33 research outputs found

    Raman Spectroscopy as a Tool to Study the Pathophysiology of Brain Diseases

    Get PDF
    The Raman phenomenon is based on the spontaneous inelastic scattering of light, which depends on the molecular characteristics of the dispersant. Therefore, Raman spectroscopy and imaging allow us to obtain direct information, in a label-free manner, from the chemical composition of the sample. Since it is well established that the development of many brain diseases is associated with biochemical alterations of the affected tissue, Raman spectroscopy and imaging have emerged as promising tools for the diagnosis of ailments. A combination of Raman spectroscopy and/or imaging with tagged molecules could also help in drug delivery and tracing for treatment of brain diseases. In this review, we first describe the basics of the Raman phenomenon and spectroscopy. Then, we delve into the Raman spectroscopy and imaging modes and the Raman-compatible tags. Finally, we center on the application of Raman in the study, diagnosis, and treatment of brain diseases, by focusing on traumatic brain injury and ischemia, neurodegenerative disorders, and brain cancer.The APC was funded by grant PID2020-117405GB100, funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by “ERDF A way of making Europe” by the “European Union” or by the “European Union NextGenerationEU/PRTR”; by the Basque Government, grant numbers ELKARTEK22/86 and IT1625-22; and by Fundación Ramón Areces, grant number CIVP20S11276

    Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys

    Get PDF
    ABSTRACT Transbilayer lipid motion in membranes may be important in certain physiological events, such as ceramide signaling. In this study, the transbilayer redistribution of lipids induced either by ceramide addition or by enzymatic ceramide generation at one side of the membrane has been monitored using pyrene-labeled phospholipid analogs. When added in organic solution to preformed liposomes, egg ceramide induced transbilayer lipid motion in a dose-dependent way. Short-chain (C6 and C2) ceramides were less active than egg ceramide, whereas dihydroceramides or dioleoylglycerol were virtually inactive in promoting flip-flop. The same results (either positive or negative) were obtained when ceramides, dihydroceramides, or diacylglycerols were generated in situ through the action of a sphingomyelinase or of a phospholipase C. The phenomenon was dependent on the bilayer lipid composition, being faster in the presence of lipids that promote inverted phase formation, e.g., phosphatidylethanolamine and cholesterol; and, conversely, slower in the presence of lysophosphatidylcholine, which inhibits inverted phase formation. Transbilayer motion was almost undetectable in bilayers composed of pure phosphatidylcholine or pure sphingomyelin. The use of pyrene-phosphatidylserine allowed detection of flip-flop movement induced by egg ceramide in human red blood cell membranes at a rate comparable to that observed in model membranes. The data suggest that when one membrane leaflet becomes enriched in ceramides, they diffuse toward the other leaflet. This is counterbalanced by lipid movement in the opposite direction, so that net mass transfer between monolayers is avoided. These observations may be relevant to the physiological mechanism of transmembrane signaling via ceramides

    Cholesterol in the Viral Membrane is a Molecular Switch Governing HIV-1 Env Clustering

    Get PDF
    HIV-1 entry requires the redistribution of envelope glycoproteins (Env) into a cluster and the presence of cholesterol (chol) in the viral membrane. However, the molecular mechanisms underlying the specific role of chol in infectivity and the driving force behind Env clustering remain unknown. Here, gp41 is demonstrated to directly interact with chol in the viral membrane via residues 751-854 in the cytoplasmic tail (CT751-854). Super-resolution stimulated emission depletion (STED) nanoscopy analysis of Env distribution further demonstrates that both truncation of gp41 CT751-854 and depletion of chol leads to dispersion of Env clusters in the viral membrane and inhibition of virus entry. This work reveals a direct interaction of gp41 CT with chol and indicates that this interaction is an important orchestrator of Env clustering.The authors are grateful to Barbara Müller, N. Landau, and Tom Hope for providing the plasmids pCHIV and pCAGGS NL4-3 Env, pMM310, and peGFP-Vpr, respectively. Proteomic analysis was performed by the SGIKER service of the University of the Basque Country. The authors would like to thank Advanced Light Microscopy Unit at the Centre for Genomic Regulation (CRG), Barcelona, Spain for the access to Leica STED microscope. The following reagents were obtained through the NIH AIDS Reagent Program (Division of NIAID, NIH): Anti-HIV-1 gp41 Hybridome (Chessie 8) (Cat# 526) from Dr. George Lewis; Antiviral bicyclam JM-2987 (hydrobromide salt of AMD-3100) from NIAID, DAIDS (cat# 8128). This project was supported by the Basque Government (grant number IT1264-19 to M.L. and F.-X.C.) and the Spanish Ministry of Science, Innovation, and Universities (BFU-2015-68981-P). This work was supported in part by the Fundación Biofísica Bizkaia and the Basque Excellence Research Centre (BERC) program of the Basque Government. J.A.N.-G. was supported by a FI predoctoral fellowship from the Basque Government and currently by Fundación Biofísica Bizkaia. A.A. was supported by Fundación Biofísica Bizkaia. S.O. was supported by an IKASIKER fellowship from the Basque Government. J.C. was supported by European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 793830. H.G.-K. was supported by a grant from the Deutsche Forschungsgemeischaft within TRR86

