346 research outputs found

    Dense astrophysical plasmas

    Full text link
    We briefly examine the properties of dense plasmas characteristic of the atmospheres of neutron stars and of the interior of massive white dwarfs. These astrophysical bodies are natural laboratories to study respectively the problem of pressure ionization of hydrogen in a strong magnetic field and the crystallization of the quantum one-component-plasma at finite temperature.Comment: 8 pages, 3 figures, LaTeX using iopart.cls and iopart12.clo (included). In the special issue "Liquid State Theory: from White Dwarfs to Colloids" (International Conf. in the honor of Prof. J.-P. Hansen's 60th birthday, Les Houches, April 1-5, 2002

    CNGS: Effects of possible alignment errors

    Get PDF
    Simulations of the CNGS neutrino beam from CERN to the Gran Sasso Laboratory (LNGS)assume that the proton beam and all secondary beam elements are perfectly aligned on an axis between the two laboratories. This study examines the effects on the neutrino flux at Gran Sasso of deviations from the axis of the primary proton beam and misalignment of secondary beam elements. It also examines how such deviation or misalignment can be detected at monitors placed along the secondary beam line at CERN and at Gran Sasso. Calculations are based on the CNGS neutrino beam, optimized for nu_mu ->nu_tau appearance experiments as described in the Addendum to the Conceptual Technical Design Report of CNGS. It is shown that the number of neutrino charged current events predicted at Gran Sasso is insensitive to all but the most extreme misalignments

    Effective potential between two gluons from the scalar glueball

    Full text link
    Starting from the 0++0^{++} glueball mass and wave function computed from lattice QCD, we compute the local potential between two constituent gluons. Since the properties of constituent gluons are still a matter of research, we allow for them to be either massless, or massive with a mass around 0.7 GeV. Both pictures are actually used in the literature. When the gluons are massless, the corresponding local potential is shown to be compatible with a Cornell form, that is a linear confinement plus a short-range Coulomb part, with standard values for the flux tube energy density and for the strong coupling constant. When the gluons are massive, the confining potential is a saturating one, commonly used to simulate string-breaking effects. These results fill a gap between lattice QCD and phenomenological models: The picture of the scalar glueball as a bound state of two constituent gluons interacting via a phenomenological potential is shown to emerge from pure gauge lattice QCD computations. Moreover, we show that the allowed potential shape is constrained by the mass of the constituent gluons.Comment: 4 figures; Comments added, one typo corrected in v2. V3 accepted for publication in EPJA : major changes, content enlarged, inclusion of massive gluon

    High-energy quasi-monoenergetic neutron fields: existing facilities and future needs

    Get PDF
    The argument that well-characterised quasi-monoenergetic neutron (QMN) sources reaching into the energy domain >20 MeV are needed is presented. A brief overview of the existing facilities is given, and a list of key factors that an ideal QMN source for dosimetry and spectrometry should offer is presented. The authors conclude that all of the six QMN facilities currently in existence worldwide operate in sub-optimal conditions for dosimetry. The only currently available QMN facility in Europe capable of operating at energies >40 MeV, TSL in Uppsala, Sweden, is threatened with shutdown in the immediate future. One facility, NFS at GANIL, France, is currently under construction. NFS could deliver QMN beams up to about 30 MeV. It is, however, so far not clear if and when NFS will be able to offer QMN beams or operate with only so-called white neutron beams. It is likely that by 2016, QMN beams with energies >40 MeV will be available only in South Africa and Japan, with none in Europ

    The helium atom in a strong magnetic field

    Get PDF
    We investigate the electronic structure of the helium atom in a magnetic field b etween B=0 and B=100a.u. The atom is treated as a nonrelativistic system with two interactin g electrons and a fixed nucleus. Scaling laws are provided connecting the fixed-nucleus Hamiltonia n to the one for the case of finite nuclear mass. Respecting the symmetries of the electronic Ham iltonian in the presence of a magnetic field, we represent this Hamiltonian as a matrix with res pect to a two-particle basis composed of one-particle states of a Gaussian basis set. The corresponding generalized eigenvalue problem is solved numerically, providing in the present paper results for vanish ing magnetic quantum number M=0 and even or odd z-parity, each for both singlet and triplet spin symmetry. Total electronic energies of the ground state and the first few excitations in each su bspace as well as their one-electron ionization energies are presented as a function of the magnetic fie ld, and their behaviour is discussed. Energy values for electromagnetic transitions within the M=0 sub space are shown, and a complete table of wavelengths at all the detected stationary points with respect to their field dependence is given, thereby providing a basis for a comparison with observed ab sorption spectra of magnetic white dwarfs.Comment: 21 pages, 4 Figures, acc.f.publ.in J.Phys.

