448 research outputs found

    A Comparison of the Ovulation Method With the CUE Ovulation Predictor in Determining the Fertile Period

    Get PDF
    The purpose of this study was to compare the CUE Ovulation Predictor with the ovulation method in determining the fertile period. Eleven regularly ovulating women measured their salivary and vaginal electrical resistance (ER) with the CUE, observed their cervical-vaginal mucus, and measured their urine for a luteinizing hormone (LH) surge on a daily basis. Data from 21 menstrual cycles showed no statistical difference (T= 0.33, p= 0.63) between the CUE fertile period, which ranged from 5 to 10 days (mean = 6.7 days, SD = 1.6), and the fertile period of the ovulation method, which ranged from 4 to 9 days (mean = 6.5 days, SD = 2.0). The CUE has potential as an adjunctive device in the learning and use of natural family planning methods

    Direct Neutron Capture for Magic-Shell Nuclei

    Get PDF
    In neutron capture for magic--shell nuclei the direct reaction mechanism can be important and may even dominate. As an example we investigated the reaction 48^{48}Ca(n,γ)49\gamma)^{49}Ca for projectile energies below 250\,keV in a direct capture model using the folding procedure for optical and bound state potentials. The obtained theoretical cross sections are in agreement with the experimental data showing the dominance of the direct reaction mechanism in this case. The above method was also used to calculate the cross section for 50^{50}Ca(n,γ)51\gamma)^{51}Ca.Comment: REVTeX, 7 pages plus 3 uuencoded figures, the complete uuencoded postscript file is available at ftp://is1.kph.tuwien.ac.at/pub/ohu/calcium.u

    Axonopathy in the central nervous system is the hallmark of mice with a novel intragenic null mutation of dystonin.

    No full text
    Dystonia musculorum is a neurodegenerative disorder caused by a mutation in the dystonin gene. It has been described in mice and humans where it is called hereditary sensory autonomic neuropathy. Mutated mice show severe movement disorders and die at the age of 3-4 weeks. This study describes the discovery and molecular, clinical, as well as pathological characterization of a new spontaneously occurring mutation in the dystonin gene in C57BL/6N mice. The mutation represents a 40-kb intragenic deletion allele of the dystonin gene on chromosome 1 with exactly defined deletion borders. It was demonstrated by Western blot, mass spectrometry, and immunohistology that mice with a homozygous mutation were entirely devoid of the dystonin protein. Pathomorphological lesions were restricted to the brain stem and spinal cord and consisted of swollen, argyrophilic axons and dilated myelin sheaths in the white matter and, less frequently, total chromatolysis of neurons in the gray matter. Axonal damage was detected by amyloid precursor protein and nonphosphorylated neurofilament immunohistology. Axonopathy in the central nervous system (CNS) represents the hallmark of this disease. Mice with the dystonin mutation also showed suppurative inflammation in the respiratory tract, presumably due to brain stem lesion-associated food aspiration, whereas skeletal muscles showed no pathomorphological changes. This study describes a novel mutation in the dystonin gene in mice leading to axonopathy in the CNS. In further studies, this model may provide new insights into the pathogenesis of neurodegenerative diseases and may elucidate the complex interactions of dystonin with various other cellular proteins especially in the CNS

    Metabolic suppression in thecosomatous pteropods as an effect of low temperature and hypoxia in the eastern tropical North Pacific

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 159 (2012): 1955-1967, doi:10.1007/s00227-012-1982-x.Many pteropod species in the eastern tropical north Pacific Ocean migrate vertically each day, transporting organic matter and respiratory carbon below the thermocline. These migrations take species into cold (15-10ºC) hypoxic water (< 20 µmol O2 kg-1) at depth. We measured the vertical distribution, oxygen consumption and ammonia excretion for seven species of pteropod, some of which migrate and some which remain in oxygenated surface waters throughout the day. Within the upper 200 meters of the water column, changes in water temperature result in a ~60-75% reduction in respiration for most species. All three species tested under hypoxic conditions responded to low O2 with an additional ~35-50% reduction in respiratory rate. Combined, low temperature and hypoxia suppress the metabolic rate of pteropods by ~80-90%. These results shed light on the ways in which expanding regions of hypoxia and surface ocean warming may impact pelagic ecology.This work was funded by National Science Foundation grants to K. Wishner and B. Seibel (OCE – 0526502 and OCE – 0851043) and to K. Daly (OCE – 0526545), the University of Rhode Island, and the Rhode Island Experimental Program to Stimulate Competitive Research Fellowship program.2013-06-3