    C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake

    Get PDF
    AbstractInsufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox.SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process

    Identification of a New Cholesterol-Binding Site within the IFN-gamma Receptor that is Required for Signal Transduction

    Get PDF
    [EN] The cytokine interferon-gamma (IFN-gamma) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-gamma exerts it signaling action by binding to a specific cell surface receptor, the IFN-gamma receptor (IFN-gamma R), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-gamma R signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-gamma R2 chains into plasma membrane lipid nanodomains, orchestrating IFN-gamma R oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-gamma R transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFN gamma R2 interaction may represent a potential therapeutic strategy for various IFN-gamma-dependent diseases.This work was supported by grants from the Spanish Ministry of Science, Innovation, and Universities (BFU-2015-68981-P and PID2020-117405GB-I00) and the Basque Government (IT1264-19, IT1625-22) to F.-X.C. and M.L. F.-X.C. acknowledge the generous support of Fundacion Ramon Areces (grant CIVP20S11276). O.T. was supported by a Basque Government grant (IT1270-19) I.R.-B., O.M., J.A.N.-G., and D.C. were supported by the Fundacion Biofisica Bizkaia. The Lamaze laboratory was supported from Agence Nationale de la Recherche grants ANR-11-LABX-0038, ANR-10-IDEX-0001-02, and ANR NanoGammaR-15-CE11-0025-01. The Bernardino de la Serna Lab acknowledges support from Belinda and Bill Gates Foundation and BBSRC (INV-016631 and BB/V019791/1, respectively). This work was supported in part by the Fundacion Biofisica Bizkaia and the Basque Excellence Research Centre (BERC) program of the Basque Government. The authors thank J. M. Gonzalez Manas for helpful comments on the manuscript. The authors thank the technical and human support provided by the analytical and high-resolution microscopy facility (SGIker) of UPV/EHU and European funding (ERDF and ESF)

    Super-Resolution Microscopy Using a Bioorthogonal-Based Cholesterol Probe Provides Unprecedented Capabilities for Imaging Nanoscale Lipid Heterogeneity in Living Cells

    Get PDF
    Despite more than 20 years of work since the lipid raft concept was proposed, the existence of these nanostructures remains highly controversial due to the lack of noninvasive methods to investigate their native nanorganization in living unperturbed cells. There is an unmet need for probes for direct imaging of nanoscale membrane dynamics with high spatial and temporal resolution in living cells. In this paper, a bioorthogonal-based cholesterol probe (chol-N-3) is developed that, combined with nanoscopy, becomes a new powerful method for direct visualization and characterization of lipid raft at unprecedented resolution in living cells. The chol-N-3 probe mimics cholesterol in synthetic and cellular membranes without perturbation. When combined with live-cell super-resolution microscopy, chol-N-3 demonstrates the existence of cholesterol-rich nanodomains of <50 nm at the plasma membrane of resting living cells. Using this tool, the lipid membrane structure of such subdiffraction limit domains is identified, and the nanoscale spatiotemporal organization of cholesterol in the plasma membrane of living cells reveals multiple cholesterol diffusion modes at different spatial localizations. Finally, imaging across thick organ samples outlines the potential of this new method to address essential biological questions that were previously beyond reach.M.L., O.T., and J.A.N.-G. contributed equally to this work. This work was supported by grants from the Spanish Ministry of Science Innovation and Universities, (Grant No. BFU-2015-68981-P) and the Basque Government (Grant No. IT1264-19) to F.-X.C. and M.L.. The authors thank J. M. Gonzalez Manas and Sergio Perez Acebron for helful comments on the manuscript. The authors thank the technical and human support provided by the analytical and high-resolution microscopy facility (SGIker) of UPV/EHU and European funding (ERDF and ESF). J.B.d.l.S. acknowledges funding from the Bill and Melinda Gates Foundation and the BBSRC (Grant Nos. INV-016631 and BB/V019791/1, respectively). This work was supported in part by the Fundacion Biofisica Bizkaia (FBB) and the Basque Excellence Research Centre (BERC) program of the Basque Government. J.A.N.-G. was supported by a FI predoctoral fellowship from the Basque Government and currently by FBB. Documen