    Analisis Hidrolika Bangunan Krib Permeabel pada Saluran Tanah (Uji Model Laboratorium)

    Full text link
    One of the structures to protect river bank erosion is groyne. Groyne can serve and control water flow, reducing flow velocity and scour of river bank. The purposes of this study is to analyze the changes in the river bed elevation (morphology) and the depth of scour in the upstream groyne caused by the permeable groyne installed at the river meanders. The experiment was conducted at Fluid Mechanics and Hydraulics Laboratory, Sriwijaya University. The study tested the hydraulics models, a trapezoidal channel, meanders angle of 90˚, five permeable groynes at meanders, and the water flowing in the channels was clear water. The observations were carried out with a flow rate was 63,32 Lt / min, three variations of permeable groynes angle were 45˚, 90˚ and 135˚ to the upstream within 1 hour, 2,5 hours and 4 hours for each angle variations . The results of this study showed that the flow velocity of meanders was decreasing to the end of the meanders, and the changes of channel only occurred at the riverbed. Maximum riverbed changes (Bt / Bo) for permeable groyne angle of 45˚, 90˚ and 135 ˚ were 1,376 cm, 1,346 cm dan 1,452 cm. The maximum depth of scour (ds/y) for permeable groyne angle of 45˚, 90˚ and 135˚ were 1,05 cm, 0,95 cm dan 1,17 cm. Thus, permeable groyne with angle of 90 proved to be the best with the smallest riverbed changes (Bt /Bo) was 1,346 cm and the coefficient of determination (R2) was 0,9384, and also the smallest scour depth (ds/y) was 0,95 cm and the coefficient of determination (R2) was 0,8317 compared to other groyne permeable angles

    Phage Display in the Quest for New Selective Recognition Elements for Biosensors

    Get PDF
    Phages are bacterial viruses that have gained a significant role in biotechnology owing to their widely studied biology and many advantageous characteristics. Perhaps the best-known application of phages is phage display that refers to the expression of foreign peptides or proteins outside the phage virion as a fusion with one of the phage coat proteins. In 2018, one half of the Nobel prize in chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies." The outstanding technology has evolved and developed considerably since its first description in 1985, and today phage display is commonly used in a wide variety of disciplines, including drug discovery, enzyme optimization, biomolecular interaction studies, as well as biosensor development. A cornerstone of all biosensors, regardless of the sensor platform or transduction scheme used, is a sensitive and selective bioreceptor, or a recognition element, that can provide specific binding to the target analyte. Many environmentally or pharmacologically interesting target analytes might not have naturally appropriate binding partners for biosensor development, but phage display can facilitate the production of novel receptors beyond known biomolecular interactions, or against toxic or nonimmunogenic targets, making the technology a valuable tool in the quest of new recognition elements for biosensor development.This study was supported by the Ministry of Economy and Competitiveness (Ministerio de Ciencia, Innovación y Universidades RTI2018-096410-B-C21). R.P. acknowledges UCM for a predoctoral grant and R.B. the PI17CIII/00045 grant from the AES-ISCIII program.S

    HETEROFOR 1.0: A spatially explicit model for exploring the response of structurally complex forests to uncertain future conditions-Part 2: Phenology and water cycle

    Full text link
    Climate change affects forest growth in numerous and sometimes opposite ways, and the resulting trend is often difficult to predict for a given site. Integrating and structuring the knowledge gained from the monitoring and experimental studies into process-based models is an interesting approach to predict the response of forest ecosystems to climate change. While the first generation of models operates at stand level, one now needs spatially explicit individual-based approaches in order to account for individual variability, local environment modification and tree adaptive behaviour in mixed and uneven-Aged forests that are supposed to be more resilient under stressful conditions. The local environment of a tree is strongly influenced by the neighbouring trees, which modify the resource level through positive and negative interactions with the target tree. Among other things, drought stress and vegetation period length vary with tree size and crown position within the canopy. In this paper, we describe the phenology and water balance modules integrated in the tree growth model HETEROFOR (HETEROgenous FORest) and evaluate them on six heterogeneous sessile oak and European beech stands with different levels of mixing and development stages and installed on various soil types. More precisely, we assess the ability of the model to reproduce key phenological processes (budburst, leaf development, yellowing and fall) as well as water fluxes. Two two-phase models differing regarding their response function to temperature during the chilling period (optimum and sigmoid functions) and a simplified one-phase model are. used to predict budburst date. The two-phase model with the optimum function is the least biased (overestimation of 2.46 d), while the one-phase model best accounts for the interannual variability (Pearson's r D 0:68). For the leaf development, yellowing and fall, predictions and observations are in accordance. Regarding the water balance module, the predicted throughfall is also in close agreement with the measurements (Pearson's r D 0:856; biasD 1:3 %), and the soil water dynamics across the year are well reproduced for all the study sites (Pearson's r was between 0.893 and 0.950, and bias was between 1:81 and 9:33 %). The model also reproduced well the individual transpiration for sessile oak and European beech, with similar performances at the tree and stand scale (Pearson's r of 0.84 0.85 for sessile oak and 0.88 0.89 for European beech). The good results of the model assessment will allow us to use it reliably in projection studies to evaluate the impact of climate change on tree growth in structurally complex stands and test various management strategies to improve forest resilience. © 2020 Author(s)

    Electroanalytical study of the pesticide asulam

    Get PDF
    The electrochemical behaviour of the herbicide Asulam was studied by cyclic and square wave voltammetry. Asulam may be irreversibly oxidised at a glassy carbon electrode. Maximum currents were obtained at pH=1.9 in aqueous electrolyte solution. Based on the electrochemical behaviour of Asulam, two analytical methodologies were developed for its determination in water samples, using square wave voltammetry (SWV) and flow injection analysis (FIA) coupled with an amperometric detector. Limits of detection of 7.1x10-6 mol L-1 and 1.2x10-8 mol L-1 for SWV and FIA respectively, were achieved. Repeatability was calculated by assessing the relative standard deviation (%) for 10 consecutive determinations of one sample. The found values were 2.1% for SWV and 5.0% for FIA. Validation of the results provided by SWV and FIA methodologies was performed by comparison with results from an HPLC-DAD technique. Good relative deviations were found (<5%). Recovery trials were performed to assess the accuracy of the results and the obtained values were between 84% and 107% for both methods
    corecore