554 research outputs found

    Open clusters with Hipparcos I. Mean astrometric parameters

    Get PDF
    New memberships, mean parallaxes and proper motions of all 9 open clusters closer than 300 pc (except the Hyades) and 9 rich clusters between 300 and 500 pc have been computed using Hipparcos data. Precisions, ranging from 0.2 to 0.5 mas for parallaxes and 0.1 to 0.5 mas/yr for proper motions, are of great interest for calibrating photometric parallaxes as well as for kinematical studies. Careful investigations of possible biases have been performed and no evidence of significant systematic errors on the mean cluster parallaxes has been found. The distances and proper motions of 32 more distant clusters, which may be used statistically, are also indicated.Comment: 15 pages, A&A in pres

    Las ascidias de Tossa de Mar (Girona). I. Generalidades. Faunística y taxonomía

    Get PDF

    Loxocalyx leptoclini (Entoprocta), epibionte de ascidias en el litoral NE español

    Get PDF

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc

    A latitude-dependent wind model for Mira's cometary head

    Full text link
    We present a 3D numerical simulation of the recently discovered cometary structure produced as Mira travels through the galactic ISM. In our simulation, we consider that Mira ejects a steady, latitude-dependent wind, which interacts with a homogeneous, streaming environment. The axisymmetry of the problem is broken by the lack of alignment between the direction of the relative motion of the environment and the polar axis of the latitude-dependent wind. With this model, we are able to produce a cometary head with a ``double bow shock'' which agrees well with the structure of the head of Mira's comet. We therefore conclude that a time-dependence in the ejected wind is not required for reproducing the observed double bow shock.Comment: 4 pages, 4 figures, accepted for publication in ApJ

    Cryptic diversity and database errors challenge non-indigenous species surveys: An illustration with Botrylloides spp. in the English Channel and Mediterranean Sea

    Get PDF
    Molecular tools have been extensively used in recent decades to examine biological invasion processes, and are increasingly being adopted as efficient tools to support non-indigenous species surveys, notably through barcoding approaches, i.e., the use of a reference sequence specific to a given species to validate its identification. The technique is easy to use but requires reliable reference sequences to be available in public databases. In addition, the increasing discovery of cryptic species in marine taxa may complicate taxonomic assignment. We illustrate these two issues in the ascidian genus Botrylloides, in which at least three global marine invaders have been recognized, including B. violaceus and B. diegensis. We obtained COI sequences from >750 colonies of Botrylloides spp. sampled in W Europe or provided by expert colleagues from other regions. Phylogenetic trees clearly distinguished our targeted taxa [i.e., B. violaceus, B. diegensis and B. leachii (native)]. They also revealed another discrete lineage apparently related to a recently described eastern Mediterranean species. By examining public databases, we found sequences of B. diegensis erroneously assigned to B. leachii. This observation has major implications as the introduced B. diegensis can be misidentified as a putatively native species. We also checked published sequences of the genus Botrylloides in the Mediterranean Sea, complemented with new samples. Based on our custom reference database, all published sequences of B. leachii corresponded to B. diegensis, although this NIS has hardly been reported at all in the Mediterranean region. Such database errors are unfortunate, as the barcoding approach is a powerful tool to identify the recognized Botrylloides species currently present in European seas. This is of particular importance because a trait often used during field assessment, i.e., single-color vs. two-color colonies, is misleading to distinguish B. violaceus and B. diegensis respectively: a substantial proportion of the single-color morph are actually B. diegensis in both the Mediterranean Sea and the English Channel. Altogether, this study exemplifies the advantages and disadvantages of molecular barcoding in NIS surveys and studies. The limitations that were identified are all easy to resolve once proper vouchers and collections are set up

    Structural Analyses of Orthogrid Fuselage Panel for Integrated Ku-band SatCom Antenna.

    Get PDF
    The aim of this work is to describe the structural analysis of a multifunctional aircraft fuselage panel. The structure of the panel has an embedded antenna tiles. The panel consists of UniDirectional (UD) carbon fibre reinforced composite skin stiffened with ortho-grid ribs, and a transparent skin window made using UD glass fibre reinforced composite. The orthogrid structure is a structural reinforcement but also the antenna tiles support. The presented work proposes a numerical multiscale strategy. The laminate is simulated with solid elements, in order to capture the real kinematics of the material, but several laminas are condensed in a single finite element. The performance of each lamina is obtained using the Serial-Parallel (SP) mixing theory. The specific formulations developed have been very useful to identify and study the mechanical performance of these new structures and the localization of unknown and un-predicted hot-spots in the structure

    A model of Mira's cometary head/tail entering the Local Bubble

    Full text link
    We model the cometary structure around Mira as the interaction of an AGB wind from Mira A, and a streaming environment. Our simulations introduce the following new element: we assume that after 200 kyr of evolution in a dense environment Mira entered the Local Bubble (low density coronal gas). As Mira enters the bubble, the head of the comet expands quite rapidly, while the tail remains well collimated for a 100 kyr timescale. The result is a broad-head/narrow-tail structure that resembles the observed morphology of Mira's comet. The simulations were carried out with our new adaptive grid code WALICXE, which is described in detail.Comment: 12 pages, 8 figures (4 in color). Accepted for publication in The Astrophysical Journa
    corecore