19,555 research outputs found

    Anomaly candidates and invariants of D=4, N=1 supergravity theories

    Full text link
    All anomaly candidates and the form of the most general invariant local action are given for old and new minimal supergravity, including the cases where additional Yang--Mills and chiral matter multiplets are present. Furthermore nonminimal supergravity is discussed. In this case local supersymmetry itself may be anomalous and some of the corresponding anomaly candidates are given explicitly. The results are obtained by solving the descent equations which contain the consistency equation satisfied by integrands of anomalies and invariant actions.Comment: 19 pages, LaTex, NIKHEF-H 93-12, ITP-UH 07/9

    Nonlinear transverse oscillations of a geostrophic front

    Get PDF
    A planar problem of nonlinear transverse oscillations of the surface (warm) front of a finite width is considered within the framework of a reduced-gravity model of the ocean. The source of oscillations is the departure of the front from its geostrophic equilibrium. When the current velocity is linear in the horizontal coordinate and the front's depth is quadratic in this coordinate, the problem is reduced to a system of four ordinary differential equations in time. As a result, the solution is obtained in a weakly nonlinear approximation and strongly nonlinear oscillations of the front are studied by numerically solving this system of equations by the Runge-Kutta method. The front's oscillations are always superinertial. Nonlinearity can lead to a decrease or increase in the oscillation frequency in comparison with the linear case. The oscillations are most intense when the current velocity is disturbed in the direction of the front's axis. A weakly nonlinear solution of the second order describes the oscillations very accurately even for initial velocity disturbances reaching 50% of its geostrophic value. An increase in the background-current shear leads to the damping of oscillations of the front's boundary. The amplitude of oscillations of the current velocity increases as the intensity of disturbances increases, and it is relatively small if background-current shears are small or large

    The structure of the graviton self-energy at finite temperature

    Full text link
    We study the graviton self-energy function in a general gauge, using a hard thermal loop expansion which includes terms proportional to T^4, T^2 and log(T). We verify explicitly the gauge independence of the leading T^4 term and obtain a compact expression for the sub-leading T^2 contribution. It is shown that the logarithmic term has the same structure as the ultraviolet pole part of the T=0 self-energy function. We argue that the gauge-dependent part of the T^2 contribution is effectively canceled in the dispersion relations of the graviton plasma, and present the solutions of these equations.Comment: 27 pages, 6 figure

    D-string on near horizon geometries and infinite conformal symmetry

    Get PDF
    We show that the symmetries of effective D-string actions in constant dilaton backgrounds are directly related to homothetic motions of the background metric. In presence of such motions, there are infinitely many nonlinearly realized rigid symmetries forming a loop (or loop like) algebra. Near horizon (AdS) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2d interacting field theories with infinite conformal symmetry.Comment: 5 pages, revtex, no figures; symmetry transformations for BI action added, coupling of D-string to RR 2-form in D1-D5 background corrected; final version, to appear in Phys. Rev. Let

    The information content of a new observable: the case of the nuclear neutron skin

    Full text link
    We address two questions pertaining to the uniqueness and usefulness of a new observable: (i) Considering the current theoretical knowledge, what novel information does new measurement bring in? (ii) How can new data reduce uncertainties of current theoretical models? We illustrate these points by studying the radius of the neutron distribution of a heavy nucleus, a quantity related to the equation of state for neutron matter that determines properties of nuclei and neutron stars. By systematically varying parameters of two theoretical models and studying the resulting confidence ellipsoid, we quantify the relationships between the neutron skin and various properties of finite nuclei and infinite nuclear matter. Using the covariance analysis, we identify observables and pseudo-observables that correlate, and do not correlate, with the neutron skin. By adding the information on the neutron radius to the pool of observables determining the energy functional, we show how precise experimental determination of the neutron radius in 208^{208}Pb would reduce theoretical uncertainties on the neutron matter equation of state.Comment: 5 pages, 3 figure

    Supermetallic conductivity in bromine-intercalated graphite

    Full text link
    Exposure of highly oriented pyrolytic graphite to bromine vapor gives rise to in-plane charge conductivities which increase monotonically with intercalation time toward values (for ~6 at% Br) that are significantly higher than Cu at temperatures down to 5 K. Magnetotransport, optical reflectivity and magnetic susceptibility measurements confirm that the Br dopes the graphene sheets with holes while simultaneously increasing the interplanar separation. The increase of mobility (~ 5E4 cm^2/Vs at T=300 K) and resistance anisotropy together with the reduced diamagnetic susceptibility of the intercalated samples suggests that the observed supermetallic conductivity derives from a parallel combination of weakly-coupled hole-doped graphene sheets.Comment: 5 pages, 4 figure

    Charge distribution and screening in layered graphene systems

    Full text link
    The charge distribution induced by external fields in finite stacks of graphene planes, or in semiinfinite graphite is considered. The interlayer electronic hybridization is described by a nearest neighbor hopping term, and the charge induced by the self consistent electrostatic potential is calculated within linear response (RPA). The screening properties are determined by contributions from inter- and intraband electronic transitions. In neutral systems, only interband transitions contribute to the charge polarizability, leading to insulating-like screening properties, and to oscillations in the induced charge, with a period equal to the interlayer spacing. In doped systems, we find a screening length equivalent to 2-3 graphene layers, superimposed to significant charge oscillations.Comment: 8 page

    Non-linear electromagnetic interactions in thermal QED

    Get PDF
    We examine the behavior of the non-linear interactions between electromagnetic fields at high temperature. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. We argue that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T tends to infinity. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action.Comment: 7 pages, IFUSP/P-111
    • …
    corecore