    Lipidomimetic Compounds Act as HIV-1 Entry Inhibitors by Altering Viral Membrane Structure

    Get PDF
    The envelope of Human Immunodeficiency Virus type 1 (HIV-1) consists of a liquid-ordered membrane enriched in raft lipids and containing the viral glycoproteins. Previous studies demonstrated that changes in viral membrane lipid composition affecting membrane structure or curvature can impair infectivity. Here, we describe novel antiviral compounds that were identified by screening compound libraries based on raft lipid-like scaffolds. Three distinct molecular structures were chosen for mode-of-action studies, a sterol derivative (J391B), a sphingosine derivative (J582C) and a long aliphatic chain derivative (IBS70). All three target the viral membrane and inhibit virus infectivity at the stage of fusion without perturbing virus stability or affecting virion-associated envelope glycoproteins. Their effect did not depend on the expressed envelope glycoproteins or a specific entry route, being equally strong in HIV pseudotypes carrying VSV-G or MLV-Env glycoproteins. Labeling with laurdan, a reporter of membrane order, revealed different membrane structure alterations upon compound treatment of HIV-1, which correlated with loss of infectivity. J582C and IBS70 decreased membrane order in distinctive ways, whereas J391B increased membrane order. The compounds' effects on membrane order were reproduced in liposomes generated from extracted HIV lipids and thus independent both of virion proteins and of membrane leaflet asymmetry. Remarkably, increase of membrane order by J391B required phosphatidylserine, a lipid enriched in the HIV envelope. Counterintuitively, mixtures of two compounds with opposite effects on membrane order, J582C and J391B, did not neutralize each other but synergistically inhibited HIV infection. Thus, altering membrane order, which can occur by different mechanisms, constitutes a novel antiviral mode of action that may be of general relevance for enveloped viruses and difficult to overcome by resistance development

    Sialyllactose in Viral Membrane Gangliosides Is a Novel Molecular Recognition Pattern for Mature Dendritic Cell Capture of HIV-1

    Get PDF
    An accessible sialyllactose moiety on viral membrane gangliosides is shown to be essential for HIV-1 uptake into mature dendritic cells, thereby promoting viral transfer and infection of bystander CD4+ T lymphocytes

    Shedding light on membrane rafts structure and dynamics in living cells

    No full text
    Cellular membranes are fundamental building blocks regulating an extensive repertoire of biological functions. These structures contain lipids and membrane proteins that are known to laterally self-aggregate in the plane of the membrane, forming defined membrane nanoscale domains essential for protein activity. Membrane rafts are described as heterogeneous, dynamic, and short-lived cholesterol- and sphingolipid-enriched membrane nanodomains (10–200 nm) induced by lipid-protein and lipid-lipid interactions. Those membrane nanodomains have been extensively characterized using model membranes and in silico methods. However, despite the development of advanced fluorescence microscopy techniques, undoubted nanoscale visualization by imaging techniques of membrane rafts in the membrane of unperturbed living cells is still uncompleted, increasing the skepticism about their existence. Here, we broadly review recent biochemical and microscopy techniques used to investigate membrane rafts in living cells and we enumerate persistent open questions to answer before unlocking the mystery of membrane rafts in living cells.This work was supported by grants from the Spanish Ministry of Science Innovation and Universities (PID2020-117405GB-I00) and the Basque Government (IT1264-19) to FXC and ML.Peer reviewe
    corecore