80 research outputs found

    Quantifying normal human brain metabolism using hyperpolarized [1– 13 C]pyruvate and magnetic resonance imaging

    Get PDF
    Hyperpolarized 13 C Magnetic Resonance Imaging ( 13 C-MRI) provides a highly sensitive tool to probe tissue metabolism in vivo and has recently been translated into clinical studies. We report the cerebral metabolism of intravenously injected hyperpolarized [1– 13 C]pyruvate in the brain of healthy human volunteers for the first time. Dynamic acquisition of 13 C images demonstrated 13 C-labeling of both lactate and bicarbonate, catalyzed by cytosolic lactate dehydrogenase and mitochondrial pyruvate dehydrogenase respectively. This demonstrates that both enzymes can be probed in vivo in the presence of an intact blood-brain barrier: the measured apparent exchange rate constant (k PL ) for exchange of the hyperpolarized 13 C label between [1– 13 C]pyruvate and the endogenous lactate pool was 0.012 ± 0.006 s −1 and the apparent rate constant (k PB ) for the irreversible flux of [1– 13 C]pyruvate to [ 13 C]bicarbonate was 0.002 ± 0.002 s −1 . Imaging also revealed that [1– 13 C]pyruvate, [1– 13 C]lactate and [ 13 C]bicarbonate were significantly higher in gray matter compared to white matter. Imaging normal brain metabolism with hyperpolarized [1– 13 C]pyruvate and subsequent quantification, have important implications for interpreting pathological cerebral metabolism in future studies

    Hyperpolarized13c mri of tumor metabolism demonstrates early metabolic response to neoadjuvant chemotherapy in breast cancer

    Get PDF
    Purpose: To compare hyperpolarized carbon 13 (13C) MRI with dynamic contrast material–enhanced (DCE) MRI in the detection of early treatment response in breast cancer. Materials and Methods: In this institutional review board–approved prospective study, a woman with triple-negative breast cancer (age, 49 years) underwent13C MRI after injection of hyperpolarized [1–carbon 13 {13C}]-pyruvate and DCE MRI at 3 T at baseline and after one cycle of neoadjuvant therapy. The13C-labeled lactate-to-pyruvate ratio derived from hyperpolarized13C MRI and the pharmacokinetic parameters transfer constant (Ktrans) and washout parameter (kep ) derived from DCE MRI were compared before and after treatment. Results: Exchange of the13C label between injected hyperpolarized [1-13C]-pyruvate and the endogenous lactate pool was observed, catalyzed by the enzyme lactate dehydrogenase. After one cycle of neoadjuvant chemotherapy, a 34% reduction in the13C-labeled lactate-to-pyruvate ratio resulted in correct identification of the patient as a responder to therapy, which was subsequently confirmed via a complete pathologic response. However, DCE MRI showed an increase in mean Ktrans (132%) and mean kep (31%), which could be incorrectly interpreted as a poor response to treatment. Conclusion: Hyperpolarized13C MRI enabled successful identification of breast cancer response after one cycle of neoadjuvant chemotherapy and may improve response prediction when used in conjunction with multiparametric proton MRI

    T cell stimulator cells, an efficient and versatile cellular system to assess the role of costimulatory ligands in the activation of human T cells.

    Get PDF
    It is well established that full activation of T cells requires the interaction of the TCR complex with the peptide-MHC complex (Signal 1) and additional signals (Signal 2). These second signals are generated by the interaction of costimulatory ligands expressed on antigen presenting cells with activating receptors on T cells. In addition, T cell responses are negatively regulated by inhibitory costimulatory pathways. Since professional antigen presenting cells (APC) harbour a plethora of stimulating and inhibitory surface molecules, the contribution of individual costimulatory molecules is difficult to assess on these cells. We have developed a system of stimulator cells that can give signal 1 to human T cells via a membrane bound anti-CD3 antibody fragment. By expressing human costimulatory ligands on these cells, their role in T cell activation processes can readily be analyzed. We demonstrate that T cell stimulator cells are excellent tools to study various aspects of human T cell costimulation, including the effects of immunomodulatory drugs or how costimulatory signals contribute to the in vitro expansion of T cells. T cell stimulator cells are especially suited for the functional evaluation of ligands that are implicated in costimulatory processes. In this study we have evaluated the role of the CD2 family member CD150 (SLAM) and the TNF family member TL1A (TNFSF15) in the activation of human T cells. Whereas our results do not point to a significant role of CD150 in T cell activation we found TL1A to potently costimulate human T cells. Taken together our results demonstrate that T cell stimulator cells are excellent tools to study various aspects of costimulatory processes

    Hyperpolarized 13C-Pyruvate Metabolism as a Surrogate for Tumor Grade and Poor Outcome in Renal Cell Carcinoma-A Proof of Principle Study.

    Get PDF
    Differentiating aggressive clear cell renal cell carcinoma (ccRCC) from indolent lesions is challenging using conventional imaging. This work prospectively compared the metabolic imaging phenotype of renal tumors using carbon-13 MRI following injection of hyperpolarized [1-13C]pyruvate (HP-13C-MRI) and validated these findings with histopathology. Nine patients with treatment-naïve renal tumors (6 ccRCCs, 1 liposarcoma, 1 pheochromocytoma, 1 oncocytoma) underwent pre-operative HP-13C-MRI and conventional proton (1H) MRI. Multi-regional tissue samples were collected using patient-specific 3D-printed tumor molds for spatial registration between imaging and molecular analysis. The apparent exchange rate constant (kPL) between 13C-pyruvate and 13C-lactate was calculated. Immunohistochemistry for the pyruvate transporter (MCT1) from 44 multi-regional samples, as well as associations between MCT1 expression and outcome in the TCGA-KIRC dataset, were investigated. Increasing kPL in ccRCC was correlated with increasing overall tumor grade (ρ = 0.92, p = 0.009) and MCT1 expression (r = 0.89, p = 0.016), with similar results acquired from the multi-regional analysis. Conventional 1H-MRI parameters did not discriminate tumor grades. The correlation between MCT1 and ccRCC grade was confirmed within a TCGA dataset (p < 0.001), where MCT1 expression was a predictor of overall and disease-free survival. In conclusion, metabolic imaging using HP-13C-MRI differentiates tumor aggressiveness in ccRCC and correlates with the expression of MCT1, a predictor of survival. HP-13C-MRI may non-invasively characterize metabolic phenotypes within renal cancer

    eComment: Radial artery Doppler study in every case?

    No full text
    10.1510/icvts.2007.172569BInteractive Cardiovascular and Thoracic Surgery75800-ICTS
    corecore