    STUDY OF THE ELECTRONIC STRUCTURE OF THE TOPOLOGICAL INSULATOR Bi1.1Sb0.9Te2S

    Full text link
    The surface and bulk electronic band structures of Bi1.1Sb0.9Te2S topological insulator were studied by angle-resolved photoelectron spectroscopy (ARPES) and Far- and Mid-in-frared spectroscopy

    Relationship between C-telopeptide pyridinoline cross-links (ICTP) and putative periodontal pathogens in periodontitis

    Full text link
    Crevicular fluid pyridinoline cross-linked carboxyterminal telopeptide of type 1 collagen (ICTP) is predictive for future alveolar bone loss in experimental periodontitis in dogs. The present study sought to relate ICTP to a panel of subgingival species in subjects exhibiting various clinical presentations such as health ( n = 7), gingivitis ( n = 8) and periodontitis (n=21), 28 subgingival plaque and GCF samples were taken from mesiobuccal sites m each of 36 subjects. The presence and levels of 40 subgtngivai taxa were determined in plaque samples using whole genomic DNA probes and checkerboard DNA-DNA hybridization. GCF ICTP levels were quantified using radioimmunoassay (RIA). Clinical assessments made at the same sites included: BOP, gingival redness, plaque, pocket depth, and attachment level. Differences among ICTP levels in the 3 subject groups were sought using the Kruskal-Wallis test. Relationships between ICTP levels and clinical parameters as well as subgingival species were determined by regression analysis. The results demonstrated significant differences among disease categories for GCF ICTP levels for healthy (1.1+0.6 pg/site (mean±SEM)) gingivitis (14.8±6.6 pg/site) and penodontitts subjects (30.3 + 5.7 pg/site) ( p = 0.0017). ICTP levels related modestly to several clinical parameters. Regression analysis indicated that ICTP levels correlated strongly with mean subject levels of several periodontal pathogens including B. forsythus, P. gingivitis, P. intermedia, P. nigrescens and T. dentcola ( p < 0.01). The data indicate that there is a positive relationship between the putative bone resorptive marker ICTP and periodontal pathogens.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74809/1/j.1600-051X.1998.tb02383.x.pd

    Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis

    Get PDF
    This study investigated the effects of seawater pH (i.e., 8.10, 7.85 and 7.60) and temperature (16 and 19 °C) on (a) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (b) growth, development and (c) cuttlebone calcification of embryonic and juvenile stages of the cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warming, leading to an increase in egg surface while the interactive effects suggested a limited plasticity of the swelling modulation. Embryos experienced elevated pCO2 conditions in the perivitelline fluid (>3-fold higher pCO2 than that of ambient seawater), rendering the medium under-saturated even under ambient conditions. The growth of both embryos and juveniles was unaffected by pH, whereas 45Ca incorporation in cuttlebone increased significantly with decreasing pH at both temperatures. This phenomenon of hypercalcification is limited to only a number of animals but does not guarantee functional performance and calls for better mechanistic understanding of calcification processes

    Bone turnover markers in sheep and goat: a review of the scientific literature

    Get PDF
    Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for his PhD scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio

    Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes

    Get PDF
    Climate model predictions1, 2 and observations3, 4 reveal regional declines in oceanic dissolved oxygen, which are probably influenced by global warming5. Studies indicate ongoing dissolved oxygen depletion and vertical expansion of the oxygen minimum zone (OMZ) in the tropical northeast Atlantic Ocean6, 7. OMZ shoaling may restrict the usable habitat of billfishes and tunas to a narrow surface layer8, 9. We report a decrease in the upper ocean layer exceeding 3.5 ml l−1 dissolved oxygen at a rate of ≤1 m yr−1 in the tropical northeast Atlantic (0–25° N, 12–30° W), amounting to an annual habitat loss of ~5.95×1013 m3, or 15% for the period 1960–2010. Habitat compression and associated potential habitat loss was validated using electronic tagging data from 47 blue marlin. This phenomenon increases vulnerability to surface fishing gear for billfishes and tunas8, 9, and may be associated with a 10–50% worldwide decline of pelagic predator diversity10. Further expansion of the Atlantic OMZ along with overfishing may threaten the sustainability of these valuable pelagic fisheries and marine ecosystems
    corecore