systems in three database/catalogues: Dwarf Archive, the Hipparcos Main Catalogue, and the Gliese-Jahrei{\ss} Catalogue. Placing distance constraints on objects with parallax or colour-magnitude information from spectrophotometry allowed us to identify common distance associations. Proper motion measurements allowed us to separate common proper motion multiples from our sample of disintegrating candidates. Moreover, proper motion and positional information allowed us to select candidate systems based on relative component positions that were tracked back and projected forward through time. Using this method we identified one candidate disintegrating quadruple association, and two candidate disintegrating binaries, all of them containing one ultra-cool dwarf.Comment: 5 pages, 1 figure, proceeding of The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Su

    Further investigation of a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    Get PDF
    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements

    ac Josephson effect in asymmetric superconducting quantum point contacts

    Full text link
    We investigate ac Josephson effects between two superconductors connected by a single-mode quantum point contact, where the gap amplitudes in the two superconductors are unequal. In these systems, it was found in previous studies on the dc effects that, besides the Andreev bound-states, the continuum states can also contribute to the current. Using the quasiclassical formulation, we calculate the current-voltage characteristics for general transmission DD of the point contact. To emphasize bound versus continuum states, we examine in detail the low bias, ballistic (D=1) limit. It is shown that in this limit the current-voltage characteristics can be determined from the current-phase relation, if we pay particular attention to the different behaviors of these states under the bias voltage. For unequal gap configurations, the continuum states give rise to non-zero sine components. We also demonstrate that in this limit the temperature dependence of the dc component follows tanh(Δs/2T)\tanh(\Delta_s/2T), where Δs\Delta_s is the smaller gap, with the contribution coming entirely from the bound state.Comment: To appear in PR

    Energy Resolved Supercurrent between two superconductors

    Full text link
    In this paper I study the energy resolved supercurrent of a junction consisting of a dirty normal metal between two superconductors. I also consider a cross geometry with two additional arms connecting the above mentioned junction with two normal reservoirs at equal and opposite voltages. The dependence of the supercurrent between the two superconductors on the applied voltages is studied.Comment: revtex, 7 pages, 8 figures. accepted by Phys. Rev.

    Pairing Symmetry in the Anisotropic Fermi Superfluid under p-wave Feshbach Resonance

    Full text link
    The anisotropic Fermi superfluid of ultra-cold Fermi atoms under the p-wave Feshbach resonance is studied theoretically. The pairing symmetry of the ground state is determined by the strength of the atom-atom magnetic dipole interaction. It is kzk_z for a strong dipole interaction; while it becomes kziβkyk_z - i \beta k_y, up to a rotation about z, for a weak one (Here β\beta < 1 is a numerical coefficient). By changing the external magnetic field or the atomic gas density, a phase transition between these two states can be driven. We discuss how the pairing symmetry of the ground state can be determined in the time-of-flight experiments.Comment: 12 pages, 7 figure

    Face Recognition in Color Using Complex and Hypercomplex Representation

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-72847-4_29Color has plenty of discriminative information that can be used to improve the performance of face recognition algorithms, although it is difficult to use it because of its high variability. In this paper we investigate the use of the quaternion representation of a color image for face recognition. We also propose a new representation for color images based on complex numbers. These two color representation methods are compared with the traditional grayscale and RGB representations using an eigenfaces based algorithm for identity verification. The experimental results show that the proposed method gives a very significant improvement when compared to using only the illuminance information.Work supported by the Spanish Project DPI2004-08279-C02-02 and the Generalitat Valenciana - Consellería d’Empresa, Universitat i Ciència under an FPI scholarship.Villegas, M.; Paredes Palacios, R. (2007). Face Recognition in Color Using Complex and Hypercomplex Representation. En Pattern Recognition and Image Analysis: Third Iberian Conference, IbPRIA 2007, Girona, Spain, June 6-8, 2007, Proceedings, Part I. Springer Verlag (Germany). 217-224. https://doi.org/10.1007/978-3-540-72847-4_29S217224Yip, A., Sinha, P.: Contribution of color to face recognition. Perception 31(5), 995–1003 (2002)Torres, L., Reutter, J.Y., Lorente, L.: The importance of the color information in face recognition. In: ICIP, vol. 3, pp. 627–631 (1999)Jones III, C., Abbott, A.L.: Color face recognition by hypercomplex gabor analysis. In: FG2006, University of Southampton, UK, pp. 126–131 (2006)Hamilton, W.R.: On a new species of imaginary quantities connected with a theory of quaternions. In: Proc. Royal Irish Academy, vol. 2, pp. 424–434 (1844)Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra And Its Applications 251(1-3), 21–57 (1997)Pei, S., Cheng, C.: A novel block truncation coding of color images by using quaternion-moment preserving principle. In: ISCAS, Atlanta, USA, vol. 2, pp. 684–687 (1996)Sangwine, S., Ell, T.: Hypercomplex fourier transforms of color images. In: ICIP, Thessaloniki, Greece, vol. 1, pp. 137–140 (2001)Bihan, N.L., Sangwine, S.J.: Quaternion principal component analysis of color images. In: ICIP, Barcelona, Spain, vol. 1, pp. 809–812 (2003)Chang, J.-H., Pei, S.-C., Ding, J.J.: 2d quaternion fourier spectral analysis and its applications. In: ISCAS, Vancouver, Canada, vol. 3, pp. 241–244 (2004)Li, S.Z., Jain, A.K.: 6. In: Handbook of Face Recognition. Springer (2005)Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, p. 1055. Springer, Heidelberg (2003)Lee, K., Ho, J., Kriegman, D.: Nine points of light: Acquiring subspaces for face recognition under variable lighting. In: CVPR, vol. 1, pp. 519–526 (2001)Zhang, L., Samaras, D.: Face recognition under variable lighting using harmonic image exemplars. In: CVPR, vol. 1, pp. 19–25 (2003)Villegas, M., Paredes, R.: Comparison of illumination normalization methods for face recognition. In: COST 275, University of Hertfordshire, UK, pp. 27–30 (2005)Turk, M., Pentland, A.: Face recognition using eigenfaces. In: CVPR, Hawaii, pp. 586–591 (1991)Bihan, N.L., Mars, J.: Subspace method for vector-sensor wave separation based on quaternion algebra. In: EUSIPCO, Toulouse, France (2002)XM2VTS (CDS00{1,6}), http://www.ee.surrey.ac.uk/Reseach/VSSP/xm2vtsdbLuettin, J., Maître, G.: Evaluation protocol for the extended M2VTS database (XM2VTSDB). IDIAP-COM 05, IDIAP (1998
    corecore